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Abstract—In this paper, we present an efficient parallel algo-
rithm for computing the visibility region for a point in a plane
among a non-intersecting set of segments. The algorithm is based
on the cascading divide-and-conquer technique and uses merge
path to evenly distribute the workload between processors. We
implemented the algorithm on NVIDIA’s CUDA platform where
it performed with a speedup up to 76x with respect to the serial
CPU version.

I. INTRODUCTION

Visibility is one of the most important problems in com-
putational geometry, and it is a subproblem of many others,
such as finding the shortest path in a plane with obstacles
or the hidden line elimination problem. Diverse applications
like video games and robotic motion planning have to deal
with visibility. In this paper, we will focus on visibility from a
point into a set of segments. Our goal is to provide an efficient
parallel algorithm for modern parallel architectures such as the
ones presented in current GPUs.

CPUs were getting more powerful in according to Moore’s
Law until around 2003 where they started to decline on their
clock speed growth. This was due to elevated energy consump-
tion, heat dissipation issues, and in general, various physical
limits were being reached; exponential growth cannot go on
forever after all [1]. CPU manufacturers like Intel and AMD
started to shift towards hyperthreading and multicore CPUs to
keep the processing power raising. In 2007 NVIDIA released
their CUDA parallel computing platform which allowed us to
use manycore GPUs for general purpose processing. Today
many fields of computer science take advantage of these plat-
forms, however, efficient parallel computing is a requirement
not so easy to achieve.

The visibility problem on GPUs has already been seen by
Shoja and Ghodsi [2]. In their work, they give a parallel algo-
rithm to solve the point visibility problem on a simple polygon
in O(log n) time with O(n) processors. Our algorithm will
solve the problem for a less restricted set of obstacles, a set
of non-intersecting segments, taking the same computational
time, which is optimal for the visibility of line segments [3].

Our algorithm is based on the technique given by Atallah
et al. [4] for solving computational geometry problems on a
divide and conquer paradigm for the CREW-PRAM compu-
tational model. We also take several visibility concepts from

the work of Asano et al. [5] where they build a data structure
to find a visibility graph in O(n2).

The remainder of this paper is organized as follows. In the
next section, we give our definition of visibility region and
describe one way to find it. Section III gives an overview
of the cascading divide and conquer technique. In section IV
we propose the algorithm itself, we give a simple analysis
of its time complexity and an explanation of how can it
be parallelized using merge path. Section V gives some
details for its implementation on NVIDIA’s CUDA platform.
Section VI presents the experimental results of our implemen-
tation. Finally, conclusions and future works are discussed in
section VII.

II. VISIBILITY REGION

Let S be a set of n arbitrarily oriented segments on the plane
P allowed to intersect only at their endpoints, and let q be an
arbitrary query point. The visibility region VS(q) is the set of
all points on P that are visible from q [6]. A point p is visible
from q if the segment pq does not properly intersect any of
the segments in S. We say two segments properly intersect if
they share exactly one point and this point lies in the interior
of both segments.

Figure 1 shows a line segment arrangement S, a query point
q and the visibility region VS(q). The visibility region VS(q)
might be a star-shaped polygon with q belonging to its kernel
or it might be an unbounded region [6].

A. Finding the visibility region

To ease the calculations we are going to translate the
coordinate system so that q becomes the origin.

Before finding the visibility region we are going to re-
move from S segments whose endpoints are collinear with
q. Collinear segments cannot properly intersect any segment
that has q as one of its endpoints so they do not affect the
visibility region at all. We are also going to split segments
that properly intersect the positive x-axis. If a segment with
endpoints a and b crosses the positive x-axis on point c it is
going to be divided into the segments ac and cb. We will call
this new set of segments Sq and let nq = |Sq|.

To explain the previous modification to S we are going do a
simple transformation of the coordinate system. Let p be any
point on the plane except for the origin. Let us denote θ(p)



q

Fig. 1. Query point q in a line segment arrangement S with its visibility
region VS(q). The visibility region is a star-shaped polygon.

as the counterclockwise angle from the x-axis at which the
point p lies. Let d(p) be the distance between the point p and
the origin. We are going to map p to the point (θ(p), d(p)).
Figure 2 shows an example of this transform. Observe that
a collinear segment with q would be a vertical segment on
the transformed system and as we mentioned before those do
not affect visibility. Also, note that a segment that crosses the
positive x-axis would be split in the transformed system since
the polar angles of its points would abruptly change from 0
to 2π.

In [5], Asano et al. establish a binary relation ≺q on the set
Sq . For two segments s and s′ in Sq we say that s ≺q s

′ if
there exists a ray originated in q that intersects both segments
and hits s before s′. In other words, if s ≺q s

′ this means that
s′ is partially blocked by s and therefore is not completely
visible from q. The part blocked in s′ is the one that can
be intersected by rays starting at q that also intersect s. See
segments c and d in figure 2. This relation is a partial order
on the set Sq [7].

To continue we are going to divide the original plane into
angular sectors. Let pi (i = 1, . . . , N) be all the endpoints of
the segments in Sq , where N ≤ 2nq . Let ϕ be the linearly
ordered set of {θ(pi) / (i = 1, . . . , N)} ∪ {0, 2π}, let
nϕ = |ϕ| so that ϕ1 = 0 and ϕnϕ

= 2π. Let us also define −→ri
as the ray emanating from q in the direction of ϕi. We denote
as Λi (i = 1, . . . , nϕ − 1) the infinite angular sector defined
between the angles ϕi and ϕi+1.

Let Zi be the set of segments in Sq that properly intersect
the region Λi and let zi be any segment in Zi such that zi �q s
for all s in Zi. We define Ri as the region Λi clipped by
the segment zi, i.e., the triangular area formed by q and the
intersection points of zi with the rays −→ri and −−→ri+1. In case Zi

is empty let Ri = Λi.
On figure 2a you can see the plane divided into 7 regions.

Observe that R3 = Λ3 since Z3 is empty, and that Λ5 is
properly intersected by segments c and d with d ≺ c so the

region R5 is limited by d.
The visibility region will be the union of all Ri regions,

i.e.:

VS(q) =

nϕ−1⋃
i=1

Ri

III. CASCADING DIVIDE AND CONQUER

Cascading divide and conquer is a technique for designing
parallel divide and conquer algorithms by Atallah et al. [4].
This technique can be used to solve many geometric problems,
including point visibility. The algorithms run in O(log n)
time with O(n) processors in the CREW PRAM model. The
technique is based on Cole’s parallel merge sort algorithm [8].

In the cascading divide and conquer technique we model
the solution process as a binary tree. Each node represents a
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Fig. 2. (a) Query point q, a set of segments Sq and its visibility region.
Segment a was divided into a1 and a2. Dashed rays represent the angles
in ϕ. Regions R2, R3 and R5 have been labeled. Observe that R3 is the
infinite region Λ3 and that R5 is intersected by c and d but bounded by d
since d ≺ c. (b) Transform of elements in (a). The horizontal axis is the polar
angle θ(p) and the vertical axis is the distance d(p). Note that segments a1
and a2 are no longer next to each other.



Fig. 3. Cascading divide and conquer tree model for the point visibility
problem. Leaf nodes represent the visibility region of a single segment. Inner
nodes represent the intersection or merge of the visibility regions of their two
children. Root node is the final visibility region of all segments.

sorted list of some type. For the inner nodes, the list is the
sorted merge of their two children in a rather complex way.
The starting lists of the leaf nodes depend on the nature of the
problem. We find the solution of the problem by merging the
nodes in a bottom-up fashion. The root of the tree represents
the final solution.

For the visibility problem, the lists represent a visibility
region and store the endpoints of its obstacles, sorted by
their polar angle. We also store additional information to
identify the closest segment for two consecutive angles, i.e., zi.
Figure 3 shows what the tree model for the visibility problem
might look like.

IV. VISIBILITY MERGE ALGORITHM

In this section, we propose an algorithm based on the
cascading divide and conquer technique for the point visibility
problem. For simplicity we will assume that the segments have
already been translated so the query point is the origin, the
collinear segments with the query point have already been
removed, and the segments that cross the x-positive axis have
already been broken in two.

A. Visibility Merge Algorithm

Each node of the cascading divide and conquer tree model
represents a visibility region for some subset of Sq . To
represent this visibility region we will use a list of v-rays.
These v-rays represent the rays dividing the plane we saw in
section II. A v-ray is a 4-tuple (ϕ, ~v, r, l) where

• ϕ is the polar angle,
• ~v is a unit vector in the direction of ϕ,
• r and l are the distance from q to the endpoints of the

segments limiting the angular sector on the right and left
side respectively. They take the value of ∞ if there is no
segment.
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Fig. 4. Region defined by two consecutive v-rays. Dashed lines represent the
ri and li+1 values, they do not affect the region Ri at all.

A pair of consecutive v-rays (ϕi, ~vi, ri, li) and
(ϕi+1, ~vi+1, ri+1, li+1) with ϕi+1 > ϕi define the region
Ri as the triangular area formed by the points q, ~vi · li and
~vi+1 · ri+1. See figure 4. In case li and ri+1 are infinite, the
region Ri would be the infinite region between the angles ϕi

and ϕi+1.
The first step of the algorithm would be to find the visibility

region of every single segment. Algorithm 1 finds the v-rays
for the two endpoints of a segment. Notice that the endpoints
are sorted by their angle, and we handle the special case when
the b v-ray has an angle of 0. The v-rays for the angles ϕ = 0
and ϕ = 2π are implicit and have the values of (0, ~i, ∞, ∞)
and (2π, ~i, ∞, ∞) respectively.

Algorithm 1: Visibility region of a single segment.
Input: A segment s = (a, b).

Output: A list of two v-rays representing V{s}(q).

if |a× b| < 0 then swap(a, b)

ϕa ← θ(a)

if θ(b) = 0 then ϕb ← 2π else ϕb ← θ(b)

vra ← (ϕa, ~i cosϕa +~j sinϕa, ∞, d(a))

vrb ← (ϕb, ~i cosϕb +~j sinϕb, d(b), ∞)

return [vra, vrb]

Once we have the initial visibility regions we need to merge
them together, two at a time. The merge is identical to the
merge from mergesort with the exception that we need to
update the values r and l for each processed v-ray. The r
and l values can only decrease, and this happens if there is a
segment that limits the region on the right and left side of the
v-ray respectively. Let us say that we are merging two v-ray
lists A and B, and we are adding the v-ray ai to the merge
result, there is only one segment that might limit its right and
left regions, the one limiting the region Rj−1 in the visibility
region defined by list B, see figure 5. If the segment does
not exist, e.g. if the region between bj and bj−1 is infinite, ai
would keep its current r and l values. Since there is only one
segment we need to check, we can update the r and l values



Algorithm 2: Merge two lists of v-rays.
Input: L1 and L2 lists of v-rays.

Output: Merged list L.

n← |L1|+ |L2|
i← 1, i1 ← 1, i2 ← 1

while i ≤ n do
if i2 > |L2| then k = 1, t = 2

else if i1 > |L1| then k = 2, t = 1

else if L1[i1].ϕ ≤ L2[i2].ϕ then k = 1, t = 2

else k = 2, t = 1

L[i]← Lk[ik]

A if 1 < it ≤ |Lt| and Lt[it].r <∞ then
s← segment(Lt[it − 1].~v · Lt[it − 1].l,

Lt[it].~v · Lt[it].r)

p← intersection of s with the infinite ray

originated at the origin on the direction of

L[i].ϕ

L[i].l← min(L[i].l, d(p))

L[i].r ← min(L[i].r, d(p))

end
ik ← ik + 1

i← i+ 1

end

in constant time.
Algorithm 2 merges two lists of v-rays updating the r and l

values as described. Observe that, except for the if condition
in the line A, the algorithm is pretty much a regular merge.

Since the additional operations take constant time to com-
pute, the time complexity for the Visibility Merge algorithm is
the same as a regular merge, O(n). As in mergesort, in order
to merge all the elements we need to do O(log n) passes, each
pass taking a total of O(n) time. The final time complexity to
find the visibility region is O(n log n).

B. Parallel Merge

Given that this algorithm is so akin to mergesort we can
use parallel merge [8] to parallelize it. The way parallel
merge works is by splitting the lists to be merged into non-
overlapping sublists. Each processor then does a serial merge
of the two sublists assigned to it.

The problem with parallel merge is that the workload is
not evenly divided and processors have a different amount of
elements to merge. This is not efficient for GPU architecture
because threads are grouped in warps that must execute the
same instructions, and it could lead to idle threads while others
are working. This problem is solved by GPU merge path [9].

ai

bj−1bj

q

Fig. 5. Updating the r and l values of a v-ray. ai is the chosen v-ray to add
to the output list. bj and bj−1 are the next and previous v-rays on the other
list. The dotted line is the bounding segment of the region Rj−1 in the B
list. The dashed gray lines represent the bounding segments for the regions
Ri−1 and Ri in the A list. In this example the dotted segment is limiting
the Ri−1 region, but not the Ri region.

Merge path divides the lists into sublists so that the length of
the merge result is the same across all threads.

In the next section, we will give some details of our
parallel visibility merge implementation on NVIDIA’s CUDA
platform.

V. CUDA IMPLEMENTATION

The algorithm was implemented in C++ with NVIDIA’s
CUDA toolkit 9.11. We targeted a specific GPU, the Tesla
K80, with compute capability 3.7.

The CUDA programming model is described in [10]. Basi-
cally, we can invoke C functions on the GPU, named kernels,
that are called N times on N threads in parallel. The threads
are organized in blocks. One block is a group of threads that
have access to a shared memory. Multiple blocks reside in a
Stream Multiprocessor (SM), which has hardware limitations
in the amount of shared memory and number of threads that
can be executed concurrently.

For the compute capability 3.7 the limits are as follows [10]:
• 1024 threads per block,
• 16 blocks per SM,
• 112 KB shared memory per SM, and
• 48 KB shared memory per block.
Those limits are important because we need them in order

maximize the GPU occupancy. Let us say that we process
vt segments per thread, and we have nt threads per block.
That means we process nv = vt · nt segments per block.
The visibility region of one segment needs two v-rays to be
represented. In C code, the v-ray list is represented as 3 arrays
of numbers: one for the angles and two for the right and
left scalars (we do not need to store the unit vector since we
already store the angle), therefore the size, sz, of a v-ray is
12 bytes if we use single-precision floating points or 24 bytes
if we use double-precision. We also use 3 additional arrays as

1Source code can be found at:
https://github.com/kevinzg/visimerge.git.



TABLE I
GPU OCCUPANCY FOR SINGLE AND DOUBLE PRECISION FLOATING POINTS NUMBERS.

Single-precision Double-precision

nt vt nv
blocks
per SM

threads
per SM

memory
per block

memory
per SM

memory
per block

memory
per SM

32 1 32 16 512 1, 536 24, 576 3, 072 49, 152

64 1 64 16 1024 3, 072 49, 152 6, 144 98, 304

64 2 128 16 1024 6, 144 98, 304 12, 288 ∗196, 608

128 1 128 16 2048 6, 144 98, 304 12, 288 ∗196, 608

128 2 256 16 2048 12, 288 ∗196, 608 24, 576 ∗393, 216

256 1 256 8 2048 12, 288 ∗196, 608 24, 576 ∗393, 216

output buffers. Consequently, we require of 4 (nv× sz) bytes
to process nv segments in a block.

Table I shows the number of threads per SM and the shared
memory in bytes needed for various values of nt and vt.
Values marked with a ∗ exceed the hardware limits. Having
less than 128 threads per block means that the maximum
number of threads per SM will not be reached. The best values
for single precision floating point numbers is 128 threads per
block, and process 1 segment per thread, the reason for this is
that we get to use all the threads in a Stream Multiprocessor,
and do not exceed the shared memory limit. For double-
precision, there are not optimal values to maximize occupancy,
but we obtained the best results with 64 threads per block, and
1 segment per thread.

The first kernel call computes the initial v-rays for every
single segment, this task is trivial to parallelize since there is
no need for cooperation between threads.

Visibility regions are then computed at two levels. First at
a block level where we independently compute the visibility
region of the nv segments assigned to each block. We use
GPU merge path to partition the lists and assign them to the
nt threads. After log2 nv passes we get the visibility region
of the nv segments.

At the next level we compute the visibility region of all
segments. We merge the n/nv visibility regions cooperating
between blocks. Just as at the block level we use merge path
to partition the lists and assign the sublists to the blocks. The
blocks then again divide their sublists and assign them to their
threads. We do this for log2 (n/nv) passes and finally obtain
our result.

Next section shows the results of this implementation.

VI. EXPERIMENTAL RESULTS

For the experiments, we have implemented a serial version
of the algorithm in C++ in addition to the parallel CUDA ver-
sion. We have tested these two implementations with single-
precision and double-precision floating point numbers, and
with problem sizes up to 8 million segments.

The serial version of the algorithm ran on a 3.00GHz Intel
Xeon Platinum 8124M CPU with 16GiB RAM. The parallel
version ran on a single Tesla K80 GPU with 2496 CUDA
cores at 562MHz and 12 GiB VRAM.

TABLE II
TIME TO FIND THE VISIBILITY REGION OF n SEGMENTS.

Single-precision Double-precision
n CPU (ms) GPU (ms) CPU (ms) GPU (ms)

128K 93.559 4.284 109.109 6.199

256K 200.959 5.699 233.126 9.563

512K 423.761 8.555 494.696 16.927

1M 894.754 14.529 1041.260 31.362

2M 1877.940 27.180 2182.070 62.058

4M 3927.400 53.784 4599.920 126.723

8M 8215.790 108.532 9544.570 269.777

CUDA code was compiled with CUDA toolkit 9.1 and C++
compiler g++ 5.4.0. The compute capability version set for
compilation was 3.7 to target the Tesla K80 GPU. Additional
flags were -std=c++14, -O2 and -use_fast_math. The
serial version was compiled with just the -std=c++14 and
-O2 flags.

The CUDA kernel launch parameters for the single-
precision floating point tests were 128 threads per block and
as many blocks as it was needed to process the entire input.
The configuration for the double-precision tests was 64 threads
per block. Those values were chosen in order to maximize the
GPU occupancy.

The timing for the GPU does not include input/output
operations between the host and the device.

Table II shows the timing for the computation of the
visibility region of n segments in milliseconds for the CPU
and GPU, and for single and double precision floating point
numbers. Figure 6 shows the relative speedup of GPU vs CPU
for each of the problem size tested.

VII. CONCLUSION

We have shown an efficient parallel algorithm to find
visibility region of a point in a set of segments. The algo-
rithm is heavily inspired by mergesort and therefore we have
implemented it on NVIDIA’s CUDA platform using current
techniques for GPU mergesort, namely GPU Merge Path.
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Fig. 6. GPU vs CPU execution time speedup for different number of segments.

The implementation uses the GPU hardware efficiently in
both processing power and memory system, outperforming the
sequential version by a factor of up to 76x for single precision
floating point numbers and 36x for double precision.

Future research includes the efficient parallelization of other
visibility algorithms and their implementation on modern
parallel platforms such as a GPU. These algorithms include
those that solve problems like the finding the visibility graph
of a set of obstacles, the art gallery problem and their 3D
variations as well.
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