
CLEI ELECTRONIC JOURNAL, VOLUME 12, NUMBER 3, PAPER 3, DECEMBER 2009 
 

Estimation of Distribution Algorithms: Applications to the Design of 
Process Sensor Networks 

 
 

Mercedes Carnero 
Universidad Nacional de Río Cuarto, Dpto. de Ciencias Básicas, 

Río Cuarto, Argentina,  
mcarnero@ing.unrc.edu.ar 

 
 

José Luis Hernández 
Universidad Nacional de Río Cuarto, Dpto. de Ciencias Básicas, 

Río Cuarto, Argentina,  
jlh@ing.unrc.edu.ar 

 
and 

 
Mabel Sánchez 

Planta Piloto de Ingeniería Química (UNS- CONICET) 
Camino La Carrindanga Km 7, Bahía Blanca 8000, Argentina 

msanchez@plapiqui.edu.ar 

Abstract 

The optimal location of sensors involves the selection of type, number and location of sensors 
from a set of available instruments with certain values of cost, precision and reliability. The 
optimal design not only satisfies economic criteria, but also some requirements on the quality 
of key variable estimates. In this work, a methodology for solving the sensor network design 
problem based on Estimation of Distribution Algorithms is presented. These algorithms are 
included in the Evolutionary Computation paradigm and substitute the probability distribution 
estimation of a population composed by potential solutions and its subsequent sampling for 
the use of the classic crossover and mutation operators. The performance of the new strategy 
is evaluated and compared with that provided by other evolutionary techniques for the case of 
a steam metering network of a methanol synthesis plant.  
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1. INTRODUCTION 
 The commercial challenges that confront process industries today bring about the frequent  application of strategies 
for on-line  optimization, multivariate statistical process control, fault diagnosis, predictive and reliability centered 
maintenance, etc. The availability of process information is essential for the execution of all these activities.  
The high development achieved by on-line monitoring and data storage systems allows for a huge volume of 
information of chemical plants. On the other hand, the quality of process knowledge, regarding its accuracy and 
precision, has been significantly enhanced since the application of Data Reconciliation procedures. 
Given the important benefits attained using more accurate and precise process information when economic, safety 
and environmental aspects are evaluated, the attention is now directed towards the origin of process information, 
that is, the set of instruments installed on the plant. 
Measurement planning is a complex multilevel task that involves the definition of the global objectives, the selection 
of measured variables and the specification of details, such as the sampling interval, the sampling technique, the 
type of operator interface, etc. The information that will be available from the process depends essentially on the 
selection performed in the second level, since the Degree of Estimability of a variable is a function of the plant 
topology and the set of measurements. 
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The selection of the subset of measured variables, i.e. the design of the sensor network, is performed during the 
formulation of the Process and Instrumentation Diagram. A common practice is to decide sensor locations based on 
previous experience with similar plants and using empirical rules. There are no comprehensive software packages 
that help the designer in that task. The development of strategies devoted to the optimal selection of sensors is of 
great interest, because it allows an optimal allocation of economic resources that assure the availability of the 
required information and acceptable safety levels.  
The operation of a chemical plant can be represented by a mathematical model, i.e. a set of equations that relate the 
variables involved in the process. They can be divided into two sets: a) required variables or variables that should be 
estimated; b) non-required variables. 
The design of a sensor network for monitoring purposes consists of determining if a process variable will be 
measured or not. If the first alternative is chosen, the number of installed sensors (hardware redundancy) and their 
features (cost, precision, failure rate) are set. 
To optimally locate sensors that satisfy specific criteria, the Optimum Design of Sensor Networks is defined as an 
optimization problem formulated as follows 
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where  q is a vector of binary variables so that qi = 1 if variable i is measured and  qi = 0 otherwise. 
A wide variety of objective functions, f(q), have been used: instrumentation cost, global error of variable estimates, 
system reliability, etc. As regards the set of process constraints, g(q), the design should guarantee the estimability of 
required variables, and also the conditions imposed on their precision, reliability and availability. Whichever the 
performance criteria and restrictions of the problem are, a combinatorial optimization problem arises that involves a 
huge number of binary variables. 
Different deterministic and stochastic strategies have been presented to solve this combinatorial problem. The design 
of a minimum acquisition-cost network of flowmeters, which assures the estimability of all mass process flowrates 
given the knowledge of mass balances, is solved using a deterministic greedy algorithm. It finds the optimal solution 
in polynomial time [4] [13]. Up to the present time there are no deterministic algorithms with the same feature for 
solving more complex design formulations. The existing deterministic algorithms are efficient to cope with small 
and medium size design problems [1] [9]. Consequently optimization methods based on metaheuristics arise as an 
alternative to tackle the design of large-scale plant sectors subject to complex objective functions and constraints [6] 
[11]. 
 
In this work, a metaheuristic technique based on Estimation of Distribution Algorithms (EDAs) is proposed to solve 
the optimal design of a minimum cost sensor network subject to estimability and precision constraints imposed on a 
set of key variable estimates. The EDAs comprise a set of techniques included in the Evolutionary Computation 
paradigm. They substitute the probability distribution estimation of a population composed of potential solutions, 
and its subsequent sampling for the use of classic crossover and mutation operators [12]. Given the stochastic nature 
of EDAs, they do not guarantee the convergence to the global optimum. Although their computational cost may be 
high, this problem can be overcome by incorporating specific problem knowledge by means of local search 
techniques [7]. 
 
2. OBJECTIVES 
The design of a minimum acquisition-cost (CT) sensor network that satisfies estimability and precision constraints 
on the estimates of a set of key variables is formulated as follows  
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where ci is the cost of the available flowmeter for measuring the flow of stream i, Ek represents the Degree of 
Estimability of variable k [2], jσ̂  is the standard deviation of the j-th variable estimate after a data reconciliation 
procedure is applied, and  n is the total number of measurable variables. Furthermore SJ and SK are the set of key 
process variables with requirements in precision and estimability respectively, and SJ is a subset of SK . 



 3

This work is devoted to analyze the application of EDAs for solving Problem (2) and to compare its performance 
with respect to the ad-hoc stochastic method based on Genetic Algorithms (GA) developed by Carnero et al. [5]. 
 
3. METHODOLOGY  
3.1 Estimation of Distribution Algorithms  
An EA is a probabilistic procedure that maintains a population of individuals P(t)={q1(t), q2(t),...} for iteration t. 
Each individual represents a potential solution to the problem. Each solution t

iq  is evaluated to give some measure 
of its fitness. Then, a new population (iteration t+1) is formed by selecting the individuals that fit better. Some 
members of the new population undergo unary transformations mi (mutation), which produce new individuals by a 
small change on a single individual (mi : q→ q), and higher order transformations cj (crossover), which form new 
individuals by combining parts from several individuals ( : ......× × →jc q q q q ). The program is run a given number 
of generations or until a criterion is satisfied. The best individual is considered a near optimal solution. 
The EDAs are heuristics that share some features of the EA but the potential solutions included in the population are 
assumed as realizations of multivariate random variables, whose joint probability distribution can be estimated and 
updated using different mechanisms. In this sense, a solution vector q ={ q1, q2, ..., qn} can be considered as a 
sample of an n-dimensional vector Q = { Q1, Q2, ..., Qn} where Qi  is a binary variable. 
Thus the joint probability distribution f(Q1,……,Qn) is associated with Q, and the marginal probability distribution 
P(Qi=qi)= pi is related with each unidimensional random variable Qi. 
Unlike EAs, whose specific operators use the information given by the population members to guide the search, the 
EDAs conduct the optimization procedure by means of the building and evolution of the solution-space probabilistic 
model. That is, the potential solutions are evaluated using the objective function, and the information obtained 
through a selection step of the best solutions is used to update the vector of probabilities, from which the next 
population is sampled. 
In this work, the methodology originally proposed by Baluja [3], who introduced the concept of competitive 
learning (typical in artificial neural networks), was used to guide the search. It is assumed that random variables are 
independent, thus the product of their marginal distributions constitutes the joint distribution of all variables. This is 
updated to take into account the structure of best current solutions. Although a simplified model of variable 
relationships is considered, the approach has shown good results for solving complex combinatorial problems such 
as channel assignments for mobile systems and task planning problems [8][15]. 
The pseudocode of a basic EDA is as follows    
 
Initiate the probability vectors p  
while (stopping criteria  = .FALSE.) 

Generate N individuals by simulation according to p 
Evaluate the fitness function F for each member of the population 
Select the best solution  
Upgrade p using the best solution and the learning rate LR 
Mutate p using a probability of mutation PMUTA and a quantity of MS mutation 

endwhile 
 
3.2 Sensor Network Design Methodology Based on EDAs  
To compare the results of the proposed methodology with those provided by the evolutionary strategy developed by 
Carnero et al. [5], some features of this procedure are maintained in the new technique. It has the following 
distinctive characteristics: 
1. The initial population satisfies the estimability condition of key variables 
2. The marginal probability of the variables for the first iteration is estimated using the initial population. Each 
unidimensional random variable Qi (i =1:n) follows a Bernoulli Distribution. The maximum likelihood estimate of 
the expected value of Qi is its sample mean. Therefore the vector of sample means for each instance is evaluated as 
follows  
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3. Fitness function F, proposed by Deb [10] is applied. It takes into account constraint violations as follows 
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CTmax is the cost of measuring all variables, R and ncu stand for the number of variables in SJ and SK whose 
constraints are unsatisfied respectively and, nr is the number of variables in SK. 
4. A local search procedure is run after population update. A portion of the population that satisfies the estimability 
of required variables and has the best values of the fitness function is selected. The neighborhood of each solution is 
inspected to find a new individual that has an F value lower than the current solution, by elimination of one 
measurement or by interchange of one measurement by an unmeasured variable. The estimability of required 
variables is maintained. If a better solution is found, the current one is replaced by the new one. The local search is 
accomplished using the formulation derived for the classification of process variables of linear systems [16]. 
5. The probability vector is updated, position by position, using the learning rate LR as follows 

( )(1 )  1:u c
i i ip p LR s LR i n= − + =  (6)

where u
ip is the updated probability, c

ip stands for the current probability and si represents the i-th element of the best 
solution. In this way, the algorithm incorporates the knowledge of the best current solutions, which are determined 
through the selection procedure. The set of selected solutions may contain only one element, i.e. the best current 
solution, as an extreme case. 
The value of LR is essential to the convergence of the algorithm. High values of LR introduce a bias towards specific 
solution structures avoiding the exploration of different regions of the search space; consequently they originate 
problems of premature convergence. 
6. To introduce diversity in the search, each element of the probability vector is involved in a mutation procedure 
with PMUTA probability as follows 

( )(1 ) (0,1)  1:u c
i ip p MS rand MS i n= − + =  (7)

where MS is the mutation amount. 
 
4. RESULTS 
The procedure previously described was applied to solve the instrumentation design problem of the steam metering 
network (SMN) for a methanol production plant. The process consists of 11 units interconnected by 28 streams and 
is represented in Fig. 1. Also Table 1 shows the true value of mass flowrates, the standard deviation of measurement 
errors, and the cost of available flowmeters. They were obtained from Sen et al. [17].  
 
 

 
Figure 1: Steam Metering Network Flowsheet 

 



 5

Table 1: Steam Metering Network Data 

Stream  Cm
i σi ci 

1 0.86 0.0215 3.7 
2 1. 0.025 4.5 
3 111.82 2.8 132.2 
4 109.95 2.749 129.2 
5 53.27 1.332 65.3 
6 112.27 2.807 132.4 
7 2.32 0.058 5.0 
8 164.05 4.101 193.9 
9 0.86 0.0215 2.06 

10 52.41 1.31 62.8 
11 14.86 0.3715 20.2 
12 67.27 1.682 80.0 
13 111.27 2.782 130.4 
14 91.86 2.296 109.8 
15 60. 1.5 71.6 
16 23.64 0.591 29.7 
17 32.73 0.8182 39.5 
18 16.23 0.4057 20.4 
19 7.95 0.1987 11.1 
20 10.5 0.2625 13.6 
21 87.27 2.182 102.9 
22 5.45 0.1362 8.1 
23 2.59 0.0648 6.3 
24 46.64 1.166 55.5 
25 85.45 2.136 101.0 
26 81.32 2.033 93.7 
27 70.77 1.769 84.7 
28 72.23 1.806 85.4 

 
Three design cases were analyzed that correspond to different sets of key variables and precision constraints. They 
are shown in Table 2. It was assumed that there was no restriction for the location of sensors on any stream, and 
therefore the search space was made up of 228 solutions.   
Table 3 contains the optimization results which are the same provided by the previously developed EA.  
Different LR values were tested and the best performance of the algorithm for all case studies was obtained by using 
LS=0.1. For the probability vector upgrade, the best solution was considered as the only member of the selection set. 
Furthermore the parameters associated with the probability vector mutation were fixed at PMUTA = 0.02 and 
MS=0.05 values, taking into account the recommendations found in the literature. 

Table 2: Constraint Bounds for each Case Study 

Case Constraint Bounds 
Case 1 SK : streams 1 2 6 

*
2 0.025σ =      *

6 1.7851σ =  

Case 2 SK : streams 4 8 17 21 23 25 
*
4 2.199σ =     *

8 3.281σ =  
*
21 1.754σ =    *

25 1.709σ =  

Case 3 SK : streams 4 5 7 8 12 16 18 20  27 28 
*
4 2.199σ =      *

5 1.0654σ =  
*
8 3.281σ =      *

12 1.3454σ =  
*
27 1.4154σ =   *

28 1.4446σ =  
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Table 3: Optimal Solutions 

Case Measured Variables Cost 
1 1 2 6 7 9 10 13 20 26 28 533.56 
2 1 4 6 7 10 11 14-24 752.26 
3 1 2 4 5-7 9-11 13 15-24 26-28 1178.06 

 
5. CONCLUSIONS 
In this work, a strategy based on EDAs is presented for the design of process sensor networks. Its performance is 
compared with that provided by an existing heuristic inspired in classic EA. The same results are obtained for three 
case studies using both techniques. 
The diversity of an EA is provided by the crossover operator, which allows the exploration of different regions of 
the search space, maintaining the constructive blocks of the most promising solutions. The difficulty associated with 
the design of this operator increases with the complexity of the combinatorial problem. In contrast, EDAs use global 
information about the population to estimate its probability density function and employ it to generate new solutions. 
This has the advantage of avoiding the rupture of building blocks. 
Future works involve the implementation of parallel EDAs and the development of sophisticated models for the 
joint probability distribution that can manage more complex designs. 
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