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Abstract

The stage of transporting semiconductor chips from the wafer to the support strip is
crucial in the integrated circuit manufacturing process. This process can be modeled as
a combinatorial optimization problem where the objective is to reduce the total distance
the robotic arm must travel to pick up each chip and place it in its corresponding position
within the support structure. This problem is of the pick-and-place type and is NP-
hard. The (approximate) solution proposals of state-of-the-art methods include rule-
based approaches, genetic algorithms, and reinforcement learning. There is a binary
integer programming model for this problem in the literature, from which its authors
proposed a genetic algorithm to obtain approximate solutions. Our work analyzes this
model and identifies its limitations. From this, we propose: (i) a new ILP model, and (ii)
a new solution representation, which, unlike the reference work, guarantees that feasible
solutions are obtained throughout the generation of new individuals. Based on this
new representation, we proposed and evaluated other approximate methods, including
a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for
test cases usually used in the literature. Additionally, the results obtained from our
new ILP model indicate that our genetic algorithm results are very close to the optimal
values.

Keywords: integrated circuit manufacturing, back-end production, chip placement process, greedy algo-
rithm, genetic algorithm, pick-and-place, integer linear programming.

1 Introduction

The integrated circuit (IC) is one of the most significant technological achievements of the last 60 years. The
demand for ICs has been increasing considerably in recent years due to multiple factors: the development
of computers, the Internet, mobile communications, big data, cloud computing, artificial intelligence, 5G
communication, optical communications, Internet of Things (IoT), automotive electronics, satellite commu-
nication and other applications of emerging technologies [1].
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(a) Wafers of various sizes with the semiconductor
chips. Image source: https://commons.wikimedia.

org/wiki/File:Wafer_2_Zoll_bis_8_Zoll_2.jpg

(b) Quality information of semiconductor chips in a
wafer. The positions in red indicate the defective
chips. Image extracted from [5].

Figure 1: Front-end process in manufacturing integrated circuits.

Figure 2: Strip with the slots where the semiconductor chips are deposited. Image adapted from: https:

//commons.wikimedia.org/wiki/File:TQFP_Leadframe.jpg

The IC industry is a branch of the semiconductor industry considered strategic and fundamental for a
country. It is estimated that between 2021 and 2030, the global market will be between 400 and 537.5 billion
dollars, with an annual growth rate of 3% [2]. Moreover, with the rapid development of global information
and networks, the IC industry is an essential indicator of a country’s economic and industrial strength and
a key player in defense and national security [3].

The IC manufacturing process consists of four main stages: (i) the manufacture of the wafer with the
semiconductors, (ii) the analysis of the wafer, (iii) packaging and assembly of the ICs, (iv) and the functional
test of the IC [4]. The first two stages are known as the front-end process, and the last two as the back-end
process.

In the front-end process, a wafer of semiconductor material (usually silicon) is processed and cut to
produce semiconductor chips. Examples of wafers are shown in Figure 1(a). This process is complicated
by the flow of reentrant products, high uncertainties in operations, and rapid changes in products and
technologies [6]. Once this process is complete, each chip is examined for its electrical performance, classifying
it accordingly as good or bad [7]. Figure 1(b) is shown as an example. This chip classification information
is stored in a file and sent to the assembly process.

In the back-end process, only the good chips from the wafer are picked up by a robotic arm and attached
to slots in a support structure (lead frames or substrate) on a strip [8]. Figure 2 shows an example of a strip.
After all the chips have been collected and located, they must be retested in a final performance test. Since
the robotic arm can move only one chip at a time, the total distance traveled by the robotic arm is a crucial
point in the back-end process. To optimize this process, each chip’s collection and assembly sequence must
be considered; that is, in what order should the robotic arm take each chip and where should it be located to
achieve the least possible displacement of the robotic arm. The described process is known as semiconductor
chip placement process and can be formulated as a typical pick-and-place problem, which is NP-hard [9].
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Figure 3: Definition of the problem and its parameters. Image adapted from [10].

This paper analyzes the mathematical formulation of the problem and the (approximate) solution pro-
posals presented in two previous papers [8, 10]. These methods include eight heuristic rules that determine
the movement of the robotic arm, a genetic algorithm that uses encoding based on binary matrices as chro-
mosomes [8], and an interactive Q-learning algorithm with two agents: one for collection and the other for
placement [10]. In our analysis, we identified the limitations of the mathematical formulation in [8] and
proposed a new one that obtains an optimal solution for a given instance. Also, a random algorithm, a local
search algorithm, a greedy algorithm, and a genetic algorithm are proposed for approximate solutions. The
latter improved the results of the state-of-the-art methods for a set of test cases presented in the two works
considered, and its outcomes are very close to the optimal values.

2 Materials and methods

2.1 Formulation of the problem and calculation of the total distance

At the beginning of the back-end manufacturing process of semiconductor chips, they are found in the wafer,
and their quality information is available. In the problem considered in this work, we seek to determine
the sequence of picking and placing each good chip of the wafer in the support structure or strip, which
minimizes the total distance that the robot arm must move since its departure from the starting position to
pick up the first good chip from a wafer to locating the last good chip on the strip and return to its starting
position.

The total distance traveled by the robotic arm depends mainly on two factors: (i) the selection order of
the chips in the wafer and (ii) the strip slot (lead frame) assigned to each chip. Therefore, the considered
problem consists of finding the shortest path for the route of the robotic arm in the described process.

For the formulation of this problem, the following considerations are made [8, 10]:

1. Once the analysis of the wafer chips is finished, their classification is stored in a file, where a good chip
is represented by 1 and a bad chip by 0.

2. The starting and ending point of the robotic arm is considered as the point (0, 0); that is, the robotic
arm starts from this point to pick up the first good chip from the wafer and returns to it after placing
the last good chip on the strip.

3. It is assumed that the strip is to the left of the wafer and that both have a rectangular shape (see
Figure 3). The strip has nfs rows and ncs columns, while the wafer has nfw rows and ncw columns.

4. The number of chips (N) to transport can be greater than the number of slots (M) available in a strip
(i.e., N >= M). Once all the slots in a strip are filled, it is replaced by an empty one. Therefore,
c = ⌈N/M⌉ strips are needed to locate all the chips.
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5. The robotic arm moves only horizontally or vertically.

6. The coordinates (x, y) of each chip in the wafer and of each slot in the strip can be determined through
the parameters w1−4 and h1−4, as can be seen in Figure 3.

7. w1 represents the horizontal distance between the starting point of the robotic arm and the center of
the first position column of the strip.

8. w2 represents the horizontal distance between the centers of two consecutive columns of the strip.

9. w3 represents the horizontal distance between the starting point of the robotic arm and the center of
the first position column of the wafer.

10. w4 represents the horizontal distance between the centers of two consecutive columns of the wafer.

11. h1 represents the vertical distance between the starting point of the robotic arm and the center of the
last row of positions of the strip.

12. h2 represents the vertical distance between the centers of two consecutive rows of the strip.

13. h3 represents the vertical distance between the starting point of the robotic arm and the center of the
last row of wafer positions.

14. h4 represents the vertical distance between the centers of two consecutive rows of the wafer.

From these considerations, the coordinates (xsij , ysij ) can be calculated for each slot with row i ∈
{0, 1, . . . , nfs− 1} and column j ∈ {0, 1, . . . , ncs− 1} of the strip. Similarly, the coordinates (xwij

, ywij
) can

be calculated for each chip with row i ∈ {0, 1, . . . , nfw − 1} and column j ∈ {0, 1, . . . , ncw − 1} of the wafer.
These coordinates are obtained as follows:

xsij = w1 + w2 ∗ j
ysij = h1 + h2 ∗ (nfs − i− 1)

xwij
= w3 + w4 ∗ j

ywij
= h3 + h4 ∗ (nfw − i− 1)

Next, we define as step of the robotic arm the path it takes to pick up a certain chip from the wafer and
place it in a certain slot on the strip. Thus, if we have N good chips, the number of steps is N . Therefore,
a solution to the problem posed can be represented by two sequences:

1. The chip collection sequence of the wafer. Let W (k) be the point pkw in the (2D) plane with the
coordinates (xpkw

, ypkw
) of the chip that is collected in the step k (k ∈ {1, 2, ..., N}) of the path of the

robotic arm.

2. The visiting sequence of the slots of the strip. Let S(k) be the point pks
in the (2D) plane with the

coordinates (xpks
, ypks

) of the slot where it will be deposited the chip that is picked up at step k
(k ∈ {1, 2, ..., N}) of the robotic arm path. It is important to note here that, considering that the
number of chips N can be greater than the number of slots M in a strip, certain positions may be
repeated in this sequence (corresponding to different strips).

Due to the assumption that the robotic arm can only move horizontally or vertically, the Manhattan
distance between two points (in the plane) p1 and p2 are considered as:

dp1,p2
= |xp1

− xp2
|+ |yp1

− yp2
|

With these definitions, and taking into account that the robotic arm starts from the origin and returns
to it after the process, then the total distance (TD) traveled is:

TD = dOrig,W (1) +

N∑
k=1

dW (k),S(k) +

N−1∑
k=1

dS(k),W (k+1) + dS(N),Orig

Figure 4 shows an example of four chips and four available slots, indicating the coordinates of each one.
If the wafer chips are picked up in order from left to right and from top to bottom, and placed on the strip
following the same order for the slots, then we have:
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(26, 202) (38, 202)

(26, 182) (38, 182)

Strip (2 rows, 2 columns)

(66, 52) (70, 52)

(66, 48) (70, 48)

Wafer (2 rows, 2 columns)

Figure 4: Example case, with the coordinates (x, y) of good wafer chips (2 rows and 2 columns) and strip
slots (2 rows and 2 columns).

S = {(26, 202), (38, 202), (26, 182), (38, 182)}
W = {(66, 52), (70, 52), (66, 48), (70, 48)}

Therefore:

dOrig,W (1) = |0− 66|+ |0− 52| = 118

N∑
k=1

dW (k),S(k) = (|66− 26|+ |52− 202|) + (|70− 38|+ |52− 202|)

+(|66− 26|+ |48− 182|) + (|70− 38|+ |48− 182|) = 712
N−1∑
k=1

dS(k),W (k+1) = (|26− 70|+ |202− 52|) + (|38− 66|+ |202− 48|)

+(|26− 70|+ |182− 48|) = 554

dS(N),Orig = |38− 0|+ |182− 0| = 220

TD = 118 + 712 + 554 + 220 = 1604

2.2 State of the art methods considered

In this work, ten state-of-the-art methods are considered to establish the movement of the robotic arm. The
first eight methods are rules defined in Table 1, where the Pickup column indicates the W chip collection
sequence of the wafer and the Location column indicates the slot visit sequence S of the strip to locate the
chips.

Another method considered in the literature is a genetic algorithm that is formulated from a binary
integer programming (BIP) [8] model.

The state-of-the-art method with the best results for this problem is based on the [10] reinforcement
learning approach. The authors developed an interactive Q-learning with two agents, one for picking and
one for placing, which are trained to determine the path of the robotic arm interactively.

2.3 Test cases and parameters

We employ a test set of four input cases for each method considered in this paper. This set was proposed
and used in previous works [8, 10], and is shown in Figure 6. For the cases WaferA and WaferC, there is a
bivariate normal distribution with 80% and 90% good chips, respectively. In contrast, for the cases WaferB
and WaferD, there is a uniform distribution with 80% and 90% good chips, respectively. In all cases, the
number of rows and columns of the wafer equals 9, while for the strip, there are ten rows and four columns.

The parameters used for the experiments are the following [10, 8]: nfs = 10, ncs = 4, nfw = 9, ncw = 9,
w1 = 16, w2 = 12, w3 = 66, w4 = 4, h1 = 22, h2 = 20 , h3 = 18, h4 = 4.

The results of the state-of-the-art methods, considering these test cases and parameters, are shown in
Figure 7. Since the results for the eight selected rules are very close to each other, only the total distances for
the R1 and LD rules are shown. It can be seen that the genetic algorithm outperforms the rules, although
not by a considerable margin. In contrast, the reinforcement learning method performs significantly better
than the others in all test cases.

2.4 Analysis of a BIP model and a genetic algorithm from a previous work

A previous work proposes a binary integer programming (BIP) model for the problem addressed [8]. It is
presented here in some detail for the following reasons:
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Table 1: Rules (heuristics) for determining the wafer chip collection sequence and their placement in the
strip slots.

Rule Pickup Location

R1 Each good chip is collected from the wafer in a left
to right, top to bottom order (Figure 5(a)).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

R2 Each good chip is collected from the wafer in a left
to right, top to bottom order (Figure 5(a)).

Each collected chip is placed on the strip following
an order from right to left and from top to bottom
(Figure 5(b)).

R3 Each good chip is collected from the wafer in a
right-to-left, top-to-bottom order (Figure 5(b)).

Each collected chip is placed on the strip following
an order from right to left and from top to bottom
(Figure 5(b)).

R4 Each good chip is picked from the wafer in a
right-to-left, top-to-bottom order, as shown in
Figure 5(b).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

RU Each good chip is picked up from the wafer in a
circular path, starting in the center and moving to
the right and top (Figure 5(c)).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

RD Each good chip is picked up from the wafer in a
circular path, starting in the center and moving to
the right and bottom (Figure 5(d)).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

LU Each good chip is picked up from the wafer in a
circular path, starting in the center and moving to
the left and top (Figure 5(e)).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

LD Each good chip is picked up from the wafer in a
circular path, starting in the center and moving to
the left and bottom (Figure 5(f)).

Each collected chip is placed on the strip in order
from left to right and top to bottom (Figure 5(a)).

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(a) Left-right from top-bottom

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(b) Top-bottom right-left

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(c) Right-top starting at center

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(d) Right-bottom starting at cen-
ter

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(e) Left-top starting at center

0 1 2 3 4

5 6 7 8 9

10 11 12 13 14

15 16 17 18 19

20 21 22 23 24

(f) Left-bottom starting at center

Figure 5: Rules for robotic arm movements. Image adapted from [8].
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(a) WaferA
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1 1 1 1 1 1 1 1 1

1 0 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1
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(b) WaferB

0 1 1 1 1 1 1 0 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 0

0 1 1 1 1 1 1 0 0

(c) WaferC

1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1

1 1 1 1 1 0 1 1 0

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 0 1 0 1 1 1 1

1 0 0 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

(d) WaferD

Figure 6: Test cases used in experiments. Image adapted from [8, 10].
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Figure 7: Total distance of the state-of-the-art methods for the four test cases. As the eight rules considered
have similar results, only the results of two of them are shown.
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• To point out its limitations, which will be addressed in the Subsection 2.8 by a new ILP model
proposed in the present work, which will be used to obtain the optimal solutions for the test cases
under consideration.

• To show how the representation of solutions used in their genetic algorithm and their criterion for
discarding the generated individuals were determined. This will clarify the importance of the model
proposed in our work (in Subsection 2.5).

For this BIP formulation, the authors assume that the number of good chips in the wafer (N) is equal
to the number of slots in the strip. Furthermore, the index i identifies the chips (i ∈ {1, 2, . . . , N}) and the
index j identifies the slots of the strip (j ∈ {1, 2, . . . , N}). Thus, the decision variables in this model are:

1. xij : binary variable that is equal to 1 if, as part of the path, the robotic arm goes from chip i of the
wafer to slot j of the strip; and 0 otherwise.

2. yji: binary variable that is equal to 1 if, as part of the path, the robotic arm goes from slot j of the
strip to pick up the next chip i of the waffer ; and 0 otherwise.

The following distances are also defined:

1. dws
ij : distance from the chip location i in the wafer to the slot location j in the strip.

2. dswji : distance from the slot location j in the strip to the chip location i in the wafer.

3. dsi: distance from the origin s to the location of the chip i in the wafer.

4. djs: distance from the location of the slot j in the strip to the origin s.

Based on these definitions, the model proposed in [8] is:

min

N∑
i=1

dsixsi +

N∑
j=1

djsyjs +

N∑
i=1

N∑
j=1

dws
ij xij +

N∑
j=1

N∑
i=1

dswji yji

Subject to the following constraints:

N∑
i=1

xij = 1 ∀j ∈ {1, . . . , N} (1)

N∑
j=1

xij = 1 ∀i ∈ {1, . . . , N} (2)

xsi +

N∑
j=1

yji = 1 ∀i ∈ {1, . . . , N} (3)

yjs +

N∑
i=1

yji = 1 ∀j ∈ {1, . . . , N} (4)

N∑
i=1

xsi +

N∑
j=1

yjs = 2 ∀i, j ∈ {1, . . . , N} (5)

The constraint set (1) indicates that slot j is reached from a single chip. The constraint set (2) provides
that the chip i be deposited in a single slot. The constraint set (3) establishes that the chip i can only be
reached from the origin or a single slot of the strip. The constraint set (4) indicates that from slot j, it
returns to the origin or goes to the position of a single chip in the wafer. Finally, the constraint set (5)
establishes that the robotic arm must go from the origin to the location of the first chip to be picked up and
return to the origin after placing the last chip in the corresponding slot.

Based on the above, it is essential to point out that this model does not formulate a constraint set for the
formation of cycles, so it is incomplete, obtaining, in any case, a lower bound for the distance of the optimal
route. Furthermore, the four test cases considered do not meet the initial assumption since the number of
chips in the wafer is greater than the number of slots in a strip.

In any case, in [8], this BIP model has not been used to obtain solutions; however, it has served as the
basis for the implementation of a genetic algorithm that determines the values of the decision variables xij

8



CLEI electronic journal, Volume 26, Number 2, Paper 2, September 2023

0 1 1 0

1 1 0 0

0 1 0 1

0 0 0 1

0 1 1 0

Wafer(5, 4)
0 1

54

2 3

6

87

5 2 8 3 0 6 1 7 4

0 1 2 3 4 5 6 7 8

(a) Representation of the wafer chip selection se-
quence (Wseq).

Strip(2, 3)

0 1 2 3 4 5 6 7 8

0 1 2

3 4 5

2 5 1 3 0 4 0 5 1 2 4 3

10 119

1 2

(b) Representation of the slot allocation sequence (Sseq)
for each of the c = ⌈N/M⌉ strips needed.

Figure 8: Representation of a solution through vectors relative to the wafer (Wseq) and the strip (Sseq). In
this example, the robotic arm starts from the origin and goes to chip position 5 (in red) of the wafer (since
Wseq[0] = 5). Then, it goes to slot position 2 (in red) of the strip (since Sseq[0] = 2) to place that chip there.
After that, it goes to chip 2 of the wafer (Wseq[1] = 2) and places it in slot 5 of the strip (Sseq[1] = 5),
and so on. After placing chip 6 (Wseq[5] = 6) in slot 4 of the strip (Sseq[5] = 4), it becomes full, so it is
exchanged for another empty strip, and the process continues. Finally, having placed chip 4 of the wafer
(Wseq[8] = 4) in slot 1 of the strip (Sseq[8] = 1), the robotic arm returns to the origin and the process ends.
Therefore, in this example, the last three values of Sseq indicate the empty positions of the second strip.

(matrix X) and yji (matrix Y ). Therefore, the matrices X and Y represent an individual in the population,
and the constraints of the BIP model were taken into account to filter the new individuals generated through
recombinations and mutations. It is essential to mention that the number of iterations (generations) is equal
to 100, and the population size is equal to 200 [8]. Therefore, the number of evaluations of the objective
function in the mentioned work is 20000.

The results for this method, shown in Figure 7, are not too far from the heuristic rules. However,
before considering different combinations of parameters of the genetic algorithm to improve results, we were
interested, in our work, in evaluating the usefulness of the representation used in [8] since a large part of the
individuals could represent non-feasible solutions.

2.5 Proposed representation of a solution

In Subsection 2.1), the sequences W (k) and S(k) (k ∈ {1, 2, ..., N}) were defined, which indicate the chip
collection sequence and the slot allocation sequence, respectively. Thus, W (k) and S(k) determine the path
of the robotic arm. To present the algorithms proposed in this work, it is convenient to previously establish
specific definitions regarding the representation used in them, which results from slight modifications to
W (k) and S(k).

Suppose a wafer of dimensions (nfw, ncw) containing N good chips, which are numbered from 0 to N−1
following an order from left to right and from top to bottom. In the upper part of Figure 8(a) an example
is presented for a wafer of nfw = 5 rows, ncw = 4 columns and N = 9 good chips. The selection sequence
of the wafer chips can be represented by a vector Wseq of N elements, where the indices correspond to the
order of chip selection and the elements in each position correspond to the selected wafer chips. In the
example, the element Wseq[2] = 8 indicates that chip number 8 will be the third chip to be picked up by the
robotic arm during its journey. Note that this representation is a permutation of the set of chip identifiers,
which is illustrated at the bottom of Figure 8(a).

On the other hand, suppose a strip of dimensions (nfs, ncs) withM = nfs∗ncs slots, which are numbered
from 0 to M − 1 in order from left to right and top to bottom. In the upper part of Figure 8(b), an example
is presented for a strip of nfs = 2 rows and ncs = 3 columns. It is important to remember that the number
of good chips N can be greater than the number of slots M in a strip, so an amount c = ⌈N/M⌉ of strips will
be needed to locate all the chips. The allocation sequence of each slot in the path of the robotic arm can be
represented by a vector Sseq of c ∗M elements, where the indices represent the slot selection order and the
elements at each position correspond to the selected strip slots. In the example we have that c = ⌈9/6⌉ = 2,
so Sseq will have c ∗M = 2 ∗ 6 = 12 elements. The first portion of Sseq (0 to M − 1) will correspond to the
slots of the first strip, while the remaining portion (M to 2M − 1) will correspond to the slots of the second
strip. Thus, the element Sseq[7] = 5 indicates that the eighth chip picked up by the robotic arm will be
placed in slot 5 of the second strip. Note that this representation consists of c permutations of the set of slot
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identifiers (one permutation for each strip), as indicated at the bottom of Figure 8(b) for the given example.
Furthermore, since c ∗M ≥ N , only the first N elements of Sseq will be considered for the calculation of the
total distance TD (the rest will correspond to empty slots in the last strip).

According to these definitions and characteristics ofWseq and Sseq, it can be affirmed that they will always
represent feasible solutions for the problem considered, which implies an essential advantage concerning the
proposal in [8].

2.6 Algorithms proposed in this work - Phase 1

Considering the analysis in Subsection 2.4, in the first phase, three methods are proposed to obtain approx-
imate solutions for this problem.

The first method (Algorithm 1) consists of generating, through random permutations, the vectors Wseq

and Sseq. Considering that in [8] 200001 evaluations of the objective function (total distance) were performed
during the execution of its genetic algorithm for each case test, we have set this same quantity for the
random generation of solutions for a fair comparison. The Fisher–Yates [11] algorithm is used to generate
each permutation.

Algorithm 1: Random Method

Input : N , M , niters, location of slots and chips
Output: Best randomly generated solution (vectors W best

seq and Sbest
seq )

1 c = ⌈N/M⌉; #Number of strips required

2 TDmin =∞ ;
3 for i← 1 to niters do
4 Generate a random permutation (of {0, . . . , N − 1}) for Wseq;
5 Sseq = ∅;
6 for j ← 1 to c do
7 Generate a random permutation (of {0, . . . ,M − 1}) and add to the end of Sseq;
8 end
9 Leave in Sseq only its first N elements;

10 Calculate TD from Wseq and Sseq;
11 if TDmin > TD then
12 W best

seq ←Wseq;

13 Sbest
seq ← Sseq;

14 TDmin = TD;

15 end

16 end

17 return W best
seq and Sbest

seq

The second proposed method consists of a local search (Algorithm 2), which starts with a randomly
generated solution and has two stages in each process iteration. In the first stage, a local search is performed
for each of the c blocks in Sseq (each block corresponds to a strip): each pair of elements at positions i and
j is considered, and these elements are interchanged if this reduces the total distance. Each pair of elements
in positions i and j of Wseq is considered in the second stage. In addition to swapping the values at those
positions if it reduces the total distance, it also sets a flag indicating that a swap has been made. If the flag
is active at the end of this second stage, both stages are repeated in the following iteration.

Finally, the third method is a greedy algorithm (Algorithm 3), which is based on a technique from the
literature for the multi-robot coordination problem in pick-and-place tasks [12]. For the problem considered
in this work, in each step of the proposed greedy algorithm, the closest chip to the position of the robotic
arm is collected (from the wafer). Once there, it is deposited in the nearest available slot to the position of
the robotic arm. Based on this description, it can be seen that this is a deterministic method.

2.7 Algorithms proposed in this work - Phase 2

In the second phase, different combinations of parameters are considered for a genetic algorithm based on
the representation by permutation proposed in the present work (Algorithm 4). Unlike [8], this would ensure
that feasible solutions are generated during the process since multiple recombination and mutation methods
exist in the literature for this type of representation.

1This amount was arbitrarily determined in the reference work [8].
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Algorithm 2: LocalSearchMethod

Input : N , M , location of slots and chips
Output: Solution resulting from the local search (vectors Wseq and Sseq)

1 c = ⌈N/M⌉; #Number of strips required

2 Generate Wseq and Sseq randomly; TDmin = TD from Wseq and Sseq ;
3 repeat
4 for l← 1 to c do
5 repeat
6 changeS = False;
7 foreach positions i, j in block l of Sseq do

8 Swap the elements in i and j, generating S
′

seq;

9 Calculate TD from Wseq and S
′

seq;

10 if TDmin > TD then

11 Sseq ← S
′

seq;

12 TDmin = TD;
13 changeS = True;

14 end

15 end

16 until changeS == False;

17 end
18 changeW = False;
19 foreach positions i, j of Wseq do

20 Swap the elements in i and j, generating W
′

seq;

21 Calculate TD from W
′

seq and Sseq;

22 if TDmin > TD then

23 Wseq ←W
′

seq;

24 TDmin = TD;
25 changeW = True;

26 end

27 end

28 until changeW == False;
29 return Wseq and Sseq

Algorithm 3: Greedy Method

Input : N , M , slot and chip location
Output: Resulting solution of the greedy algorithm (vectors Wseq and Sseq)

1 c = ⌈N/M⌉; #Number of strips required

2 pbr = porig; #Initial position of robotic arm

3 for i← 0 to N − 1 do
4 if i mod M == 0 then
5 Place an empty strip; #All slots become available

6 end
7 Let x be the chip, still in the wafer, closest to pbr;
8 Wseq[i] = x ;
9 pbr = px ;

10 Let y be the closest empty slot to pbr ;
11 Sseq[i] = y ;
12 pbr = py ;

13 end
14 return Wseq and Sseq

11



CLEI electronic journal, Volume 26, Number 2, Paper 2, September 2023

Algorithm 4: Genetic algorithm

Input : N , M , niters, popsize (even), elit, slot and chip location
Output: Best solution generated during the process (vectors W best

seq and Sbest
seq )

1 Generate a population of popsize individuals randomly (similar to Algorithm 1);
2 Evaluate with the objective function (TD) each one of the generated individuals;

3 Determine W best
seq and Sbest

seq in the initial population;

4 for i← 1 to niters do
5 for i← 1 to popsize/2 do
6 Apply binary tournament to select parents;
7 Apply a recombination method to generate two children;
8 Apply a mutation method to both children;

9 end
10 Evaluate with the objective function (TD) each one of the generated children;
11 Considering the percentage of elitism elit, replace the current population with the generated

children;

12 Update the solutions W best
seq and Sbest

seq , if applicable;

13 end

14 return W best
seq and Sbest

seq

Four variants were considered for the application of the recombination and mutation methods for the
proposed genetic algorithm:

• AG1: Recombination and mutation apply only to Wseq.

• AG2: Recombination and mutation apply only to Sseq.

• AG3: Recombination and mutation apply to both Wseq and Sseq.

• AG4: Recombination and mutation apply only to Wseq, or only Sseq, or both. This is randomly
selected in each generation of individuals, with the same probability for all three options.

The crossover operators considered were: Partially Mapped Crossover (PMX), Order Crossover (OX),
and Cycle Crossover (CX) [13]. The mutation operators considered were: Swap, Insert, Scramble, and
Inversion [13]. In addition, mutation rates of 10%, 20% and 30% were considered; and elitism percentages
of 0, 5% and 10%.

It is essential to clarify that since Sseq consists of c blocks of permutations of the set of slot identifiers
(one permutation for each strip), the recombination and mutation operators apply separately to each of the
c blocks of Sseq.

In preliminary tests (see the Appendix for more details) the four variants of the genetic algorithm were
considered for the four test cases, with the combination of the indicated recombination and mutation oper-
ators, as well as the different mutation rates and elitism percentages. For each combination, 30 executions
were carried out, comparing the average values of the total distance of the generated solutions.

The preliminary results determined that AG3 obtains, on average, the best solutions for the cases con-
sidered, with the parameters of Table 2. It is essential to point out that, for a fair comparison, the number
of generations and the population size are the same as in [8]. These parameters were used to obtain approx-
imate solutions for the test cases considered, and the average of results (total distances) in 30 executions are
reported in Subsection 3.2.

2.8 Obtaining exact solutions using ILP

When considering all the algorithms that seek to minimize the total distance traveled by the robotic arm, the
following question arises: How close are the obtained results to the optimal distance for the considered test
case? It is necessary to get this optimal distance, which is why an integer linear programming (ILP) model
is proposed in the present work. Furthermore, this model generalizes and considers additional constraints
concerning the BIP model from a previous work [8], exposed in the Subsection 2.4. Unlike the BIP in [8], with
this new ILP model, we will obtain the exact solutions for the four cases used for the experiments. Therefore,
we will compare the optimal distances for those test cases with those generated by the approximate methods
proposed in our work.

The problem considered in this paper is of the pick-and-place type, so it can be modeled as a traveling
salesman problem (TSP), where the starting position of the robotic arm, each good chip in the Wafer and

12
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Table 2: Description of the parameters of the genetic algorithm (AG3).

Representation Permutations (Wseq and Sseq)
Initialization Random
Recombination PMX
Mutation Swap
Mutation Rate 30%
Parent Selection Binary Tournament
Selection of survivors Generational
Elitism Percentage 10%
Population Size 200
Number of generations 100
Number of children 200
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Figure 9: Example of distance matrix with N = 65 chips, M = 40 slots and c = 2 strips (needed to allocate
all chips). The shaded regions indicate not allowed movements (due to model constraints). This example
matrix represents the test cases WaferA and WaferB, although the same principle could be applied for a
general case (given by the values of N and M).

each slot in the c Strips represent the cities. In this way, adding constraints for the movements not allowed,
the ILP model can be formulated as a modification of the TSP, considering a matrix of distances D that
represents the distances associated with each possible movement.

To generate this matrix of distances D, the following points are considered in order:

• The origin (row 0).

• The positions of the N good chips in the Wafer (rows 1 to N).

• The positions of the M slots of each of the c Strips needed to locate all the chips (rows N + 1 to
N + c ∗M).

Thus, dij in D represents the distance from position i to position j. Figure 9 shows an example of a
distance matrix defined in this way, considering N = 65, M = 40, and c = 2.

Regarding the constraints, it should be noted that:

• For the origin:

– From there, the tour (of the robotic arm) starts.

– It exits only once, and from there, the robot should go to a good wafer chip.

13
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– Must be visited once, from a slot of the last strip employed.

• For the wafer chips:

– Each chip is reached and left only once.

– From a chip, the robot arm can only go to one slot. Or, it can’t go to the origin or another chip.

• For the slots of the strips:

– For each slot of strip (except the last one), it must be arrived and exited once.

– The slots of the last strip can be visited or not. If a slot in the last strip is visited, it must also
be exited.

– From a slot, the robot cannot visit another slot.

The number of vertices of the graph n = 1 + N + c ∗M is considered for the proposed mathematical
model. The decision variable xij indicates whether the robotic arm moves from the element represented by
row i (i = 0, 1, . . . , n − 1) to the element represented by column j (j = 0, 1, . . . , n − 1), being equal to 1
if said movement is made and 0 otherwise. It is also introduced (as input data) bi ∈ {0, . . . , c − 1}, which
indicates the strip to which the vertex i belongs (if the vertex corresponds to the origin or a chip, bi = −1).

Based on these considerations, the objective function is defined as:

min
n−1∑
j=0

n−1∑
i=0

dijxij

Subject to the following constraints:
n−1∑
j=0

x0j = 1 (1)

n−1∑
i=0

xi0 = 1 (2)

N∑
j=1

x0j = 1 (3)

n−1∑
i=n−c∗M

xi0 = 1 (4)

n−1∑
j=0

xij = 1 ∀i ∈ {1, . . . , N} (5)

n−1∑
i=0

xij = 1 ∀j ∈ {1, . . . , N} (6)

xij = 0 ∀i, j ∈ {1, . . . , N} (7)

xi0 = 0 ∀i ∈ {1, . . . , N} (8)

n−1∑
j=0

xij = 1 ∀i ∈ {N + 1, . . . , n−M − 1} (9)

n−1∑
i=0

xij = 1 ∀j ∈ {N + 1, . . . , n−M − 1} (10)

n−1∑
i=0

xij ≤ 1 ∀j ∈ {n−M, . . . , n− 1} (11)

n−1∑
j=0

xij =

n−1∑
j=0

xji ∀i ∈ {n−M, . . . , n− 1} (12)

xij = 0 ∀i, j ∈ {N + 1, . . . , n− 1} (13)
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Figure 10: Comparison of the total distance obtained by the methods proposed in Phase 1 of this work and
those of the state of the art. for the four test cases. Due to its low relative performance (see Figure 7), the
results of the heuristic rules are not shown.

ui − uj +N ∗ 2 ∗ xij ≤ N ∗ 2− 2 ∀i, j ∈ {0, . . . , n− 1}
| i ̸= j ∧ i ̸= 0 ∧ j ̸= 0

(14)

ui ≤ N ∗ 2− 2 ∀i ∈ {0, . . . , n− 1} | i ̸= 0 (15)

bi < bj → ui + 2 ≤ uj ∀i, j ∈ {N + 1, . . . , n− 1} (16)

The constraints (1)-(4) are relative to the origin. The constraint set (1) indicates that the robotic arm
departs from the origin exactly once, and the constraint set (2) that the origin is reached exactly once. The
constraint set (3) establishes that a chip is visited from the origin, while the (4) that one returns to the
origin from some slot of the last strip.

The constraints (5)-(8) are relative to the wafer. The constraint set (5) indicates that each chip is exited
exactly once, and the constraint set (6) that each chip is reached exactly once. The constraint set (7) states
that a chip cannot be visited from another chip, while the constraint set (8) indicates that from a chip, it
cannot go to the origin. Thus, these last two constraint sets ensure that from a chip, it goes to some slot of
some strip.

The constraints (9)-(13) are relative to the strips. The constraint set (9) indicates that each slot of each
strip (except the last) is exited exactly once, and the constraint set (10) that each of these is reached exactly
once. The constraint sets (11) and (12) are similar and refer to the slots of the last strip, which can be
visited up to once (and if they are visited, they must be exited). The constraint set (13) establishes that
from one slot, another slot cannot be visited, so it should go to a chip or the origin (for the latter case, for
slots of the last strip).

The constraints (14) and (15) represent the constraints that prevent the formation of subcycles, which
were adapted from the Miller-Tucker-Zemlin [14] model for the elimination of subcycles (subtours). Finally,
the constraint set 16) establishes that each strip must be filled before moving on to the next. It is essential
to highlight that the constraint sets (13)-(16) were not considered in the BIP model of a previous work [8].

The proposed ILP model was implemented in CPLEX 20.12 to obtain the exact solutions of the four test
cases considered in our work.

3 Results and discussion

3.1 Results - Phase 1 Algorithms

Figure 10 shows the results of each of the three methods proposed in the first phase of this work for the four
test cases considered, comparing them with the results of the state-of-the-art methods.

Observing the results obtained by the genetic algorithm [8] and the random generation method, the latter
achieves better outcomes for the same number of solutions considered during the genetic algorithm process
(20000). Moreover, the improvement is substantial for each of the test cases: 12% for the WaferA, 13.9%
for the WaferB, 6.6% for the WaferC and 7% for the WaferD. This result is remarkable since a genetic
algorithm is expected to obtain better results than a method of random generation of solutions.

At this point, it is convenient to remember that in [8], binary matrices (X and Y ) represent a solution that
must comply with certain constraints for its feasibility. In addition, their work mentions that after generating
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Figure 11: Comparison of the total distance obtained by the genetic algorithm proposed in Phase 2, the
greedy method proposed in Phase 1, and the reinforcement learning method [10]. The optimal results
obtained through the proposed ILP model are also shown.

new individuals (solutions) through recombination, it must be verified that they satisfy the constraints of
the BIP model, ignoring those that do not comply with them. Therefore, the results of the tests in our work
indicate that the percentage of non-feasible solutions generated (and hence discarded) during the execution
of the genetic algorithm is considerably high. This inefficiency in developing feasible solutions limits the
quality of the results obtained using this method.

It is essential to mention that [8] indicates that the genetic algorithm obtained better results than a
random method that also generates 20000 solutions. For the same reasons exposed regarding the repre-
sentation used, a significant percentage of these randomly generated solutions would be discarded for not
representing feasible solutions. In our method, the permutation representation and the generation of random
permutations ensure that all generated solutions are feasible.

On the other hand, Figure 10 shows that the results of the greedy method proposed in this work are
better than those obtained by the reinforcement learning method [10] in the four test cases considered.
The upgrade is 5% for the WaferA, 5.7% for the WaferB, 2.7% for the WaferC and 1.8% for the WaferD.
Therefore, we can affirm that this work improves the results of the state-of-the-art methods for the test cases
considered in previous works on this problem [8, 10].

It can be noted that, both in the improvement of the random method (concerning the genetic algorithm)
and the greedy method (concerning the machine learning method), WaferC and WaferD have lower per-
centages of improvement than WaferA and WaferB. The difference between these case pairs is in the rate
of defective chips; thus, the higher this percentage, the greater the opportunity for improvement.

Regarding the local search method, it is fundamental to point out that the results presented are the
average of 30 runs. It can be seen that it improves the outcomes of the [8] genetic algorithm. However, the
total distance values obtained are greater than those determined by the other methods shown in Figure 10.
This is due to multiple local minima for the problem addressed, so the quality of the solution obtained by
this method is highly dependent on the randomly generated initial solution.

3.2 Results - Phase 2 algorithms and proposed ILP

Figure 11 shows the results obtained by the genetic algorithm proposed and selected in Phase 2 and the
optimal total distances for the test cases considered, comparing them with the results of the best state-
of-the-art method and with the best algorithm proposed in Phase 1 of this work (greedy approach). It is
necessary to highlight that the result of the genetic algorithm for each test case corresponds to an average
of 30 executions.

As can be seen, the results obtained by the genetic algorithm (on average) are considerably better than
those obtained by the reinforcement learning method [10] in the four test cases used. The upgrade is 6.1% for
the WaferA, 6.9% for the WaferB, 3.8% for the WaferC and 2.8% for the WaferD. It can also be observed
that the proposed genetic algorithm obtains better results than the greedy method proposed in Phase 1.

The results obtained by the genetic algorithm are very close to the optimal values determined by the ILP
model proposed in this work. As seen in Table 3, the genetic algorithm obtains total distances that do not
exceed the optimal value by more than 0.31% in the individual test cases. At the level of percentages, the
difference with the reference method in the literature [10] is even more noticeable.
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Table 3: Percentage increase of the optimal total distance (TDopt) for each test case, obtained by the
proposed ILP, concerning the reference state-of-the-art method and the best two algorithms proposed in this
work.

Test case TDopt - ILP Reinf. Learn. [10] Greedy Gen. Alg.

WaferA 14184 6.82% 1.49% 0.31%

WaferB 14416 7.63% 1.50% 0.24%

WaferC 16816 4.14% 1.31% 0.19%

WaferD 17024 3.03% 1.20% 0.16%

3.3 Execution environment and running times

Although the running time was not the central interest of this work, this subsection provides some relevant
data in this scope. According to its authors, the reinforcement learning method [10] takes less than a second,
but the execution environment is not mentioned. Neither the source code nor the executable for reproducing
results is provided.

On the other hand, in [8], neither the execution times nor the environment used for testing is provided.
Moreover, neither the source code nor the executable for reproducing results is given. However, the total
number of evaluations of the objective function is 20000. Therefore, for a fair comparison, this total number
was kept for the genetic algorithm proposed in Phase 2 of this work, as well as in the random method used
in Phase 1.

The specifications of the environment used for our tests are: Intel(R) Core(TM) i7-7700HQ CPU @
2.80GHz, 16GB RAM, and Windows 10 Home. The Phase 1 algorithms were implemented in Java and
the genetic algorithm in Python 3. For each test case, the random method (Algorithm 1), the local search
method (Algorithm 2), and the greedy method (Algorithm 3) were executed in less than one second; while
the genetic algorithm (Algorithm 4) were executed in less than 5 seconds.

The proposed ILP model was implemented in CPLEX 20.12 for obtaining the exact solutions of the
considered test cases. For WaferA and WaferB, the running time was one hour, while for WaferC and
WaferD, it was 24 hours.

4 Conclusions

In this work, a combinatorial optimization problem was considered, where the aim is to reduce the total
distance of a robotic arm for the collection of semiconductor chips in a Wafer and their placement in the
slots of a Strip. This problem is crucial for the productivity of the back-end stage of the IC manufacturing
process.

Because this problem is NP-hard, various heuristics and metaheuristics are proposed in the literature. In
the first part, a genetic algorithm was analyzed. From this, a different representation of solutions (based on
permutations) was proposed, which, together with a random method, produced better results for the test
cases considered. This reveals that the results obtained by the genetic algorithm are limited by the original
representation used and the selected recombination method.

In the second part, a greedy method for obtaining solutions was proposed, in which in each step, the
closest Wafer chip is searched for and placed in the nearest available slot of the Strip. The experiments
indicate that this proposed method obtains lower total distances than the best state-of-the-art method for
this problem, considering four test cases used in previous works.

In the third part, a genetic algorithm was proposed that uses a representation based on permutations,
which ensures that the solutions generated in the process are feasible. The results of this genetic algorithm
are even better than those obtained by the greedy method. A new ILP model was also proposed to get
optimal solutions, whose results show that the values obtained by the proposed genetic algorithm are very
close to the optimum for the considered test cases, with a marked reduction in execution time.

The following future works are proposed:

• Consider other parameters for the problem and establish different criteria for generating larger and
more diverse test cases. The behavior of the proposed algorithm in this new context should be analyzed,
in which case a method could be proposed to determine a lower bound in polynomial time (for the
time necessary to solve the proposed ILP model).

• Analyze the performance of other local search-based methods, such as tabu search or simulated an-
nealing.

2https://www.ibm.com/products/ilog-cplex-optimization-studio
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• Analyze the problem with multiple wafers and different mechanisms for collecting and placing chips.

All the implementations, test cases, and additional information about this work are publicly available at
the following link: https://doi.org/10.6084/m9.figshare.23995878.
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Table 4: Summary of the preliminary results for parameter selection, considering the best average distances
obtained for each of the test cases (30 executions) for each variant of the genetic algorithm.

Caso Variante - GA Elitismo (%) Tasa de mutación (%) Mutación Cruzamiento Distancia Total

WaferA AG1 5 20 Insert CX 15155.47
AG2 0 20 Swap CX 14304.93
AG3 0 20 Insert CX 14217.47
AG4 10 30 Swap CX 14224

WaferB AG1 0 30 Swap PMX 14481.2
AG2 10 20 Swap PMX 14523.73
AG3 10 30 Swap CX 14444.13
AG4 10 30 Swap PMX 14445.2

WaferC AG1 10 30 Scramble PMX 17278.53
AG2 10 30 Swap PMX 16922.53
AG3 0 30 Insert CX 16837.73
AG4 10 30 Swap PMX 16840.53

WaferD AG1 10 30 Scramble PMX 17499.73
AG2 5 10 Swap PMX 17119.2
AG3 5 20 Inversion CX 17032.2
AG4 5 30 Swap CX 17048.13

Appendix

It is mentioned in Subsection 2.7 that different combinations of parameters for a genetic algorithm based on
permutation representation were tested for each of the four test cases. The parameters considered were as
follows:

1. Crossover operators: Partially Mapped Crossover (PMX), Order Crossover (OX), and Cycle Crossover
(CX) [13].

2. Mutation operators: Swap, Insert, Scramble, and Inversion [13].

3. Mutation rates: 10%, 20% and 30%.

4. Elitism percentages: 0, 5% and 10%.

In addition, four variants for the application of recombination and mutation methods were analyzed:

• AG1: Recombination and mutation are applied only to Wseq.

• AG2: Recombination and mutation apply only to Sseq.

• AG3: Recombination and mutation apply to both Wseq and Sseq.

• AG4: Recombination and mutation apply only to Wseq, or only Sseq, or both. This is randomly
selected in each generation of individuals, with the same probability for all three options.

Selection of parameters and variant for the genetic algorithm

As the number of combinations is high (4 crossover methods * 3 mutation methods * 3 mutation rates * 3
elitism percentages * 4 variants of the genetic algorithm = 432 combinations), only the best nine results are
shown for each variant and test case.

Tables 5, 6, 7, and 8 show the results for WaferA, WaferB, WaferC, and WaferD, respectively. It is
important to mention that each distance value represents an average of 30 executions.

Table 4 summarizes the best distances obtained for each test case and each variant of the genetic al-
gorithm, with the corresponding parameters. It can be seen that the AG3 variant obtained the smallest
distance (on average) for each test case, being significantly3 better than AG1 and AG2. However, there is
no significant difference concerning AG4.

From the results of Table 4, we selected the parameters that appear most often in it, thus obtaining
those indicated in Table 2. Although there is a tie between PMX and CX, PMX was finally selected as the
crossover operator.

3ANOVA and Tukey HSD (as post hoc) statistical tests were performed to identify which variants are significantly different
from each other.
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Table 5: Parameters with the best average distances obtained for WaferA (30 executions), sorted by variant
of the genetic algorithm.

Variante - GA Elitismo (%) Tasa de mutación (%) Mutación Cruzamiento Distancia Total

5 20 Insert CX 15155.47
5 30 Insert PMX 15158.4
10 30 Swap PMX 15164.4
10 10 Swap PMX 15175.47

AG1 10 20 Inversion OX 15177.6
5 10 Swap PMX 15179.6
0 10 Insert CX 15202.27
0 20 Insert CX 15203.87
0 30 Swap PMX 15208.4

0 20 Swap CX 14304.93
10 30 Swap PMX 14305.07
5 30 Swap PMX 14310.27
0 30 Swap CX 14313.33

AG2 5 10 Swap PMX 14313.87
10 20 Swap PMX 14313.87
5 20 Swap PMX 14314
10 10 Swap PMX 14322.53
0 10 Swap CX 14327.47

0 20 Insert CX 14217.47
10 30 Swap CX 14223.2
5 30 Swap CX 14224.53
0 30 Insert CX 14224.93

AG3 10 10 Swap PMX 14228.13
10 20 Swap CX 14229.2
5 20 Swap CX 14229.47
0 10 Swap CX 14232.8
5 10 Swap CX 14237.2

10 30 Swap CX 14224
5 30 Swap CX 14224.67
10 20 Swap PMX 14229.73
0 20 Swap CX 14232.8

AG4 10 10 Swap PMX 14232.93
5 20 Swap PMX 14233.87
5 10 Swap PMX 14238.27
0 10 Swap CX 14241.87
0 30 Scramble PMX 14441.2
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Table 6: Parameters with the best average distances obtained for WaferB (30 executions), sorted by variant
of the genetic algorithm.

Variante - GA Elitismo (%) Tasa de mutación (%) Mutación Cruzamiento Distancia Total

0 30 Swap PMX 14481.2
5 30 Swap PMX 15360.13
10 30 Inversion PMX 15371.33
5 20 Swap OX 15378.8

AG1 5 10 Scramble PMX 15381.6
10 10 Swap CX 15384.67
10 20 Scramble CX 15394.27
0 10 Swap CX 15413.33
0 20 Scramble CX 15429.07

10 20 Swap PMX 14523.73
10 10 Swap OX 14524.93
5 30 Swap PMX 14527.47
5 20 Swap PMX 14528.53

AG2 0 30 Swap CX 14529.2
10 30 Swap CX 14529.87
5 10 Inversion PMX 14532
0 20 Insert CX 14536
0 10 Swap CX 14546

10 30 Swap CX 14444.13
5 30 Swap CX 14446.53
0 30 Insert CX 14446.67
0 20 Insert CX 14448.13

AG3 10 20 Swap PMX 14449.73
5 20 Swap CX 14452.8
10 10 Swap PMX 14456.53
5 10 Swap PMX 14456.67
0 10 Swap CX 14459.47

10 30 Swap PMX 14445.2
5 30 Swap CX 14449.33
0 20 Swap CX 14451.6
10 20 Swap PMX 14452.53

AG4 5 20 Swap PMX 14452.67
0 30 Swap CX 14453.73
10 10 Swap PMX 14459.73
5 10 Swap PMX 14460.13
0 10 Swap CX 14467.2
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Table 7: Parameters with the best average distances obtained for WaferC (30 executions), sorted by variant
of the genetic algorithm.

Variante - GA Elitismo (%) Tasa de mutación (%) Mutación Cruzamiento Distancia Total

10 30 Scramble PMX 17278.53
5 30 Swap PMX 17295.33
10 20 Insert PMX 17304.4
5 20 Scramble PMX 17304.93

AG1 10 10 Inversion PMX 17310.67
5 10 Scramble PMX 17318.4
0 30 Swap CX 17333.47
0 10 Insert CX 17339.07
0 20 Swap PMX 17341.2

10 30 Swap PMX 16922.53
5 30 Swap PMX 16923.87
10 10 Swap PMX 16925.07
5 20 Swap PMX 16925.33

AG2 10 20 Inversion CX 16926
0 30 Swap CX 16927.47
5 10 Swap PMX 16928.67
0 20 Swap CX 16930.53
0 10 Swap CX 16930.93

0 30 Insert CX 16837.73
0 20 Insert CX 16839.73
5 30 Swap CX 16840.8
10 30 Swap CX 16841.47

AG3 0 10 Swap CX 16846.8
10 20 Swap PMX 16846.8
10 10 Swap CX 16851.87
5 20 Swap CX 16852
5 10 Swap CX 16852

10 30 Swap PMX 16840.53
5 30 Swap PMX 16840.93
10 20 Swap CX 16844.93
0 20 Swap CX 16847.2

AG4 0 30 Insert CX 16848.67
5 20 Swap PMX 16849.47
5 10 Swap PMX 16855.2
10 10 Swap PMX 16857.47
0 10 Swap CX 16863.47
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Table 8: Parameters with the best average distances obtained for WaferD (30 executions), sorted by variant
of the genetic algorithm.

Variante - GA Elitismo (%) Tasa de mutación (%) Mutación Cruzamiento Distancia Total

10 30 Scramble PMX 17499.73
10 20 Scramble PMX 17499.87
5 10 Scramble PMX 17502.8
5 20 Insert PMX 17504.93

AG1 5 30 Swap CX 17508.93
10 10 Scramble PMX 17512.53
0 10 Inversion CX 17520.93
0 20 Inversion CX 17522.67
0 30 Insert CX 17526

5 10 Swap PMX 17119.2
10 30 Swap CX 17120
0 30 Scramble CX 17120.27
5 30 Swap PMX 17120.53

AG2 10 20 Swap CX 17121.6
10 10 Swap PMX 17125.07
5 20 Swap CX 17127.07
0 10 Inversion CX 17133.87
0 20 Inversion CX 17134

5 20 Inversion CX 17032.2
0 30 Insert CX 17045.33
5 30 Swap CX 17047.6
10 30 Swap CX 17047.87

AG3 0 20 Swap CX 17049.33
10 20 Swap PMX 17051.73
0 10 Swap CX 17054.4
5 10 Swap CX 17056.93
10 10 Swap PMX 17057.73

5 30 Swap CX 17048.13
10 30 Swap CX 17048.53
10 10 Swap PMX 17049.73
10 20 Swap CX 17050.93

AG4 0 30 Swap CX 17052.27
5 20 Swap PMX 17053.6
0 20 Swap CX 17057.6
5 10 Swap PMX 17062.27
0 10 Swap CX 17066.27
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