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Abstract

Consumer product reviews are an invaluable source of data because they contain a wide
range of information that could help requirement engineers to meet user needs. Recent
studies have shown that tweets about software applications and reviews on App Stores
contain useful information, which enable a more responsive software requirements elicita-
tion. However, all of these studies’ subjects are merely software applications. Information
on system software, such as embedded software, operating systems, and firmware, are
overlooked, unless reviews of a product using them are investigated. Challenges in in-
vestigating these reviews could come from the fact that there is a huge volume of data
available, as well as the fact that reviews of such products are diverse in nature, meaning
that they may contain information mostly on hardware components or broadly on the
product as a whole. Motivated by these observations, we conduct an exploratory study
using a dataset of 7198 review sentences from 6 Internet of Things (IoT) products. Our
qualitative analysis demonstrates that a sufficient quantity of software related informa-
tion exists in these reviews. In addition, we investigate the performance of two supervised
machine learning techniques (Support Vector Machines and Convolutional Neural Net-
works) for classification of information contained in the reviews. Our results suggest
that, with a certain setup, these two techniques can be used to classify the information
automatically with high precision and recall.

Keywords: Passive Crowdsourcing, Internet of Things, User Reviews, Text Classification, Software Evolu-
tion

1 Introduction

Online retail stores provide a convenient platform for producers to compete and sell their products. They
also provide consumers with the ability to compare a variety of options and purchase the one that best
fits their budgets and needs. In addition, consumers can share their experience of using a product through
writing a review after purchase. This helps other consumers to have a better understanding of the quality
of the products.

Not only do reviews help consumers make more informed decisions, but it also helps manufacturers get
feedback on their products so that they can improve them over time. In fact, reviews contain a wealth of
information that can be used to create new requirements. The idea of mining user reviews to improve the
quality of the product is a form of “Passive Crowdsourcing.” According to [1], Crowdsourcing “represents
the act of a company or institution taking a function once performed by employees and outsourcing it to
an undefined (and generally large) network of people in the form of an open call.” Passive Crowdsourcing
simply means harnessing the power of the crowd without their knowledge.

Mining app store reviews to improve the quality of software has already gained the attention of researchers
[2]. In comparison with user reviews of a software application, user reviews of an IoT product are not exclu-
sively about software. They can be about different product elements, such as software, hardware, customer
service, etc. In particular, they contain information such as subjective product evaluations (on hardware,
software, or the product in general), personal experiences, problems encountered, product descriptions, and
users’ visions on how the product should be. As a result, reviews of IoT products are more diverse. If
such information in this huge volume of data is detected and classified correctly and efficiently, different
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stakeholders, such as software engineers, hardware engineers, etc. can better meet user expectations and
needs, thus accelerating product or software evolution processes.

Motivated by these observations, we conducted an exploratory study by analyzing 1491 verified purchase
reviews (7198 review sentences) of 6 IoT products from Amazon to investigate how IoT product reviews
can be categorized, whether enough software related information exists, and how much of this information
is useful for software developers and requirement engineers. In addition, we answered what software quality
characteristics users mention the most as well as studied if there are any patterns in the reviews with regards
to the ratings. Finally, we studied the extent to which two supervised machine learning techniques (SVM
and CNN) can be used to classify information in the dataset automatically, and identified configurations
that can effectively improve the classification performance.

The rest of the paper is organized as follows. We formally define our research problems and describe
data collection in Section 2. In Section 3, we describe the procedure to answer each research question and
report the results. Thereafter in Section 4, we present factors that may affect the validity of our study. We
discuss the related literature in Section 5. Finally, in Section 6, we conclude the paper and outline plans for
future research.

2 Research Design

2.1 Research Questions

To guide our research, we formulate the following research questions:

RQ1: How can IoT product reviews be categorized?

– Motivation. As aforementioned, IoT product reviews can contain a wide range of information.
This information includes, but is not limited to: subjective product evaluations (about hardware,
software, or the product as a whole), personal experiences, problems encountered, product de-
scriptions, and users’ visions on how the product should be. In this question, we investigate what
types of information are in the reviews.

RQ2: How much information in the studied product reviews is relevant to software
engineers?

– Motivation. Once the taxonomy is defined in RQ1, the natural next step is to manually examine
the reviews and to investigate the distribution of each category, i.e., how often each category
occurs. Specifically, we aim to find out how much of this data can help to enable a more responsive
software requirements elicitation and software evolution process.

RQ3: How effective is a machine learning approach in classifying the reviews?

– Motivation. Sifting through each review manually to find the right information is a laborious
task. Since SVM and CNN are often used for classification tasks, we investigate the extent to
which they can be used to classify an unseen review based on the taxonomy previously defined in
RQ1 automatically. In addition, we aim to find configurations that will improve the performance
of the classifiers.

RQ4: How often does each software quality characteristic occur in the software related
sentences?

– Motivation.. In this question, we map one or more software quality characteristics defined by
ISO/IEC 25010 [3] to a software related sentence found in RQ2. We aim to investigate how often
does each software quality aspect occur in the studied product reviews. We also discuss the nature
of our results.

RQ5: Are there any patterns in the studied product reviews with regards to the user
ratings?

– Motivation. This RQ aims to investigate whether the rank orders of category differ with regards
to the rating and whether each category and rating are independent or related to one another.
This could help us understand, for example, whether 1-star rating reviews contain more problem
discovery sentences than 5-star rating reviews or not.
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2.2 Data Collection

To conduct our analysis, we sampled 1491 verified purchase reviews from 6 IoT products from Amazon. The
data was collected on September 22, 2017 through a web crawling tool we developed. Table 1 describes the
characteristics of the 6 IoT products we considered.

Table 1: Details of the studied products

Product name ASIN Domain Total Reviews

Amazon Echo Dot B01DFKC2SO Smart Home 54230
Fitbit Blaze B019VM3F2M Smart Watch 7349
GoPro Hero4 Silver B00NIYJF6U Action Camera 2327
PlayStation 4 B01LRLJV28 Gaming Console 3135
Pebble Time B0106IS5XY Smart Watch 1577
Amazon Echo Show B01J24C0TI Smart Home 2565

To mitigate some threats to the external validity, we selected products from various domains: smart
home, smart watch, gaming console, and action camera. It is important to note that on Amazon, a user can
subjectively give a star rating on a scale of 1 to 5. However, as far as we know, there is no clear cut definition
to what each star in a five-star rating system means. Furthermore, there is no limit on how many characters
a user can write for a review. Therefore, as to eliminate some bias in the dataset, we sampled 50 reviews
per each star rating of each product (total of 250 per product) where each review consists of no more than
20 sentences. We used NLTK1’s sentence tokenizer to split a review into a list of sentences. However, at the
time of our data collection, 2-star reviews of PlayStation 4 and of GoPro Hero4 Silver contain less than 50
reviews that meet the aforementioned criteria. In this case, we only fetched reviews that meet the criteria
from them, 46 and 45 reviews respectively. Table 2 shows the number of sentences for each star rating of
each product. For replicability, our dataset is publicly available here2.

Table 2: Number of sentences per star-rating of each product

# Product
Star rating

Total
1-star 2-star 3-star 4-star 5-star

1 Amazon Echo Dot 155 282 280 385 354 1456
2 Fitbit Blaze 234 290 313 361 350 1548
3 GoPro Hero 4 Silver 228 196 165 278 357 1224
4 PlayStation 4 134 183 146 99 158 720
5 Pebble Watch 167 189 189 267 336 1148
6 Amazon Echo Show 235 254 149 204 260 1102

Total sentences: 7198

3 Methodology and Results

3.1 RQ1

Procedure:
In this section, we discuss the procedure we used to answer RQ1: How can IoT product reviews be

categorized?
We started by searching past literature for similar efforts on analyzing user reviews on IoT products.

However, what we found was that most past literature limits its scope by focusing on analyzing user reviews
of mobile applications on App Stores, such as Google Play or the Apple Store [4][5], and tweets on Twitter
[6]. As a result, user reviews that may contain information on firmware, operating systems, or embedded
software are not explored, unless reviews of a product using them are investigated. In doing so, we cannot
assume that the majority of review sentences are software related. Therefore, a taxonomy defined by most
past literature would not work.

Top-level taxonomy We conducted three content analysis sessions [7] in order to see what information
or pattern was contained in the reviews. Upon initial data inspection involving a few review samples, the

1http://www.nltk.org/
2https://goo.gl/M6BcB1
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first author came up with a rudimentary taxonomy which consists of 7 categories: User Background, Usage
Scenario, Software Feature Request, Software Complaint, Software Praise, Hardware Complaint, and Hard-
ware Praise. This resulted in our first draft taxonomy. In the next step, we assigned 52 Master’s level CS
students, who were taking a graduate level software engineering course at USC, to analyze and categorize
IoT product review sentences based on the first draft taxonomy as the course’s requirements elicitation
activity. Note that students could suggest a category if they felt that a review sentence cannot be classified
into any categories in the first draft taxonomy. The responses were gathered and new categories suggested
by students were noted. In the third step, a team of 4 Master’s student, who were not part of the students in
the second step, and one PhD student, the first author, validated categories suggested in the second step by
merging similar categories together and redefining them. The taxonomy resulting from this step consisted of
8 top-level categories, shown in Table 3. Additionally and initially, two of the top-level categories (Hardware
and Software) had 5 additional sub-categories: Praise, Complaint, Inquiry, Request, and Other. However,
through examining software categories that are relevant to software engineers from past literature discussed
in detail in the next paragraph, we adopted its software taxonomy instead of our original 5 sub-categories.
We adapted the sub-categories for Hardware category in the same way.

Software-level taxonomy In this level, we can assume that all review sentences are software related.
Therefore, we could use the existing taxonomy from past literature. We used the “Taxonomy for Software
Maintenance and Evolution” purposed by [8] as a starting point because they already evaluated the relevance
of each software category for developers performing software evolution and maintenance tasks. However, we
modified the definitions to better reflect the nature of our data. In addition, upon inspecting the data, we
found that sentences expressing dissatisfaction with the software of a product often contained information
describing why the user was dissatisfied. We believe this is relevant to software developers and requirement
engineers in order to better meet user needs or expectations. We added these sentences to the Problem
Discovery category. On the other hand, sentences expressing satisfaction conveyed little value for software
evolution process [8]. In this case, we combined these sentences with the Information Giving category. Table
4 shows the 4 sub-categories for Software category used in our study.

Table 3: 8 Top-level categories and their respective definitions

# Category Definition

1 Hardware Sentences mentioning a hardware component, a physical characteris-
tic, or a physical part of the product. Note: can be broken down
into 4 sub-categories*.

2 Software Sentences mentioning a product’s functionality, a set of capabilities,
or GUI. Note: can be broken down. See Table 4.

3 General Sentences describing the product as a whole, including persuading to
and dissuading against buying or using the product.

4 User Background Sentences discussing the background of the reviewer or the reviewer’s
character.

5 Other Product Sentences referring to another product (e.g., competitive products,
accessories, products that should be used with this product, etc.).

6 Usage Scenario Sentences mentioning a way to use the product, i.e., a use case sce-
nario.

7 Customer Service Sentences recounting on the reviewer’s experience with Amazon ser-
vices (e.g., package, return, shipment, etc).

8 Miscellaneous Sentences that are not covered by or do not belong to another cate-
gory.

*the definition of each sub-category is similar to the definitions provided in Table 4, but with
Hardware oriented terms.
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Table 4: Categories and their respective definitions for software-related sentences

Category Definition

Information Giving Sentences expressing satisfaction or informing other users or the sell-
ers about the functionality of the product

Inquiry Sentences related to attempts to obtain information or help from other
users or the seller about the software

Feature Request Sentences expressing ideas, suggestions, or needs for improving or
enhancing the software or functionality of the product

Problem Discovery Sentences expressing dissatisfaction or describing issues or unexpected
behaviors with the software of the product

Summary of Results:
The resulted taxonomy consisting of 8 top-level categories and their respective definitions is shown in

Table 3. The second level of the Software category is shown in Table 4. This layer is also applicable to the
Hardware category with hardware-oriented definitions.

3.2 RQ2

Procedure:
In this section, we discuss the procedure and applied the taxonomy defined in RQ1 to answer RQ2:

How much information in the studied product reviews is relevant to software engineers? In
particular, this research questions can be broken down into two sub-questions:

• RQ2.1 How much software-related information exists in the studied products reviews?

• RQ2.2 How much of that information is useful to software engineers?

Manual Classification To create the ground truth dataset for our experiment, we manually classified
each sentence in the dataset. A team consists of 4 Master’s level CS students and one PhD students, the
first author, accomplished this task. To mitigate some threats to the internal validity, we performed the
following procedures:

First, we created a category guide, which consists of the precise details of the category definitions and
examples. Second, we conducted a pilot run by randomly selecting 80 reviews from the dataset and instruct-
ing each annotator annotate the selected reviews. We calculated the inter-rater reliability to assess validity
and subjectivity of this pilot run using Fleiss’s Kappa since we have more than two annotators [9]. The
inter-rater reliability value was 0.65, which is in the “Substantial Agreement” range according to [10], one
level below “Almost Perfect Agreement” range. Third, we held several meetings before actual classifying the
data to make sure that all annotators had a mutual understanding of the concept regarding the definitions of
the categories in the taxonomy and the descriptions of the products. Fourth, we instructed each annotator to
annotate at most 100 sentences per day as to avoid errors due to fatigue. Fifth, the first author individually
performed a quality check after the dataset was labeled by randomly selecting 50% of the entire dataset.
Any inconsistencies detected, i.e., assigned categories that did not adhere to the definitions in the taxonomy
for that sentence, were reviewed and fixed. Sixth, categories of software-level categories were classified by
only one annotator. This total process spanned 4 weeks. Note that user review sentences are usually short
and without a context clue, it sometimes is difficult to determine whether a sentence would belong to hard-
ware or software category. We resolve this type of disagreement by flagging the review sentence and then
discussing in order to reach the consensus among annotators. Table 5 shows examples of sentences and their
corresponding categories from the manual classification process.
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Table 5: Examples of sentences classified by using the taxonomy in RQ1

Review Sentence
Top-level

category
Second level

“I developed a Class IV allergic reaction to the wrist band.” Hardware Hardware

Problem Discovery

“The companion android app is crap though - very slow to start and
not very functional.”

Software Software

Problem Discovery

“Stay away from this product!” General

“Alexa does not answer general questions as Google Home seems to.” Software,

Other Product

Software

Information Giving

“I got the camera on time but the LCD screen is not working.” Customer Service,

Hardware

Hardware

Problem Discovery

“The software needs work: i am constantly having to uninstall rein-
stall the pebble time app for android.”

Software Software

Problem Discovery

“If I could set my alarm to wake me up M-F @ 7 am that would be
a 5 star moment.”

Software Software

Feature Request

“Bought this as a birthday present for my daughter a month ago and
gave it to her last night.”

User Background

Summary of Results:
The results of the manual classification process for the top-level categories is shown in Table 6. It shows

that most of the users often describe a product as a whole, without specifically mention hardware or software
of a product (General - at 31.81%). It also shows that only 26.72% of the review sentences were found to be
software related which means that the majority of review sentences are not directly applicable to software
engineers - answering RQ2.1. Table 7 shows the manual classification results of only software related
sentences by applying the taxonomy in Table 4. It shows that only 8.79% (2.35% of all sentences) contain
feedback on how to improve or enhance the software, 45.40% (12.12% of all sentences) contain information
about problems users encountered or what made users dissatisfied with the software, and 1.09% (0.29% of
all sentences) express an effort to acquire information about the software. This means that only 14.79% of
all sentences are directly applicable to software engineers - answering RQ2.2.

Table 6: Manual Classification Results for Top-level categories

Category Count* Frequency %

Hardware 1870 25.98%
Software 1923 26.72%
General 2290 31.81%
User Background 1711 23.77%
Other Product 549 7.63%
Usage Scenario 504 7.00%
Customer Service 199 2.76%
Miscellaneous 291 4.04%

*Each sentence can be classified into one or more top-level categories

Table 7: Manual Classification Results for software related sentences

Category Count
Frequency %

(software only)

Frequency %

(all sentences)

Information Giving 860 44.72% 11.94%

Inquiry 21 1.09% 0.29%

Feature Request 169 8.79% 2.35%

Problem Discovery 873 45.40% 12.12%
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3.3 RQ3

Procedure:
In this section, we discuss the background and procedure to answer RQ3: How effective is a machine

learning approach in classifying the reviews? In particular, we can break this research question down
into three sub-questions:

• RQ3.1 What is the performance of each supervised machine learning technique (SVM vs CNN)?

• RQ3.2 What combination gives us the highest precision and recall?

• RQ3.3 How generalizable is the model?

In contrast with multi-class classification where each sentence is assigned to only one label, in our top-
level categories, each sentence can be classified into one or more categories in the top-level. Such a problem
is referred to as multi-label classification.

Text preprocessing We preprocessed the reviews in the following orders: (1) utilizing sentence tokenizer
provided by NLTK, a widely used natural language processing toolkit in Python, to breakdown reviews into
sentences, (2) lowercasing the resulted sentences, and (3) tokenizing the words on space and punctuation,
removing any non-English character.

Vector Space Model: We adopted tf-idf weighting scheme and word2vec to help with classification
task.

Term frequency-inverse document frequency scheme (tf-idf) Tf-idf consists of two components: the term
frequency and the inverse document frequency. The former considers the number of occurrences of a term
in a document, while the latter takes into consideration the information on the frequency of a term in the
entire corpus. In other words, the scheme reflects how important a term is to a document in a corpus [11].
This scheme has been widely used in information retrieval and text mining. With this scheme, each term is
represented as a 1xD matrix where the columns (D) denote the tf-idf values of the term in each document.
In our context, a document refers to a review sentence, while a term refers to each unique word in the corpus.

Word2Vec (W2V). This is based on the distributional hypothesis, which states that words that appear
in a similar context tend to share similar meanings [12]. It learns to group similar words together in a vector
space in an unsupervised and data-driven manner. For example, if trained on a large corpus of software user
reviews, W2V learns that the word “crash” is semantically similar to “freeze”, “hang”, or “shut down” as
these words or phrases usually appear in a similar context. Similarity, it learns that the word “interface”
is semantically similar to “layout” and “ui”. Each word is represented by a high-dimensional real-valued
dense vector. The algorithms to generate vector representations of words are described in detail in [13]. It
has been proven that, with enough data and context, word2vec model can improve the performance of a
classifier [14]. To harness the power of this model, we trained our word2vec model on 2.4 million Amazon
reviews (over 12 million sentences) based on the dataset made available by [15]. Note that we applied the
aforementioned steps for text preprocessing before training a word2vec model. We only used reviews from
“Electronics” and “Apps for Androids” category.

Implementation:
Support Vector Machines We used Scikit-learn3, a widely used machine learning library for Python. We

adopted the method based on combining SVM with tf-idf and SVM with W2V to classify the information
presented in the reviews. With SVM + W2V, we selected certain features according to the part-of-speech of
words, meaning that we considered only nouns, verbs, adjectives, and adverbs in a given sentence. We then
combined vectors of these words and averaged them. In addition, we leveraged binary relevance method as
a strategy to transform each label into an independent binary classification problem and train one classifier
for each label [16].

Convolutional Neural Network We used TensorFlow4, an open-source library for machine intelligence,
to implement our CNN model based on Kim’s CNN non-static model [14]. To make our CNN multi-label
compatible, we made changes to the architecture as follows: first, we used sigmoid activation function instead
of softmax at the output layer; second, we used sigmoid cross entropy with logits as our loss function; and
third, since the predicted outputs are a set of probabilities, we used a simple rounding function to convert
probabilities into one’s and zero’s in order to evaluate the accuracy against the ground truth. For multi-class
classification, we adopted the same CNN architecture without any modifications.

3http://scikit-learn.org/stable/modules/svm.html
4https://www.tensorflow.org/
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Figure 1: An example of a semantic space generated by a word2vec model that relates to the word “crash”

Metrics Evaluating the performance of multi-label classification classifier is more complicated than that
of multi-class classification. In multi-label classification, predictions can be fully correct (exact match),
partially correct (partial match), or fully incorrect (none match) [17]. Therefore, several evaluation metrics
should be reported. In this paper, we reported the performance of our classifier on 2 label-based metrics:
Macro-average Precision and Macro-averaged Recall. However, the complete results for Example-based
metrics (Hamming Loss, Jaccard Similarity, etc) can also be found in our project repository.

Label-based measures evaluate each label separately and then averages over all labels [17].

PrecisionMacroAvg =
1

n

n∑
k=1

TPk

TPk + FPk
(1)

RecallMacroAvg =
1

n

n∑
k=1

TPk

TPk + FNk
(2)

where n is the number of labels, TPk is the total number of instances that are correctly identified by the
approach for the label k, FPk is the total number of instances incorrectly identified by the approach for the
label k, and FNk is the total number of true instances that are not identified by the approach for the label
k.

Results:
We decided to group category (3) User Background, (4) Other Product, (5) Usage Scenario, (6) Customer

Service, and (7) Miscellaneous together because we believe that correctly identifying the information about
the product (Hardware, Software, and General) itself matters the most. Another reason is that some of
these categories occur much less frequently. A model that only returns predictions for categories that occur
more frequently and never returns categories that occur less frequently will have high accuracy. However,
this does not indicate that the model has a good predictive power as the model does not return any other
label, except the most frequent one. This type of model is often used as a simple baseline model. For the
sub-categories, we also decided to group category Inquiry with Problem Discovery because Inquiry occur
much less frequently than any other category (Table 9). However, we decided not to group Feature Request
category with any other category since this category is crucial for software engineers performing software
evolution and maintenance tasks.

Furthermore, to prevent over-fitting and better test the generalizability of the model, we adopted two
cross-validation measures. The results reported for the above metrics are based on these cross-validation
measures.

10-fold cross validation We used the standard 10-fold cross validation to split the dataset in 10 folds
and used 9 folds for training and 1 fold for evaluating. This process is repeated 10 times, rotating the training
and testing folds.
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6-fold product cross-validation Reviews of each product may contain words and jargon only applicable
to the product. That means that term-features that work for one product may not work for others. We
conducted a cross-product validation, a method previously proposed by [18]. In particular, we divided the
dataset into 6 folds where each fold represents reviews of each product. We trained the classifier on 5
products reviews and tried to predict the classification of the reviews in the remaining product. The process
is repeated 6 times, rotating the training and testing folds.

Table 8: Classification performance on the top level categories
6-fold Product Cross Validation

SVM + tf-idf* SVM + w2v‡ CNN + w2v‡
HW SW GN OT HW SW GN OT HW SW GN OT

Product#

P R P R P R P R P R P R P R P R P R P R P R P R
1 0.61 0.53 0.75 0.52 0.65 0.56 0.65 0.63 0.63 0.60 0.75 0.58 0.70 0.56 0.73 0.64 0.70 0.43 0.75 0.56 0.76 0.51 0.68 0.66
2 0.75 0.59 0.71 0.55 0.62 0.60 0.66 0.51 0.76 0.61 0.74 0.61 0.72 0.62 0.73 0.55 0.79 0.56 0.75 0.62 0.70 0.53 0.70 0.54
3 0.75 0.59 0.53 0.46 0.68 0.47 0.64 0.65 0.76 0.65 0.53 0.59 0.75 0.39 0.67 0.68 0.78 0.62 0.59 0.53 0.77 0.46 0.78 0.52
4 0.70 0.35 0.46 0.43 0.67 0.53 0.68 0.56 0.80 0.44 0.51 0.43 0.72 0.58 0.70 0.73 0.85 0.34 0.53 0.45 0.70 0.54 0.72 0.67
5 0.83 0.66 0.71 0.65 0.72 0.58 0.57 0.53 0.83 0.65 0.74 0.60 0.75 0.61 0.64 0.58 0.85 0.64 0.70 0.71 0.75 0.61 0.64 0.52
6 0.71 0.60 0.75 0.56 0.66 0.48 0.59 0.58 0.77 0.57 0.78 0.66 0.77 0.57 0.66 0.65 0.74 0.62 0.82 0.61 0.72 0.62 0.70 0.57

P(MA) 0.67 0.71 0.73
R(MA) 0.55 0.59 0.56

10 fold Cross Validation
0.77 0.63 0.72 0.60 0.69 0.59 0.65 0.60 0.77 0.65 0.74 0.64 0.75 0.59 0.71 0.64 0.80 0.62 0.77 0.61 0.73 0.61 0.72 0.60

P(MA) 0.71 0.74 0.76
R(MA) 0.60 0.63 0.61

HW = Hardware; SW = Software; GN = General; OT = Other; P = Precision; R = Recall; P(MA) = Macro Average Precision;
R(MA) = Macro Average Recall; * included stop words; ‡ trained on the combination of 2.4 millions Amazon reviews with our dataset

Table 9: Classification performance on software related categories
6 fold Product Cross Validation

SVM + tf-idf* SVM + w2v‡ CNN + w2v‡
FR IG PD FR IG PD FR IG PD

Product#

P R P R P R P R P R P R P R P R P R
1 0.73 0.41 0.71 0.58 0.64 0.81 0.74 0.49 0.77 0.60 0.68 0.87 0.87 0.22 0.75 0.53 0.62 0.90
2 0.55 0.35 0.73 0.75 0.72 0.72 0.58 0.41 0.78 0.87 0.83 0.74 1.00 0.24 0.73 0.88 0.83 0.70
3 0.62 0.56 0.78 0.65 0.72 0.83 0.75 0.33 0.84 0.75 0.78 0.90 0.00 0.00 0.79 0.62 0.68 0.88
4 0.33 0.33 0.59 0.61 0.79 0.78 0.33 0.33 0.79 0.67 0.81 0.88 0.00 0.00 0.82 0.70 0.82 0.91
5 0.55 0.60 0.82 0.65 0.58 0.78 0.40 0.40 0.87 0.64 0.57 0.83 1.00 0.20 0.88 0.65 0.56 0.86
6 0.81 0.41 0.59 0.79 0.72 0.64 0.84 0.38 0.61 0.85 0.80 0.71 0.90 0.13 0.50 0.84 0.74 0.58

P(MA) 0.67 0.71 0.70
R(MA) 0.63 0.65 0.55

10-fold Cross Validation
0.76 0.47 0.74 0.76 0.75 0.78 0.72 0.47 0.75 0.76 0.75 0.80 0.79 0.26 0.71 0.80 0.76 0.75

P(MA) 0.75 0.74 0.75
R(MA) 0.67 0.68 0.60

FR = Feature Request; IG = Information Giving; PD = Problem Discovery; P = Precision; R = Recall; P(MA) = Macro Average
Precision; R(MA) = Macro Average Recall; * included stop words; ‡ trained on the combination of 2.4 millions Amazon reviews
with our dataset

The performance results for classifying top-level categories in Table 8 show that incorporating w2v
improved precision and recall of SVM in both 6-fold and 10-fold. However, the performance of CNN + w2v
and SVM + w2v are comparable. The 6-fold cross validation results show that the SVM + w2v and CNN +
w2v generalized well, i.e., their performances did not drop significantly as SVM + tf-idf. Table 9 shows the
performance of different methods in classifying software sentences into different software categories. Since
only a small quantity of Feature Request sentences are in the dataset, the performance of CNN dropped
significantly. In fact, for product 3 (GoPro Hero4 Silver) and 4 (PlayStation 4), CNN did not classify
any sentence in the Feature Request category. SVM + w2v’s performance, on the other hand, did not
drop as significantly as CNN + w2v from 10-fold to 6-fold product cross validation. This implies that the
combination generalized well across different products. Surprisingly, SVM + tf-idf outperformed CNN + w2v
on classifying software related sentence (R(MA) for 10-fold). However, with more software related sentences,
we believe that CNN would perform as well as or slightly better than SVM.
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3.4 RQ4

Procedure:
In this section, we discuss the procedure we used to answer RQ4: How often does each software

quality characteristic occur in the software related sentences?

To the best of our knowledge, mapping user review sentences to software quality characteristics has
rarely been explored in literature. Nevertheless, there exists an automatic tool such as SURF, proposed by
Di Sorbo et al. [19], that can classify software related sentences into one of the twelve “Topic Clusters”
(e.g., Contents, Pricing, GUI, Security, Download, etc.). However, only three of the twelve clusters (GUI,
Function, Security) are to some extent related to software quality aspects. In addition, an automatic tool
can produce false positives (i.e., misclassification) which can affect the validity and outcome of the results
if used. In this case, we had to manually classify each software related sentence into one or more software
quality characteristics.

Figure 2: Eight software quality characteristics defined by the ISO/IEC 25010

Manual Classification We randomly sampled 1000 software related sentences from a total of 1923
software related sentences found in RQ2 for analysis (Table 6). In our case, one thousand (1000) software
related sentences were more than enough to statistically represent the entire software related sentences (with
99% confidence level and 3% margin of error, a minimum random sample size required to be a representative
of 1943 sentences is 943 sentences). Each sentence was classified with respect to the ISO/IEC 25010 software
product quality definitions. To ensure that we eliminated as much bias as we could when annotating, we
utilized the same manual classification procedure described in RQ2. However, only two annotators were
working on this task, the first author and one of the four Master’s level CS students that worked on RQ2.
We resolved disagreements by discussion. ISO/IEC 25010 [3] defines the quality of a system as the extent
to which the system satisfies the stated and implied needs of its various stakeholders, which in this case are
the end-users. The model comprises of eight high-level software quality characteristics: Functional suitabil-
ity, Performance efficiency, Usability, Portability, Compatibility, Reliability, Maintainability, and Security.
Figure 3 depicts the eight top-level software quality characteristics according to the ISO/IEC 25010. Note
that each characteristic in the top-level contains several sub-level categories (please refer to [3] for the full
list of definitions for each software quality characteristic and its sub-level categories). The sentence can be
classified into one or more software quality aspects, as shown in Table 10. For example, “Would receive five
stars if it played well with other devices and had just a little more customization options.” implies that the
user is not satisfied with the completeness of the functionality that the device offers due to the lack of some
customization options (Functional Completeness which is a sub-category of “Functional Suitability”) and
with the “Compatibility” issue with other devices.

Results and Discussion:
Table 10 shows an example of software related sentences manually classified with respect to the ISO/IEC

25010. We can observe in Figure 3 that, surprisingly, although the studied subjects are an IoT product that
can connect to its ecosystem and the Internet, users rarely do discuss issues or details about Security, but
they focus more on the Functionality, Usability, and Compatibility of software in the product. This is to
be expected because these three software quality characteristics can easily and directly be observed by the
end-users. To clarify, first users know that an IoT product must be able to communicate or interoperate with
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other devices in its ecosystem or to the Internet (Compatibility) and second the completeness and correctness
of the functionality as well as the ease of use and the aesthetics of the interface can be easily assessed by them.
Maintainability is, however, rarely discussed by the users. The reason may be because in these products,
users do not have control over updating or reinstalling firmware or an operating system in the product. In
other words, they do not experience an issue associated with the new or updated version of the product
directly (Modifiability) because this procedure is done automatically in the background and they may not
be aware of the change in the version of software, firmware, or an operating system. Portability (associated
with Adaptability, Installability, and Replaceability) is another interesting software quality characteristic
that is hardly ever discussed by the users. The reason may be that software, firmware, or an operating
system within an IoT product cannot be ported into other devices and can only be installed in a particular
device. Additionally and similarly, users may not experience updating or reinstalling firmware, software, or
an operating system of this devices directly and therefore, users are not exposed to the “Adaptability” aspect
of software in the product.

Due to the scope of this study, we will not be investigating whether or how the distribution differs when
compared to user reviews of software in other domain (e.g., mobile app user reviews). However, in our recent
preliminary study done on 1004 user reviews (2536 review sentences) of 46 releases of three OSS android
applications by the same set of annotators, we found that users do mention software replaceability (i.e.,
Portability) in a much greater quantity and software interoperability (i.e., Compatibility) in a much lower
quantity than what they exhibit in this domain [20]. However, it is important to note that these results
are heavily dependent on the domain of the studied software system. Nevertheless, we plan to carry out an
in-depth analysis on this idea in the future.

Table 10: An example of software related sentences with its respective software quality characteristic(s)

Software Related Sentence SQ Characteristics

“Does not support sync with apps such as Sleep Cycle or Apple
Health.”

Functional Suitability,

Compatibility

“The camera keeps freezing up even after updating the firmware.” Reliability

“The Fitbit app keeps all his stats and is easy to use!” Functional Suitability,

Usability

“I absolutely loved my Echo dot until I realized there is ZERO security
and anyone within range can connect their phone to your device via
Bluetooth.”

Compatibility,

Security

“It’s difficult enough to use because you have to memorize all the
commands to really benefit from it’s full functionality.”

Usability

“When we ask Alexa to take an action, there is a good time of silence
before Alexa responds.”

Performance Efficiency

“This device is not friendly to a person who is not tech smart.” Usability

3.5 RQ5

Procedure:
Aforementioned, in addition to writing a review of a purchased product, a user can subjectively give a

star rating on a scale of 1 to 5. In this question, we examine the relationships between each user rating and
each type of user review sentence. In particular, we break RQ5: Are there any patterns in the studied
product reviews with regards to the user ratings? down into four sub-questions:

• RQ5.1 Does the distribution of top-level categories differ across user ratings?

• RQ5.2 Is there an association between the rank order of software-level categories and rating?

• RQ5.3 Is there an association between the rank order of software quality characteristics and rating?

• RQ5.4 Are category and rating independent or related to one another?

To answer RQ5.1 , RQ5.2 , and RQ5.3 we seperated user review sentences based on the rating that
the sentence belongs to. Then, for each rating, we ranked the results according to the percentage each
category has. We also employed a number of statistical tests to see whether the ranks differ significantly. To
answer RQ5.4 , we used the results obtained from the previous three sub-questions and employed a number
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Figure 3: Count of software related sentences in each software quality characteristics

of chi-squared tests of independence (χ2 − tests) to test if each category and user rating are independent or
related to one another.

Results:

Table 11: Percentage of each top-level category per each rating

Hardware Software General
User

Background

Other

Product

Usage

Scenario

Customer

Service
Misc N

1-star 18.00% 19.12% 27.08% 20.80% 3.70% 2.72% 3.98% 4.61% 1433

2-star 21.01% 21.62% 24.59% 17.14% 5.49% 3.75% 2.58% 3.81% 1785

3-star 23.81% 22.28% 20.33% 16.54% 7.63% 4.33% 2.44% 2.63% 1638

4-star 20.94% 22.33% 23.33% 17.25% 6.18% 6.80% 0.96% 2.20% 2087

5-star 17.13% 18.05% 26.86% 19.88% 6.02% 7.73% 1.50% 2.84% 2394

Table 11 shows the distribution of top-level category per rating. The table also shows that regardless of
what rating users give, users often give a broad assessment of the product (1st rank for General category)
and oftentimes discuss the background of themselves more than giving an assessment of product’s software
or hardware (2nd ranking in 1-star and 5-star). We initially hypothesized that a one-star rating review would
contain more specific details on why the users dislike the product. However, the data shows contradictory
results. Upon inspecting the reviews, we found that for one-star reviews, users often give a short and broad
critque on the product as a whole, for example, “The device has been a huge disappointment”, “I’m very
disappointed in this”, or “This camera is garbage”.

To answer RQ5.1 , we first employed a number of Mann-Whitney U tests to test whether the two
independent samples have the same distribution. Our null hypothesis (H0) is that there is no difference
between the ranks of the two samples. We set the significance level to 0.05. We also employed Kendall’s tau
rank correlation to test the statistical associations based on the ranks of the data. The null hypothesis (H0)
for this test is that there is no association between the two samples. The tau correlation coefficient returns
a value of 0 to 1, where 0 denotes no relationship and 1 denotes a perfect relationship [21]. Similarly, we set
the significance level to 0.05.

We found that there is no difference (p > 0.05) in terms of the distribution of all X-rating to Y -
rating pairs, where X 6= Y (i.e., all ten pairs). However, the tau correlation reveals weak associations (not
statistically significance) between the rank orders of the pair of 1-star and 3-star (τ = 0.35, p = 0.13) and
1-star and 4-star (τ = 0.5, p = 0.053).

Table 12 shows the distribution and rank order of software-level category per rating. Note that we could
not employ Mann-Whitney U test for RQ5.2 because we had less than five categories per rating. To answer
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Table 12: Percentage of each software level category per each rating

1-star (N = 274) 2-star (N=368) 3-star (N=364) 4-star (N=466) 5-star (N=432)

PD 75.91% PD 68.75% PD 58.24% IG 51.07% IG 87.73%

IG 18.61% IG 21.74% IG 29.67% PD 32.83% PD 7.41%

FR 4.74% FR 7.88% FR 10.99% FR 14.38% FR 4.63%

IQ 0.73% IQ 1.63% IQ 1.10% IQ 1.72% IQ 0.23%

FR = Feature Request; IG = Information Giving; PD = Problem Discovery; IQ = Inquiry

RQ5.2 , we employed only Kendall’s tau rank correlation to test the statistical associations based on the
ranks of the data. We found a significantly strong association (at p < 0.05) between the rank order of
software-related categories in 1-star and 2-star (τ = 0.99), 1-star and 3-star (τ = 0.99), 2-star and 3-star
(τ = 0.99), and 4-star and 5-star (τ = 0.99). As you can see from Table 12, 4-star and 5-star have the
same rank order but do not have the same rank order as 1, 2, or 3-star. This conforms with the results we
obtained from applying Kendall’s tau rank correlation.

To answer RQ5.3 , we first applied Mann-Whitney U test to see whether each pair (pair of X-rating and
Y -rating, where X 6= Y ) have the same distribution. We found that there is no difference (p > 0.05) in terms
of the distribution of all X-rating to Y -rating pairs, where X 6= Y (i.e., all ten pairs). Next, we examined
if there is an association between the rank order of each pair by using Kendall’s tau rank correlation. The
tau coefficient shows a strong association but not significant between the pair of 1-star and 5-star (τ = 0.8,
p = 0.065) and 2-star and 5-star (τ = 0.8, p = 0.065). Table 13 shows the distribution and rank order of
software quality characteristics per rating.

Table 13: Top-5 software quality characteristics per each rating

1-star (N = 157) 2-star (N=192) 3-star (N=190) 4-star (N=252) 5-star (N=248)

Functional
Suitability
(38.22%)

Functional
Suitability
(47.40%)

Functional
Suitability
(45.26%)

Functional
Suitability
(44.84%)

Functional
Suitability
(51.61%)

Compatibility
(21.02%)

Compatibility
(20.83%)

Usability
(25.79%)

Usability
(28.17%)

Usability
(27.02%)

Usability
(19.75%)

Usability
(19.27%)

Compatibility
(18.42%)

Compatibility
(19.84%)

Compatibility
(20.16%)

Reliability
(18.47%)

Reliability
(7.81%)

Reliability
(6.84%)

Reliability
(4.37%)

Performance
Efficiency
(0.81%)

Performance
Efficiency
(2.55%)

Performance
Efficiency
(2.60%)

Performance
Efficiency
(2.63%)

Performance
Efficiency
(1.98%)

Maintainability

(0.40%)

To answer RQ5.4 , we employed a number of chi-squared tests of independence (χ2 − tests) to see if
each category and rating are independent or related to one another. The null hypothesis (H0) for this test
is that the two categorical variables are independent. We set the significance level to 0.05.

Top-level Category:
We found that Hardware and rating (χ2 = 33, p < 0.05), Software and rating (χ2 = 19.3, p < 0.05),

General and rating (χ2 = 29.26, p < 0.05), User Background and rating (χ2 = 16.475, p < 0.05), Other
Product and rating (χ2 = 22.31, p < 0.05), Usage Scenario and rating (χ2 = 66.7, p < 0.05), Customer Ser-
vice and rating (χ2 = 44.17, p < 0.05), and Miscellaneous and rating (χ2 = 21.03, p < 0.05) are significantly
dependent.

Software-level Category:
We found that Problem Discovery and rating (χ2 = 489.86, p < 0.05), Feature Request and rating

(χ2 = 35.31, p < 0.05), and Information Giving and rating (χ2 = 517.84, p < 0.05) are statistically depen-
dent. However, only Inquiry and rating are statistically independent (p > 0.05)
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Software Quality Characteristics
We found that Functional Suitability and rating (χ2 = 7.3, p > 0.05), Compatibility and rating

(χ2 = 0.49, p > 0.05), Usability and rating (χ2 = 7.6, p > 0.05), and Performance Efficiency and rat-
ing (χ2 = 4.34, p > 0.05) are statistically independent. However, only Reliability and rating are significantly
dependent (χ2 = 53.31, p < 0.05).

Summary of findings for RQ5
First, we found that the distribution of top-level categories does not differ across user ratings. In other

words, there exists no pattern in the top-level category with regards to user ratings. Second, our statistical
analysis reveals a pattern in how users talk about the software in the product: in 1-star, 2-star, and 3-star,
users mainly focus on describing the issues or unexpected behaviors they are facing with the software in the
product, whereas in 4-star and 5-star, users focus more on informing other users about the functionality of
the software of the product. Our results agree with one of the results from the study done by Pagano and
Maalej [22] on mobile apps reviews on the Google Store. They found that shortcomings and bug reports
have high influence on negative ratings (1-star, 2-star, and 3-star), while feature information on positive
ratings (4-star and 5-star). This suggests that, similar to mobile app developers, software developers who
perform software maintenance and evolution tasks on an IoT product should benefit from analyzing a 3-star
review and below to speedily get the crucial information on what problem or issue users may encounter
with the software in the product. Third, we found that the distribution and the rank order of the software
characteristics do not differ across user ratings. Fourth, our results reveal that Reliability aspect of the
software and user rating are statistically dependent. From Table 13, we can observe that 1-star contains
extremely high number of sentences mentioned about the Reliability aspect of the software compared to
2-star, 3-star, 4-star and 5-star. This suggests that analyzing a 1-star review can reveal information on the
Reliability problem or issue that user may encounter in a greater quantity. Our results also reveal that all
but one software level category and user rating are statistically dependent. Table 12 suggests that 1-star
contains the highest number of Problem Discovery sentences, 4-star contains the highest number of Feature
Request sentences, 5-star contains the highest number of Informative Giving sentences. This suggests that
developers can target a particular star rating in order to retrieve specific information (what feature users
want, what issue or problem they encounter, or what functionality users like) with regards to the software
in their product.

4 Threats to Validity

The study presented in this paper has several factors that may affect the validity of the results. In the
following, we discuss possible threats to the validity in our study.

Taxonomy This threat concerns the validity of our taxonomy. To mitigate this threat, we conducted
both internal content analysis, involving a team of 5, and external content analysis, involving 52 master’s level
CS students, to analyze what information or pattern contained in the reviews. In addition, we also adapted
taxonomy proposed by past literature which has been evaluated the relevance to developers performing
software evolution and maintenance tasks in our work (See Section 3.1). However, other studies that use
taxonomy with a different set of categories and definitions might lead to different results.

Subjectivity in manual classification This threat stems from the fact that our ground truth dataset
is based on human judgment. However, it is not uncommon to involve humans to manually classify data in
a text classification problem. To mitigate such a threat, we employ multiple measures as aforementioned in
Section 3.2. Nevertheless, we cannot claim that our dataset is error-free as some bias may remain.

External Validity This threat concern how generalizable our results are. To mitigate such a threat, we
selected products from different application domains: smart home, smart watch, action camera, and gaming
console. Furthermore, to eliminate some bias in our dataset, we selected at most 50 reviews per star rating
for each product, and each review contains less than 20 sentences. We also performed a project 6-fold cross
validation (see Section 3.3) to test the generalizability of our machine learning models. Additionally, since
all IoT products have the capability to transfer data or connect to its ecosystem or the Internet, this shared
similarity should allow our results to generalize. Nevertheless, there are other IoT domains that we have
not covered as well as multiple products in the same domain as the product we selected (i.e., our selected
products may not be representative). We encourage further research to investigate whether our results hold
in other IoT domains.
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5 Related Work

Analyzing user reviews for useful information has gained a lot of attention from researchers in recent years.
We highlighted past literature that share similarities with our work.

Pagano and Maalej [22], Khalid et al. [4], Hoon et al. [23], and Harman et al. [24] conducted exploratory
studies by investigating multiple aspects of user reviews from mobile application distribution platforms such
as the Google Store, the Apple Store, or the BlackBerry Store. They found that user reviews contain
information that is useful to the developers and the companies. Motivated by their findings, we investigated
user reviews on IoT products to see whether enough software related information exists and how much of
those information is directly applicable to software engineers.

Guzman et al. [6] conducted an exploratory study by analyzing the content in Twitter’s tweets to find
useful information for software engineers. They manually classified 1000 tweets and found that tweets contain
relevant information for different stakeholders. They also investigated the automation potential by using
several supervised machine learning techniques. Our work is similar to their work, however, our studies’
subjects are not software applications.

Maalej and Nabil [5] compared multiple methods that can help with classifying user reviews on App
stores automatically. Similarly, Panichella et al. [8] applied several machine learning techniques to classify
information in user reviews from App stores. They applied Natural Language Processing (NLP), sentiment
analysis, and text analysis to help with classification tasks. They found that combining NLP with sentiment
analysis improves both precision and recall significantly. In contrast, we included a neural network approach
(CNN) and investigated if vector space models such as Word2Vec and TF-IDF improve the performance of
the classifiers.

6 Conclusions and Future Work

In this paper, we conducted an exploratory study by analyzing 1491 verified purchase reviews (7198 review
sentences) of 6 IoT products obtained from Amazon. Our results demonstrate that only 26.72% of all
sentences are software related, based on our taxonomy defined through external and internal content analysis
sessions. We investigated how much information in those software related sentences is useful for software
engineers performing software evolution and maintenance tasks. The results show that only 55.28% of
software related sentences (14.79% of all sentences) are directly applicable to software engineers. Given
that only a small quantity of sentences can help to accelerate software requirements elicitation or evolution
process, we studied the extent to which two supervised machine learning techniques (SVM and CNN) can
be used to differentiate information contained in the reviews automatically. The results show that utilizing
Word2Vec improved the performance of SVM. In addition, Word2Vec also helped the model to generalize
better, when classifying unseen reviews of a different product, than tf-idf. Moreover, our results reveal
that some software quality characteristics can easier be observed by the users than some software quality
characteristics. Surprisingly, even in smart home domain, we found that users rarely discuss the security
aspect of the software in these products. In addition, our results reveal patterns in the type of review
sentences with regards to the rating. These patterns could help developers performing software evolution
and maintenance tasks on an IoT product to easily and speedily identify issues users may encounter with
the software in the product.

This work can be extended to several directions. For instance, we plan to incorporate more product from
several other IoT domains, to include feedback from the manufacturers on how useful the findings are, to
incorporate sentiment analysis and other types of preprocessing approaches from past literature to further
improve the performance of the classifier, to officially compare the performance of our classifier with that
of past literature for software-level sentences, and finally to investigate if we can capture and construct a
formal requirement (e.g., a user story) from these review sentences automatically.
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