
Inference of the Definition of the Predicate
Transformer wp with Occurrences of the Predicate
domain Based on Denotational Semantics of GCL

on ZF Set Theory
Federico Flaviani

Universidad Simón Bolı́var
Caracas, Venezuela

Email: fflaviani@usb.ve

Abstract—Dijkstra recursively defined the predicate trans-
former wp. Then Gries for each expression Exp of the language,
defined domain(Exp), which is a predicate that indicates the
states in which Exp is defined. This predicate Gries added it
to the recursive formula that defines wp for assignment, and
subsequently other authors added it to the rule that recursively
defines wp for IF , so that in the bibliography there are several
versions of the definition of wp, with and without occurrence of
domain. The present work shows an inference of the definition of
wp, demonstrating that the occurrence of domain is necessary for
wp in assignement, IF and DO. This inference is done through
the GCL denotational semantics over the set theory ZF , showing
that the classical formulas of Dijkstra to define wp in GCL using
domain, are valid if the language of set theory is used to write
the assertions.

I. INTRODUCTION

The Dijkstra [1] logic for program correction is based on
the predicate transformer wp (weakest precondition), which is
basically a syntactic function of two variables that returns in a
symbolic way the weakest precondition of an statement inst
given a postcondition Post.

Dijkstra established in [1] the rules that define the syntactic
transformation function wp. In this paper an improvement to
these rules is given, and justified using a denotational seman-
tics of GCL (Guard Command Language) that contemplates
the abort state. The obtained definition of wp is found in the
conclusions section of this work.

The main idea of the study is to identify in which rules of
the construction of wp, the syntactic function domain must
be used, which applies to expressions and returns a predicate
that describes the domain of said expression.

The use of domain in these rules is a way to discriminate
states that can cause the program to abort because of an illegal
operation such as dividing by zero. With the syntactic function
domain you can ensure that assertions are fully assessable,
that is, that they can be evaluated as true or false, for any
state of the program, or equivalently, that there are no program
states in which the predicates in the assertions are indefinite.

For example the assertion {y = 1
x} is undefined in the state

x, y := 0, 1, so it is not a fully assessable assertions. But as

domain(1x) ≡ x 6= 0, and if ∧ is the Boolean operator ‘and’
with a short circuit, the assertion {domain(1x) ∧ y = 1

x} is
totally assessable.

When assertions are used within a program, it is done with
the intention that if the program aborts at the height of an
assertion, it is because the assertion is false when evaluated
in a running state, and not because the assertion itself, when
evaluated, incurs in an illegal or undefined evaluation. For this
reason the use of fully assessable assertions is recommended.

In most of the works on the wp transformer (classic or
recent), the recursive rules that define wp differ slightly from
those obtained in this work in the DO rule. Specially with
regards to the occurrences of domain i.e. in most of the
literature, it is only used in the assignment statement rule. This
is because in these works it is permissible to use assertions
that are not fully assessable. Although this is not incorrect,
it is unadvisable, because it is easy to make mistakes. For
example, the triplet of Hoare [2] below is correct for states in
which x = 0:
{Pre : 1

x = 3
x2 }

y := 1/x

{Post : 1
x = 3

x ∗ y}
since Pre cannot be evaluated as true for these states

because the Pre assertion is undefined. However, an error is
made in pretending to write equivalently the precondition by
clearing and obtaining {PreAux : x2 = 3x}, which in turn
is equivalent to {PreAux : x = 0 ∨ x = 3}. But in the states
where x = 0, although the precondition PreAux would be
true, the statement y := 1/x would abort, so the triplet using
PreAux as a precondition is false. This error would not have
been possible if fully assessable assertions had been used. For
instance,
{Pre : x 6= 0 ∧ 1

x = 3
x2 }

y := 1/x

{Post : x 6= 0 ∧ 1
x = 3

x ∗ y}
if the same clearance is made on the precondition, there

would be {PreAux : x 6= 0 ∧ (x = 0 ∨ x = 3)} which is
equivalent to {PreAux : x = 3}.

In this paper it is shown that if we want to use fully assess-
able assertions, it is necessary to use the syntactic function
domain in the recursive rules of wp, for the assignment,
selection and iteration statements.

A. Contribution

In this work we find a demonstration based on denotational
semantics of the calculation rules of wp with the proper use
of the syntactic function domain. This is done in order to
guarantee that if the P assertion is totally assesable then so
also is wp(S, P). The latter cannot be guaranteed with any
of the definitions of wp found in the bibliography listed here,
which includes recent works.

On the other hand, all the work is done assuming that the
assertions of the programs are written in Zermelo-Fraenkel-
Skolem set theory (ZFS), but with the notation used for the
quantifiers ∀ and ∃ of [3]. The data types of the GCL variables
are interpreted as objects of the ZFS set theory, and the
algorithms in GCL are interpreted as relationships on these
objects. For this reason, the theory here developed for the
wp transformer is as general as the set theory, and ensures
that algorithm correction and calculation of wp can be made
on algorithms with data types as general as the topological
spaces, ultrafilters, non-measurable sets, etc. For this reason
the semantics here defined constitute a way to embed the
theory of algorithms and program correction within ZFS.

The theory of wp for GCL written with assertions in
other languages (such as the language of decidable assessable
assertions of the books [4], [5]), can be considered as a
fragment of ZFS, so they are contemplated within this theory.
That is, as long as they are closed fragments with respect to
the recursive calculation rules of wp as stated above.

B. Related Works

Originally in [1] the definition of wp did not include the
function domain in its rules. The first time that domain was
used as an improvement was in [5], where it is incorporated
into the wp rule for assignment, but he does not extend
its formulation for the IF nor for the DO rules, which is
necessary, if you want fully assessable assertions. Then came
[6], [7], [8], [9] which extended the use of domain to the IF
statement. In none of them however, has it been applied to the
DO statement. Hence, we have not seen a complete definition
of wp with the purpose of making fully assessable assertions.
In [10], [11] use of domain is made in the wp thread for the
standard Do, but no mention is made of what the rule is for
the DO with multiple guards. For this reason it is important
to revisit the topic and make a formal derivation of these rules
from non-axiomatic semantics, in order to validate and have a
solid version of the definition of wp with the correct and total
use of domain.

The wp rule for the statement DO has not been frequently
used, because it presupposes solving a recurrence of predi-
cates, which is complicated, and there are other more famous
methods to correct a loop, such as the use of an invariant and
bound function. This lack of practical use of the wp rule for the

DO, could explain the lack of bibliography with the correct
use of domain with this rule. However, methods to calculate
wp(Do,P) explicitly, it has been investigated recently. One
of the methods [12]-[15], is using invariant relations and
another method in [10], [11] by calculating wp of the cycle
body repeatedly to get a general predicate. For the method of
invariant relations fully assessable assertions are not used, so
domain is not used at all. The second method contemplates
the use of domain as part of the technique, which makes it
more accurate and secure. This recent interest for domain and
the calculation of wp(Do,P), makes it an imperative to study
in detail, the solid arguments that guarantee what is the final
rule of wp(Do,P), using domain.

On the other hand in the classic literature of denotational
semantics for programming languages such as [16], written
assertions are used in the language of Arithmetic to derive
the formulas of wp. However, with the recent interest in the
method of invariant relations, for which it is fundamental
to write assertions in the language of relations theory, it is
relevant to develop a theory of wp, directly in the language of
set theory, even though there are already general foundations
for the correction of programs such as [17], since the latter is
a logical framework and not semantic like this. This work is a
continuation of [18], where a general denotational semantics
(based on set theory) is established, to support the theory of
wp and demonstrate algebraic properties of this transformer,
for any programming language and not specifically GCL.

II. GENERAL DENOTATIONAL SEMANTICS

Notation. The minimum and maximum elements of a Boolean
algebra {0̂, 1̂}, are considered objects within ZFS (sets). We
denote TRUE and FALSE as true and false of the ZFS
metatheory, that is, the adjectives that can be attributed to
a ZFS sentence, given an ideal model (if it exists) of ZFS.
We denote true and false as predicates that can only be
interpreted as TRUE and FALSE respectively.

Definition (Space of States of an Algorithm). Let the
algorithm

[Const x : T ;
V ar y : T ′;
S
]

Where S is the statements of the algorithm, x is the list of
constants and T is the list of types of each x (where each type
is a set), y is the list of variables and T ′ is the list of types
of each y.

If T = T1, T2, . . . , Tn and T ′ = Tn+1, Tn+2, . . . , Tn′ , then
the space of states of the previous algorithm is defined as

n′∏
i=1

Ti

Notation. In an algorithm with space of states Esp, ~x denotes
the list of constants and variables that are in the order in

which they were declared. That is, ~x = x||y, where x and y
are the lists of constants and variables in the space of states
definition, and || is the operator of concatenation of lists.

Notation. To simplify the notation, the vector (~x) = (x, y)
is simply denoted as ~x, so the notation ~x can be understood
according to context as a list of syntactic variables x||y, or
as a tuple (x, y).

For example, in the formula Post(~x, Y), the notation ~x is
interpreted as a list, meaning Post(x, y, Y), in contrast to a
formula like ~x ∈ Esp, the notation ~x is interpreted as tuple,
meaning (x, y) ∈ Esp.

Definition. Let an algorithm with space of states Esp and
take an element abort /∈ Esp, then define the space of states
extended to the abort as Esp′ := Esp ∪ {abort}

An algorithm in addition to the description of the space
of states, consists of phrases of the language that are called
statements, and within the statements there are other phrases
called expressions of type T (where T is a set). These
phrases are denotationally interpreted with the interpretation
function E . This interpretation function takes an expression
Exp syntactically speaking and returns a function with range
in T , which is denoted E [[Exp]].

Definition. In an algorithm with space of states Esp, an
expression Exp of type T , is a phrase of the language that is
interpreted as a function

E [[Exp]] : Dom(E [[Exp]]) ⊆ Esp→ T.

Notation. From now on, in order to abbreviate, the interpre-
tation of the expression Exp evaluated in ~x will be written as
Exp(~x), instead of E [[Exp]](~x) and we will denote the domain
of the expression for Dom(Exp) instead of Dom(E [[Exp]]).

Remark. Do not confuse a Boolean expression with a ZFS
predicate, the first one returns an element in the Boolean
algebra {0̂, 1̂}, and the second is a phrase interpreted as either
TRUE or FALSE in the ZFS metatheory.

Remark. The semantic definitions of this section are general,
for this reason any possibility of syntax of the expressions and
value of its interpretation function is left open.

Notation. Given an expression Exp inside an algorithm with
space of states Esp, the domain(Exp) is defined by a formula
with free variables ~x, such that

Dom(E [[Exp]]) = {~x ∈ Esp|domain(Exp)}

Analogously if B is a predicate, domain(B) is defined as the
conjunction of the domain of all the expressions that occur
in B. It will define,

Dom(B) := {~x ∈ Esp|domain(Exp)}

and if Exp1, . . . , Expn are expressions or predicates, it will
define

domain(Exp1, . . . , Expn) :=

domain(Exp1) ∧ · · · ∧ domain(Expn)

The concept of program statement and interpretation is de-
fined below. To give denotational semantics to the statements,
we will use an interpretation function C, that receives an S
statement, syntactically speaking, and returns an interpretation
C[[S]], Which is nothing more than a set theoretical relation.

Definition. In an algorithm with a space of states Esp, an
statement S is a phrase of the language that is interpreted as
a relation

C[[S]] : Esp′ → Esp′,

such that the domain of C[[S]] is all Esp′,

C[[S]]({abort}) = {abort} y

x′ = x si (x′, y′) ∈ C[[S]]({(x, y)}) y x′ ∈ T .

Executing this instruction for initial values ~x0 is understood
as evaluating the previous relation in the values ~x0, where the
output of the execution could be any image of the point ~x0.

Additionally, support supp(C[[S]]) is defined, as the set of
states that do not result in an abort when executing the
instruction, that is,

supp(C[[S]]) := {~x ∈ Esp|abort /∈ C[[S]]({~x})}

Remark. Note that since the domain of C[[S]] is all Esp′ then,
C[[S]]({~x}) 6= ∅ for all ~x ∈ Esp′.

Definition. If x and y are the list of constants and variables of
an algorithm A in the order in which they were declared, Y a
list of variables other than x, y and Post(x,y, Y) a predicate
that only has as free variables x, y and Y , then it will define
the family of sets

RgoY := {(x, y) ∈ Esp|Post(x, y, Y)}

Remark. Since RgoY := {~x ∈ Esp|Post(~x, Y)}, then to
avoid redundancy in the predicates that serve as a postcon-
dition of a statement, it will agree on the assertions of GCL,
that the predicate ~x ∈ Esp does not appear, and this predicate
will always be taken as an assumed hypothesis.

Definition. Let R be a relation of A×B and a subset Rgo ⊆
B, then

M := {x ∈ A|R({x}) 6= ∅ ∧R({x}) ⊆ Rgo}

is referred to as “maximum domain of R with range Rgo”.

Lemma 1. Given an algorithm with space of states Esp, a
statement S and a predicate Post(~x, Y), with ~x ∈ Esp and
Y0 list of values of the same type as Y , then the maximum
domain of C[[S]] and RgoY0

is equal to

{~x ∈ Esp|~x ∈ supp(C[[S]])∧
(∀y| : y ∈ C[[S]] �supp(C[[S]]) ({~x})⇒ Post(y, Y0))}

Where Post(y, Y0) is a simplified notation that means

(∃y′|y = (x, y′) : Post(x, y′, Y0))

and C[[S]] �supp(C[[S]]) is the relation C[[S]] restricted to domain
supp(C[[S]]).

Proof. A demo style will be used as in [19]

{~x ∈ Esp′|C[[S]]({~x}) 6= ∅ ∧ C[[S]]({~x}) ⊆ RgoY0
}

C[[S]] is defined in all Esp′

=
{~x ∈ Esp′|C[[S]]({~x}) ⊆ RgoY0

}
=
{~x ∈ Esp′|(∀y| : y ∈ C[[S]]({~x})⇒ y ∈ RgoY0

)}
=
{~x ∈ Esp′|

(∀y| : y ∈ C[[S]]({~x})⇒ y ∈ Esp ∧ Post(y, Y0))}
=
{~x ∈ Esp′|(∀y| : (y ∈ C[[S]]({~x})⇒ y ∈ Esp)∧

(y ∈ C[[S]]({~x})⇒ Post(y, Y0)))}
=
{~x ∈ Esp′|(∀y| : y ∈ C[[S]]({~x})⇒ y ∈ Esp)∧

(∀y| : y ∈ C[[S]]({~x})⇒ Post(y, Y0))}
=
{~x ∈ Esp′|C[[S]]({~x}) ⊆ Esp∧

(∀y| : y ∈ C[[S]]({~x})⇒ Post(y, Y0))}
=
{~x ∈ Esp′|abort /∈ C[[S]]({~x})∧

(∀y| : y ∈ C[[S]]({~x})⇒ Post(y, Y0))}
def
=
{~x ∈ Esp′|~x ∈ Esp ∧ ~x ∈ Esp ∧ abort /∈ C[[S]]({~x})∧

(∀y| : y ∈ C[[S]]({~x})⇒ Post(y, Y0))}
=
{~x ∈ Esp′|~x ∈ Esp ∧ ~x ∈ supp(C[[S]])∧

(∀y| : y ∈ C[[S]]({~x})⇒ Post(y, Y0))}
=
{~x ∈ Esp|~x ∈ supp(C[[S]])∧
(∀y| : y ∈ C[[S]] �supp(C[[S]]) ({~x})⇒ Post(y, Y0))}

Remark. In the demonstration of the lemma it is observed
that the maximum domain of C[[S]] and RgoY0

is equal to

{~x ∈ Esp′|C[[S]]({~x}) ⊆ RgoY0
}

which in turn is equal to
{~x ∈ Esp|~x ∈ supp(C[[S]])∧

(∀y| : y ∈ C[[S]] �supp(C[[S]]) ({~x})⇒ Post(y, Y0))},
this means that
~x ∈ Esp′ ∧ C[[S]]({~x}) ⊆ RgoY0

⇐⇒
~x ∈ Esp ∧ ~x ∈ supp(C[[S]])∧
(∀y| : y ∈ C[[S]] �supp(C[[S]]) ({~x})⇒ Post(y, Y0))
and in particular ~x ∈ Esp′ ∧ C[[S]]({~x}) ⊆ RgoY0

⇒ ~x ∈
Esp, so that
~x ∈ Esp′ ∧ C[[S]]({~x}) ⊆ RgoY0

⇐⇒
~x ∈ Esp′ ∧ ~x ∈ Esp ∧ C[[S]]({~x}) ⊆ RgoY0

⇐⇒
~x ∈ Esp ∧ C[[S]]({~x}) ⊆ RgoY0

,
that is, the maximum domain of C[[S]] and RgoY0

is
{~x ∈ Esp|C[[S]]({~x}) ⊆ RgoY0

}

Definition. Given an algorithm whose space of states is Esp,
with list of constants and variables equal to ~x and Post is a

predicate that depends on the variables ~x and Y , we say that
Pre is a weakest precondition of S and Post if and only if
{~x ∈ Esp|Pre(~x, Y0)} is the maximum domain of the relation
C[[S]] with range RgoY0

for any value Y0 of the free variables
Y .

Remark. According to the lemma 1 we have that a weakest
precondition for a statement S and Post(~x, Y) is

~x ∈ supp(C[[S]])∧
(∀y| : y ∈ C[[S]] �supp(C[[S]]) ({~x})⇒ Post(y, Y))

and by the previous remark is fulfilled that C[[S]]({~x}) ⊆
RgoY is also a weakest precondition of S and Post(~x, Y).

Remark. Since ~x ∈ Esp is an assumed hypothesis, then all
weakest preconditions are equivalent.

III. DENOTATIONAL SEMANTICS OF GCL

In this section it will formalize the concept of the statement
of an algorithm in GCL, for that we begin with the assignment
instruction.

Definition. If an algorithm has the space of states Esp,
then an assignment statement S is a phrase of the form
yi1 , . . . , yik := Exp1, . . . , Expk, where ij 6= ij′ for all j
and j′ with 1 ≤ j < j′ ≤ k, yij is the variable in the position
ij of the variables vector y of the definition of space of states,
and yij is of the same type of expression Expij , it is define
the function of several variables

R′S :

k⋂
i=1

Dom(Expi) ⊆ Esp→ Esp

R′S(x, y) =

(x, y1, . . . , yi1−1, Exp1(x, y), . . . , yik−1, Expk(x, y), . . . , yn′),

so, this sentence is interpreted as

C[[S]] := R′S ∪ ((Dom(R′S))
c × {abort})

where (Dom(R′S))
c = Esp′ \Dom(R′S).

Example. For the following algorithm

[Const n : Integer;
V ar x : Real;

y : Real;
z : Real;

x, z := x+ z, (x+ n)/z
],

the result of an execution of said algorithm for the initial
values n0, x0, y0, z0, is the result of evaluating the function

f : Z× R× R× (R \ {0})→ Z× R× R× R

f(n, x, y, z) = (n, x+ z, y,
x+ n

z
)

in the values n0, x0, y0, z0 when z0 6= 0, or abort if z0 = 0.

Theorem 1. Let the statement yi1 , . . . , yik :=
Exp1, . . . , Expk be with variables within the space of
states Esp and a postcondition Post for said instruction. A
weakest precondition for this statement and Post is:

domain(Exp1, . . . , Expk)∧

Post[yi1 , . . . yik := Exp1, . . . , Expk]

Proof. The asignement statement will be called as S and will
be consider that the variables Y are fixed, by Lemma 1 we
have that the maximum domain of C[[S]] and RgoY is equal to:

{~x ∈ Esp|~x ∈ supp(C[[S]])∧
(∀y| : y ∈ R′S({~x})⇒ Post(y, Y))}

=

{~x ∈ Esp|~x ∈
k⋂

i=1

Dom(Expi)∧

(∀y| : y ∈ R′S({~x})⇒ Post(y, Y))}
=
{~x ∈ Esp|(∀i|1 ≤ i ≤ k : ~x ∈ Dom(Expi))∧

(∀y| : y ∈ R′S({~x})⇒ Post(y, Y))}
=
{~x ∈ Esp|(∀i|1 ≤ i ≤ k : domain(Expi))∧

(∀y| : y ∈ R′S({~x})⇒ Post(y, Y))}
=
{~x ∈ Esp|domain(Exp1, . . . , Expk)∧

(∀y| : y ∈ R′S({~x})⇒ Post(y, Y))}
=
{~x ∈ Esp|domain(Exp1, . . . , Expk)∧

(∀y|y ∈ R′S({~x}) : Post(y, Y))}
C[[S]] is a function

=
{~x ∈ Esp|domain(Exp1, . . . , Expk)∧

(∀y|y = R′S(~x) : Post(y, Y))}
=
{~x ∈ Esp|domain(Exp1, . . . , Expk) ∧ Post(R′S(~x), Y)}
=
{(x, y) ∈ Esp|domain(Exp1, . . . , Expk)∧

Post(R′S(x, y), Y)}
=
{(x, y) ∈ Esp|domain(Exp1, . . . , Expk)∧

Post(x, . . . , yi1−1, Exp1(x, y), . . . , yik−1, Expk(x, y), . . . , Y)}
=
{(x, y) ∈ Esp|domain(Exp1, . . . , Expk)∧

Post[yi1 , . . . yik := Exp1, . . . , Expk]}

Definition. If an algorithm has a space of states Esp, then
phrase SKIP is a statement whose interpretation C[[SKIP]]
is function idEsp′ : Esp′ → Esp′.

With this definition the following theorem is trivial.

Theorem 2. A weakest precondition for a statement SKIP
and Post is Post.

Definition. If an algorithm has as space of states Esp, and let
S0 and S1 be sentences, then the phrase S0;S1 is a statement
whose interpretation is the relation C[[S0;S1]] := C[[S1]] ◦

C[[S0]], where the operation ′◦′ represents the composition of
relations, that is, if R0 and R1 are relations in Esp′, you
have to R1 ◦ R0 := {(x, y) ∈ Esp′ × Esp′|(∃z| : (x, z) ∈
R0 ∧ (z, y) ∈ R1)}

Theorem 3. If a weakest precondition of S1 and Post is
Pre′ and Pre is a weakest precondition of S0 and Pre′, then
a weakest precondition of S0;S1 and Post is Pre.

Proof. The variables Y of Post are considered fixed.

Since all weakest preconditions are equivalent and
C[[S1]]({~x}) ⊆ RgoY is a weakest precondition of S1 and
Post, then Pre′ is equivalent to C[[S1]]({~x}) ⊆ RgoY and for
the same reason C[[S0]]({~x}) ⊆ {z ∈ Esp|Pre′} is equivalent
to Pre.

On the other hand, the maximum domain of C[[S0;S1]] and
RgoY is equal to

{~x ∈ Esp|C[[S0;S1]]({~x}) ⊆ RgoY }

By making basic manipulations of the set theory and
relationships it can be shown that the previous set is equal to:

{~x ∈ Esp|
C[[S0]]({~x}) ⊆ {z ∈ Esp|C[[S1]]({z}) ⊆ RgoY }}

=
{~x ∈ Esp|C[[S0]]({~x}) ⊆ {z ∈ Esp|Pre′}}
=
{~x ∈ Esp|Pre}

Definition. Let ~x be the list of declared variables, a condi-
tional statement IF is a phrase of the form
if B0 →
S0

[] B1 →
S1

...
[] Bn →
Sn

fi
where Bi are predicates that only depend on ~x and Si are

statements. Let be the sets Ti := {~x ∈ Dom(Bi)|Bi} and
B′i := idTi

∪ (Dom(Bi)
c × {abort}), where Dom(Bi)

c =
Esp′ \Dom(Bi). In this way defining

R′IF :=

n⋃
i=0

C[[Si]] ◦B′i

the interpretation of the IF instruction is the relation

C[[IF]] := R′IF ∪ (Dom(R′IF)
c × {abort})

where Dom(R′IF)
c = Esp′ \Dom(R′IF)

Remark. To keep the theory in first order, in the union of the
definition of R′IF , it is assumed that an indexing function of
sets i 7→ C[[Si]] and i 7→ B′i is being used (which clearly exist

by having a finite number of ordered pairs) and not that is
indexing neither the statements or the predicates.

Lemma 2. The following propositions are true
1) ~x ∈ supp(C[[IF]]) ≡ abort 6∈ R′IF ({~x}) ∧

~x 6∈ Dom(R′IF)
c

2) y ∈ C[[IF]] �supp(C[[IF]]) ({~x}) ≡ ~x ∈ supp(C[[IF]]) ∧
y ∈ R′IF ({~x})

3) y ∈ R′IF ({~x}) ≡ (∃i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti
({~x})∨

(~x ∈ Dom(Bi)
c ∧ y = abort))

4) abort 6∈ R′IF ({~x}) ≡ (∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi) ∧
(~x ∈ Ti ⇒ ~x ∈ supp(C[[Si]])))

5) ~x ∈ Dom(R′IF) ≡ (∃i|0 ≤ i ≤ n :
~x ∈ Ti ∨ ~x ∈ Dom(Bi)

c)

Proof. It is proved first that
y ∈ C[[IF]]({~x}) ≡ y ∈ R′IF ({~x}) ∨

(~x ∈ Dom(R′IF)
c ∧ y = abort) (∗),

with which it is easily demonstrated 1. Then to proof 2) it
is done the following
y ∈ C[[IF]] �supp(C[[IF]]) ({~x})
⇐⇒
~x ∈ supp(C[[IF]]) ∧ y ∈ C[[IF]]({~x})
using (∗)⇐⇒
~x ∈ supp(C[[IF]]) ∧ (y ∈ R′IF ({~x}) ∨

(~x ∈ Dom(R′IF)
c ∧ y = abort))

⇐⇒
(~x ∈ supp(C[[IF]]) ∧ y ∈ R′IF ({~x}))∨

(~x ∈ supp(C[[IF]]) ∧ ~x ∈ Dom(R′IF)
c ∧ y = abort)

using 1)⇐⇒
(~x ∈ supp(C[[IF]])∧y ∈ R′IF ({~x}))∨(abort 6∈ R′IF ({~x})∧

~x 6∈ Dom(R′IF)
c ∧ ~x ∈ Dom(R′IF)

c ∧ y = abort)
⇐⇒
~x ∈ supp(C[[IF]]) ∧ y ∈ R′IF ({~x})
To proof 3) it is done the following
y ∈ R′IF ({~x})
⇐⇒
y ∈ (

n
∪
i=0
C[[Si]] ◦B′i)({~x})

⇐⇒
y ∈

n
∪
i=0

(C[[Si]] ◦B′i)({~x})
⇐⇒
(∃i|0 ≤ i ≤ n : (C[[Si]] ◦B′i)({~x}))
⇐⇒
(∃i|0 ≤ i ≤ n :

y ∈ (C[[Si]] ◦ (idTi ∪ (Dom(Bi)
c × {abort})))({~x}))

⇐⇒
(∃i|0 ≤ i ≤ n :
y ∈ (C[[Si]] ◦ idTi ∪ C[[Si]] ◦ (Dom(Bi)

c × {abort}))({~x}))
⇐⇒
(∃i|0 ≤ i ≤ n :
y ∈ C[[Si]]◦idTi

({~x})∪C[[Si]]◦(Dom(Bi)
c×{abort})({~x}))

⇐⇒
(∃i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti ({~x})∨

y ∈ (Dom(Bi)
c × {abort})({~x}))

⇐⇒
(∃i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti ({~x})∨

(~x ∈ Dom(Bi)
c ∧ y = abort))

To proof 4) it is done the following
abort 6∈ R′IF ({~x})
⇐⇒
¬(abort ∈ R′IF ({~x}))
⇐⇒
¬(∃i|0 ≤ i ≤ n : abort ∈ C[[Si]] �Ti

({~x})∨
~x ∈ Dom(Bi)

c)
⇐⇒
(∀i|0 ≤ i ≤ n : abort 6∈ C[[Si]] �Ti ({~x}) ∧ ~x ∈ Dom(Bi))
⇐⇒
(∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi)∧

¬(~x ∈ Ti ∧ abort ∈ C[[Si]]({~x})))
⇐⇒
(∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi)∧

(~x 6∈ Ti ∨ abort 6∈ C[[Si]]({~x})))
⇐⇒
(∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi)∧

(~x ∈ Ti ⇒ ~x ∈ supp(C[[Si]])))
To proof 5) it is done the following
~x ∈ Dom(R′IF)
⇐⇒
(∃y| : y ∈ R′IF ({~x}))
Item 3) of Lema 2⇐⇒
(∃y| : (∃i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti

({~x})∨
(~x ∈ Dom(Bi)

c ∧ y = abort)))
⇐⇒
(∃i|0 ≤ i ≤ n : (∃y| : y ∈ C[[Si]] �Ti

({~x})∨
(~x ∈ Dom(Bi)

c ∧ y = abort)))
⇐⇒
(∃i|0 ≤ i ≤ n : (∃y| : y ∈ C[[Si]] �Ti ({~x}))∨

(∃y|y = abort : ~x ∈ Dom(Bi)
c))

⇐⇒
(∃i|0 ≤ i ≤ n : ~x ∈ Dom(C[[Si]] �Ti

) ∨ ~x ∈ Dom(Bi)
c)

⇐⇒
(∃i|0 ≤ i ≤ n : ~x ∈ Ti ∨ ~x ∈ Dom(Bi)

c)

Theorem 4. If Prei is a weakest precondition of Si and Post,
then

domain(B0, . . . , Bn)∧

(B0 ∨ · · · ∨Bn) ∧ (B0 ⇒ Pre0) ∧ · · · ∧ (Bn ⇒ Pren)

is a weakest precondition of IF and Post

Proof. Suppose that Y are fixed and assuming the hypothesis
that ~x ∈ Esp, by Lema 1 the weakest precondition of IF and
Post is as follows:
~x ∈ supp(C[[IF]])∧

(∀y| : y ∈ C[[IF]] �supp(C[[IF]]) ({~x})⇒ Post(y, Y))
Item 2) of Lema 2⇐⇒
~x ∈ supp(C[[IF]]) ∧ (∀y| : y ∈ R′IF ({~x})⇒ Post(y, Y))
Item 3) of Lema 2⇐⇒
~x ∈ supp(C[[IF]])∧

(∀y| : (∃i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti
({~x})∨

(~x ∈ Dom(Bi)
c ∧ y = abort))⇒ Post(y, Y))

⇐⇒

~x ∈ supp(C[[IF]])∧
(∀y| : (∀i|0 ≤ i ≤ n : y ∈ C[[Si]] �Ti

({~x})∨
(~x ∈ Dom(Bi)

c ∧ y = abort)⇒ Post(y, Y)))
⇐⇒
~x ∈ supp(C[[IF]])∧
(∀i|0 ≤ i ≤ n : (∀y| : y ∈ C[[Si]] �Ti ({~x})∨

(~x ∈ Dom(Bi)
c ∧ y = abort)⇒ Post(y, Y)))

Item 1) and 4) of Lema 2⇐⇒
~x ∈ Dom(R′IF) ∧ (∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi)∧
(~x ∈ Ti ⇒ ~x ∈ supp(C[[Si]]))∧(∀y| : y ∈ C[[Si]] �Ti ({~x})∨

(
���

���
�: false

~x ∈ Dom(Bi)
c ∧ y = abort)⇒ Post(y, Y)))

⇐⇒
~x ∈ Dom(R′IF) ∧ (∀i|0 ≤ i ≤ n :
~x ∈ Dom(Bi) ∧ (~x ∈ Ti ⇒ ~x ∈ supp(C[[Si]]))∧

(∀y| : ~x ∈ Ti ∧ y ∈ C[[Si]]({~x})⇒ Post(y, Y)))
⇐⇒
~x ∈ Dom(R′IF) ∧ (∀i|0 ≤ i ≤ n :
~x ∈ Dom(Bi) ∧ (~x ∈ Ti ⇒ ~x ∈ supp(C[[Si]]))∧

(~x ∈ Ti ⇒ (∀y| : y ∈ C[[Si]]({~x})⇒ Post(y, Y))))
⇐⇒
~x ∈ Dom(R′IF) ∧ (∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi))∧
(∀i|0 ≤ i ≤ n : ~x ∈ Ti ⇒
~x ∈ supp(C[[Si]]) ∧ (∀y| : y ∈ C[[Si]]({~x})⇒ Post(y, Y)))
definition and Lema 1⇐⇒
~x ∈ Dom(R′IF) ∧ (∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi))∧
(B0 ⇒ Pre0) ∧ · · · ∧ (Bn ⇒ Pren)
Item 5) of Lema 2⇐⇒
(∃i|0 ≤ i ≤ n : ~x ∈ Ti ∨���

��
��:

false

~x ∈ Dom(Bi)
c) ∧ (B0 ⇒ Pre0)

∧ · · · ∧ (Bn ⇒ Pren) ∧ (∀i|0 ≤ i ≤ n : ~x ∈ Dom(Bi))
definition⇐⇒
(B0 ∨ · · · ∨Bn) ∧ (B0 ⇒ Pre0) ∧ · · · ∧ (Bn ⇒ Pren)∧
domain(B0, . . . , Bn)

Remark. If n in the definition of the relation R′IF , were
infinite, then the formula of second last step of the previous
proof, is still valid to define by comprehension the maximum
domain of the relation and RgoY .

Remark. According to [20], a propositional variable in the
language of [19], is a predicate without variables, however,
an algorithm does not have declared propositional variables,
but Booleans, since otherwise there would be ~x ∈ Esp, with
coordinates equal to TRUE or FALSE, and These are
objects of the metatheory. To simulate the use of propositional
variables with booleans, it is agreed that, if P is a boolean
variable then the predicate P = 1̂ can be abbreviated as
P . For example, predicates like P ∧ Exp are considered an
abbreviation of P = 1̂ ∧ Exp.

A. Iteration statement

It is not straightforward from the language and axioma-
tization of ZFS set theory, that any recursively defined set
exists, however any set that wants to be defined recursively,
can be defined with a formula in the ZFS language, that is
equivalent to the initial recursion. The construction that shows

the existence of this formula in the first-order language of ZFS,
which defines equivalently the set that was initially defined
recursively and allows demonstrating the existence of the set,
is known as “transfinite recurrence metatheorem”. Given a
definition of a set made recursively, this metatheorem shows
constructively, what is the formula within the language of ZFS,
which defines the same set.

A detailed demonstration of the transfinite recursion
metatheorem is found in [21], however it is more general than
what is needed for this section, since it is valid for recursion
on any ordinal. In this section we will use a version of this
theorem restricted to ω, whose statement is:

Theorem 5. If you have a predicate ϕ such that it satisfies
(∀k, F | : (∃!y| : ϕ(k, F, y))). Defining G(k, F) as the only
one y such that ϕ(k, F, y). Then you can write a formula ψ
where the following is demonstrable:

1) (∀k| : (∃!y| : ψ(k, y))), that is, ψ defines a function F
such that ψ(k, F (k))

2) (∀k|k ∈ ω| : F (k) = G(k, F �k−1))

An informal explanation of the previous theorem would
be, that the expression F (k) = G(k, F �k−1) is a recursive
definition of the set F (k) and the formula ψ(k, y) is a version
in the ZFS language, which defines by comprehension a set y
that has been equal to F (k).

Definition. An iteration statement Do is a phrase of the form
do B0 →
S0

od
where B0 is a predicate that only depends on ~x and S0 is an

statement. Let’s recursively define the following instructions

If := ifB0 → S0[]¬B0 → SKIPfi

Do0 := if¬B0 → SKIPfi

Dok+1 := If ;Dok

Let be the sets Ti := {~x ∈ Esp|~x ∈ supp(C[[Doi]])} and
B′i := idTi

∪ ({abort} × {abort}). In this way defining

R′Do :=

∞⋃
i=0

C[[Doi]] ◦B′i

the interpretation of statement Do is the relation

C[[Do]] := R′Do ∪ (Dom(R′Do)
c × {abort})

where Dom(R′Do)
c = Esp′ \Dom(R′Do)

Remark. Since the interpretation of a sequence of statements
is the composition of the interpretations, then the interpreta-
tion of instruction Do satisfies the following recurrence:

C[[Do0]] := C[[if¬B0 → SKIPfi]]

C[[Dok+1]] := C[[Dok]] ◦ C[[If]]

By the metatheorem of the transfinite recursion, there exists
predicate ψ(k,R), which is true only when R = C[[Dok]]. In

this way, within the language of the set theory of ZFS, pred-
icates of the form P (. . . , C[[Dok]], . . .) can be written as an
abbreviation of (∀R|ψ(k,R) : P (. . . , R, . . .)) and that is how
it will be understood in the following definitions and theorems.
Additionally, since the set {〈k,R〉 ∈ ω×2Esp′×Esp′ |ψ(k,R)}
exists by the comprehension axiom, then the function that
indexes k 7→ C[[Dok]] exists, therefore, keeping the theory in
first order, every time that an expression containing C[[Dok]]
is written, it will be understood that a set is being indexed,
and not an statement.

Remark. The states that do not result in an abort when
executing the instruction Dok of the previous definition are
those states of the machine that of running Do starting in
that state, cause that the cycle is executed at the most k times
before the guard is false.

Remark. GCL does not have an IF instruction with infinite
guards, but in the supposition that an instruction of this type
is allowed, a mnemonic for remember the previous definition,
it is to think that instruction D would be equivalent to an
instruction in the following way:
if x ∈ supp(C[[Do0]])→ Do0
[] x ∈ supp(C[[Do1]])→ Do1
...
[] x ∈ supp(C[[Don]])→ Don
...
fi

Lemma 3. Let A be an algorithm with space of states Esp,
~x ∈ Esp and k ≤ k′. If abort 6= y and y ∈ C[[Dok]]({~x}),
then y ∈ C[[Dok′]]({~x}) and if y ∈ C[[Dok′]]({~x}) and y /∈
C[[Dok]]({~x}), then abort ∈ C[[Dok]]({~x})

Corollary 1. Let A be an algorithm with space of states Esp
and ~x ∈ Esp. If k ≤ k′ and abort /∈ C[[Dok]]({~x}), then
C[[Dok]]({~x}) = C[[Dok′]]({~x})

Proof. Since abort /∈ C[[Dok]]({~x}), then all y ∈
C[[Dok]]({~x}) complies with the hypotheses of lemma 3
and therefore y ∈ C[[Dok′]]({~x}), so that C[[Dok]]({~x}) ⊆
C[[Dok′]]({~x}). On the other hand, there can not exist y such
that y ∈ C[[Dok′]]({~x}) and y /∈ C[[Dok]]({~x}), since by
lemma 3, abort ∈ C[[Dok]]({~x}) would have to be contra-
dicted by the hypothesis of corollary. Thus C[[Dok]]({~x}) =
C[[Dok′]]({~x})

Lemma 4. Let A be an algorithm with a space of states Esp
and a postcondition Post(~x, Y), then the maximum domain
of C[[Do]] and RgoY is

{~x ∈ Esp|(∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY)}

Proof. Suppose that Y are fixed values. Since C[[Dok]]({~x}) ⊆
RgoY is a weakest precondition of Dok and Post(~x, Y), then
by Theorem 4 and the remark immediately following this
Theorem, the maximum domain of C[[Do]] and RgoY is

{~x ∈ Esp|domain(~x ∈ supp(Do0), ~x ∈ supp(Do1), . . .)∧

(∃k|k ≥ 0 : ~x ∈ supp(Dok))∧

(∀k|k ≥ 0 : ~x ∈ supp(Dok)⇒ C[[Dok]]({~x}) ⊆ RgoY)}

but since ~x ∈ supp(Dok) is an expression defined for all ~x ∈
Esp, then domain(~x ∈ supp(Do0), ~x ∈ supp(Do1), . . .) ≡
true and therefore the maximum domain is simply

{~x ∈ Esp|(∃k|k ≥ 0 : ~x ∈ supp(Dok))∧

(∀k|k ≥ 0 : ~x ∈ supp(Dok)⇒ C[[Dok]]({~x}) ⊆ RgoY)}.

Let’s prove now that the formula that defines by
comprehension the previous set is equivalent to
(∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY)

Let’s show the equivalence in the ⇒ direction.

Taking witness k′ to (∃k|k ≥ 0 : ~x ∈ supp(Dok)) is
fulfilled that:

k′ ≥ 0∧ ~x ∈ supp(Dok′)∧ (∀k|k ≥ 0 : ~x ∈ supp(Dok)⇒
C[[Dok]]({~x}) ⊆ RgoY)

instantiate k:=k′

⇒
k′ ≥ 0 ∧ ~x ∈ supp(Dok′) ∧ (k′ ≥ 0 ∧ ~x ∈ supp(Dok′) ⇒
C[[Dok′]]({~x}) ⊆ RgoY)

Modus Ponens⇒
k′ ≥ 0 ∧ C[[Dok′]]({~x}) ⊆ RgoY
⇒
(∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY)

Let’s now show the equivalence in the ⇐ direction.

Let’s show that (∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY) ⇒
(∃k|k ≥ 0 : ~x ∈ supp(C[[Dok]]))

(∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY)
⇐⇒
(∃k|k ≥ 0 : (∀y| : y ∈ C[[Dok]]({~x})⇒ y ∈ RgoY))
⇐⇒
(∃k|k ≥ 0 :

(∀y| : y ∈ C[[Dok]]({~x})⇒ y ∈ Esp ∧ y ∈ RgoY))
⇐⇒
(∃k|k ≥ 0 : (∀y| : y ∈ C[[Dok]]({~x})⇒ y ∈ Esp)∧

(∀y| : y ∈ C[[Dok]]({~x})⇒ y ∈ RgoY)))
⇐⇒
(∃k|k ≥ 0 : ~x ∈ supp(C[[Dok]])∧

(∀y| : y ∈ C[[Dok]]({~x})⇒ y ∈ RgoY))
⇒
(∃k|k ≥ 0 : ~x ∈ supp(C[[Dok]]))

Assuming (∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY) let’s show
now that (∀k|k ≥ 0 : ~x ∈ supp(C[[Dok]]) ⇒ C[[Dok]]({~x}) ⊆
RgoY).

Since (∃k|k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY), then by the
principle of well ordering there is a first km that meets

C[[Dokm
]]({~x}) ⊆ RgoY , let’s prove by cases:

Case 1 k < km:

In this case C[[Dok]]({~x}) * RgoY , that is, there exists
y ∈ C[[Dok]]({~x}) such that y /∈ RgoY . If y 6= abort,
then by lemma 3 is fulfilled that y ∈ C[[Dokm]]({~x}) which
contradicts C[[Dokm

]] ⊆ RgoY since y /∈ RgoY , of this form
y = abort and therefore ~x /∈ supp(C[[Dok]]) and therefore it
is fulfilled that ~x ∈ supp(C[[Dok]])⇒ C[[Dok]]({~x}) ⊆ RgoY .

Case 2 k ≥ km:

Since C[[Dokm
]]({~x}) ⊆ RgoY is true and abort /∈

RgoY , then abort /∈ C[[Dokm
]]({~x}) and by corollary 3

C[[Dok]]({~x}) = C[[Dokm]]({~x}) ⊆ RgoY and therefore it is
true that ~x ∈ supp(C[[Dok]])⇒ C[[Dok]]({~x}) ⊆ RgoY .

Remark. Using the formula ψ that is extracted from the
transfinite recursion metatheorem, the weakest precondition of
the previous theorem

(∃k|k ∈ ω ∧ k ≥ 0 : C[[Dok]]({~x}) ⊆ RgoY),

can understanding as an abbreviation of

(∃k|k ∈ ω ∧ k ≥ 0 : (∀R|ψ(k,R) : R({~x}) ⊆ RgoY))

which is written in the first-order language of set theory,
showing that there is always a weakest precondition for Do
and Post written in the language of ZF.

Lemma 5. Let B,B0,W, P propositions, then.

(B ∧ ¬B0 ∧ P) ∨ (B ∧B0 ∧W)

⇐⇒

B ∧ (B0 ⇒W) ∧ (¬B0 ⇒ B ∧ ¬B0 ∧ P)

Lemma 6.

B ∧ (¬B0 ∨W) ∧ (B0 ∨B) ∧ (B0 ∨ P)

⇐⇒

(B ∧ ¬B0 ∧ P) ∨ (B ∧B0 ∧W)

Theorem 6. Let Post be a predicate, there is a predicate
H(k, Post) in the ZFS language, which satisfies the formulas

H(0, Post) := domain(B0) ∧ ¬B0 ∧ Post

H(k, Post) :=

H(0, Post) ∨ (domain(B0) ∧B0 ∧ Prek−1) para k ≥ 1,

where Prek−1 is a weakest precondition of S0 and H(k −
1, Post), in addition the maximum domain of C[[Do]] and
RgoY is

{~x ∈ Esp|(∃k|k ≥ 0 : Hk(Post))}

Proof. It suffices to show by induction that C[[Dok]]({~x}) ⊆
RgoY is equivalent to H(k, Post).

If k = 0 you have to

C[[Dok]]({~x}) ⊆ RgoY
⇐⇒
C[[if¬B0 → SKIPfi]]({~x}) ⊆ RgoY
weakest precondition of Do0 and Post and Theorem 4⇐⇒
domain(B0) ∧ ¬B0 ∧ (¬B0 ⇒ C[[SKIP]]({~x}) ⊆ RgoY)
Modus Pones and Theorem 2⇐⇒
domain(B0) ∧ ¬B0(~x) ∧ Post(~x, Y)
⇐⇒
H(0, Post)

If k ≥ 1 then:

C[[Dok−1]]({~x}) ⊆ RgoY is the weakest precondition of
Dok−1 and Post which by inductive hypothesis is equivalent
to H(k− 1, Post). By theorem 3 we have a weakest precon-
dition of Dok = If ;Dok−1 and Post is equal to a weakest
precondition of If and H(k − 1, Post), which is equal by
Theorem 4 to

domain(B0) ∧ (B0 ⇒ Prek−1)∧

(¬B0 ⇒ H(k − 1, Post)) (∗∗).

On the other hand, since C[[Dok]]({~x}) ⊆ RgoY is the
weakest precondition of Dok = If ;Dok−1 and Post, then
C[[Dok]]({~x}) ⊆ RgoY must be equivalent to (**).

Let’s show now for cases that if k ≥ 1 then the predicate
(**) is equivalent to

H(0, Post) ∨ (domain(B0) ∧B0 ∧ Prek−1)

Case 1 k = 1:

It is abbreviated domain(B0) by B, Prek−1 by W ,
Prek−2 by W ′ and Post by P

H(0, Post) ∨ (domain(B0) ∧B0 ∧ Prek−1)
notation⇐⇒
H(0, Post) ∨ (B ∧B0 ∧W)
⇐⇒
(B ∧ ¬B0 ∧ P) ∨ (B ∧B0 ∧W)
lemma 5⇐⇒
B ∧ (B0 ⇒W) ∧ (¬B0 ⇒ B ∧ ¬B0 ∧ P)
⇐⇒
B ∧ (B0 ⇒W) ∧ (¬B0 ⇒ H(0, Post))
notation⇐⇒
domain(B0)∧(B0 ⇒ Prek−1)∧(¬B0 ⇒ H(k−1, Post))

Case 2 k > 1:

domain(B0)∧(B0 ⇒ Prek−1)∧(¬B0 ⇒ H(k−1, Post))
notation⇐⇒
B ∧ (B0 ⇒W) ∧ (¬B0 ⇒ H(k − 1, Post))

⇐⇒
B ∧ (B0 ⇒W)∧ (¬B0 ⇒ (H(0, Post)∨ (B ∧B0 ∧W ′)))
⇐⇒
B ∧ (¬B0 ∨W) ∧ (B0 ∨H(0, Post) ∨ (B ∧B0 ∧W ′))
⇐⇒
B ∧ (¬B0 ∨W)∧ (B0 ∨ (B ∧¬B0 ∧P)∨ (B ∧B0 ∧W ′))
absorption⇐⇒
B ∧ (¬B0 ∨W) ∧ (B0 ∨ (B ∧ P))
⇐⇒
B ∧ (¬B0 ∨W) ∧ (B0 ∨B) ∧ (B0 ∨ P)
lemma 6⇐⇒
(B ∧ ¬B0 ∧ P) ∨ (B ∧B0 ∧W)
⇐⇒
H(0, Post) ∨ (B ∧B0 ∧W)
notation⇐⇒
H(0, Post) ∨ (domain(B0) ∧B0 ∧ Prek−1)

Let’s now define the non-deterministic iteration statement

Definition. The non-deterministic iterative instruction DO is
defined as a phrase of the form
do B0 → S0

[] B1 → S1
...
[] Bn → Sn

od
Where Bi are expressions of Boolean type and Si are

instructions. The interpretation of said instruction is the same
as the interpretation of instruction do BB → IF od, where
BB denotes B0 ∨ · · · ∨Bn

Remark. According to Theorem 6 the predicates H(k, Post)
with k ≥ 1 for this statement DO are equal to

H(0, Post) ∨ (domain(B0, . . . , Bn) ∧BB ∧ Prek−1),

, where Prek−1 is the weakest precondition of IF
and Hk−1(Post), which by theorem 4 is of the form
domain(B0, . . . , Bn) ∧ BB ∧ (B0 ⇒ pre0) ∧ · · · ∧ (Bn ⇒
pren), thus by the idempotency of the ∧, you have that
H(k, Post) with k ≥ 1 equals simply

H(0, Post) ∨ Prek−1

IV. CONCLUSION

The results of the previous theorems justify the following
recursive definition of the predicate transformer wp:
• wp(SKIP, Post) := Post
• wp(yi1 , . . . , yik := Exp1, . . . , Expk, Post) :=
domain(Exp1, . . . , Expk)∧
Post[yi1 , . . . , yik := Exp1, . . . , Expk]

• wp(S0;S1, Post) := wp(S0, wp(S1, Post))
• wp(IF, Post) := domain(B0, . . . , Bn)∧

(B0 ∨ · · · ∨Bn) ∧ (B0 ⇒ wp(S0, Post)) ∧ . . .
∧(Bn ⇒ wp(Sn, Post))

• wp(DO,Post) := (∃k|k ≥ 0 : H(k, Post))

where H(k, Post) is a first-order predicate that satisfies
the equations

H(0, Post) ≡ domain(BB) ∧ ¬BB ∧ Post

H(k, Post) ≡

H(0, Post) ∨ wp(IF,H(k − 1, Post)) for k ≥ 1

These rules to calculate wp are valid on any algorithm, with
any type of data from the universe of set theory. Since the
Hoare logic can be derived from the definition of wp, then the
Hoare logic is also true of any algorithm with any type of data
in the universe of set theory. In particular, the invariant rule
would be valid over algorithms with any type of data such as
ultrafilters, σ−algebras, etc.

REFERENCES

[1] E. W. Dijkstra. Guarded Commands, Nondeterminacy and Formal Deriva-
tion of Programs. Communications of the ACM, vol. 18, no. 8, pp. 453-
457, 1975.

[2] C. A. R. Hoare. An axiomatic basis for computer programming. Com-
munications of the ACM, vol. 12, no. 10, pp. 576580, 1969.

[3] D. Gries and F. B. Schneider. A logical approach to discrete math. New
York, New York: Springer, 1993.

[4] E. W. Dijkstra. A Discipline of Programming. Englewood Cliffs , New
Jersey: Prentice-Hall, 1976.

[5] D. Gries. The Science of Programming. New York, New York: Springer,
1981.

[6] M. Todorova, D. A. Orozova. The Predicate Transformer and Its Appli-
cation in Introduction to Programming Courses. Burgas Free University
Yearbook, vol. 32, no. 1, pp. 194-207, 2015.

[7] G. O’ Regan. Giants of Computing. London, Springer-Verlag, 2013.
[8] G. O’ Regan. Concise Guide to Formal Methods. Mallow, Co. Cork,

Ireland, Springer, 2017.
[9] G. O’ Regan. Mathematical Approaches to Software Quality. Mallow, Co.

Cork, Ireland, Springer, 2006.
[10] F. Flaviani. Cálculo de Precondiciones Más Débiles. Revista Venezolana

de Computación (ReVeCom), vol. 3, no. 2, pp. 68-80, 2016.
[11] F. Flaviani. Calculation of Invariants Assertions, Electronic Notes in

Theoretical Computer Science, vol. 339, pp. 63-83, July 2018.
[12] O. Mraihi, W. Ghardallou, A. Louhichi, L.L. Jilani, K. Bsaies, A. Mili,

Computing preconditions and postconditions of while loops, in Proc. Int.
Colloq. on Theoretical Aspects of Computing, Johannesburg, SA, 2011.

[13] L.L. Jilani, O. Mraihi, A. Louhichi, W. Ghardallou, K. Bsaies, A. Mili,
Invariant functions and invariant relations: An alternative to invariant
assertions, J. Symbolic Comput., vol. 48, pp. 1-36, 2013.

[14] A. Louhichi, W. Ghardallou, K. Bsaies, Verifying While Loops with
Invariant Relations, Int. J. Critical Computer-Based Syst., vol. 5, no. 1-2,
2013.

[15] W. Ghardallou, O. Mraihi, A. Louhichi, L.L. Jilani, K. Bsaies, A. Mili,
A versatile concept for the analysis of loops, J. Log. Algebr. Program.,
vol 81, no. 5, pp. 606-622, 2012.

[16] G. Winskel. The Formal Semantics of Programming Languages: An
Introduction. MIT Press, 1993.

[17] J. A. Bohórquez. An elementary and unified approach to program
correctness. Formal Asp. Comput, vol. 22, No 5, pp. 611-627, 2010.

[18] F. Flaviani. Propiedades Algebraicas y Decidibilidad del Transformador
de Predicados wp sobre la Teorı́a de Conjuntos. Revista Venezolana de
Computación (ReVeCom), vol. 4, No. 2, pp. 46-58, 2017.

[19] E. W. Dijkstra, Scholten, S. Carel, Predicate calculus and program
semantics, New York, Texts and Monographs in Computer Science,
Springer-Verlag, 1990.

[20] C. Rocha, The Formal System of Dijkstra and Scholten.Logic, Rewriting,
and Concurrency, vol. 9200, pp. 580-597, 2015.

[21] K. Kunen. Set Theory. College Publications, London, UK, 2013.

