
An adaptive algorithm for rule learning:
case study and preliminary results

Renata Luiza Stange
Federal University of Technology,

Paraná, and University of São Paulo,
Guarapuava, Brazil

rlgomes@utfpr.edu.br
rlstange@usp.br

Paulo Roberto Massa Cereda
Computing Engineering Department

University of São Paulo,
São Paulo, Brazil

paulo.cereda@usp.br

João José Neto
Computing Engineering Department

University of São Paulo
São Paulo, Brazil
jjneto@usp.br

Abstract—Problem partitioning strategies such as sequential
covering are commonly used in rule learning algorithms, such
that the task of finding a complete rule base is reduced to a
sequence of subproblems. In this scenario, each solution to a
subproblem consists of adding a single rule to the entire set. In
this paper, we propose an alternative for rule learning based on
the use of an adaptive formalism whose behavior is determined
by a dynamic set of rules. Preliminary results yield a compact
yet significantly comprehensible rule set, as well as an efficient
model representation, from raw data using adaptive techniques.
To this end, we include further discussions regarding features
and enhancements to be contemplated in future works.

I. INTRODUCTION

Machine learning is concerned about the construction of
computer programs that automatically improve with experi-
ence [1]. Similarly, pattern recognition is interested in the auto-
matic discovery of regularities in data through computer algo-
rithms and the later application of such regularities as decision
making actions, such as different data categorizations [2]. One
of the well-known classification approaches in machine learn-
ing consists of extracting rules. These algorithms generally
produce IF-THEN classifiers, with a predictive performance
comparable to other traditional classification approaches, such
as decision trees and associative classification [3].

A inductor method for rule classification applies an iterative
process that covers a subset of training examples and then
remove all examples covered by the rule from the training
set. This process is repeated until there are no examples left
to cover. The final rule set is the collection of rules learned
at each iteration [4]. PRISM is one of the rule induction
techniques which was developed in [5] and slightly enhanced
by others, i.e. [6] and [7]. This algorithm employs separate-
and-conquer strategy in knowledge discovery in which PRISM
generates rules according to the class labels in the training
dataset.

Adaptive technology refers to the use of techniques and
devices which are expected to react to given inputs by au-
tonomously modifying their own behavior [8]. In a broad
sense, computers learn when there is a behavioral change in
order to better perform a specific task. Inspired by previous
works on these areas [9], [10], we demonstrate how learn-
ing systems can be dynamically adjusted by using adaptive

techniques. A direct advantage on incorporating adaptivity in
learning methods consists on covering a fundamental aspect
of learning itself: the dynamic adaptation of a rule set based
on interactions with the environment [11]. Additionally, use
of adaptive technology tends to be more expressive than
traditional methods [8].

This paper presents a hybrid approach to extracting rules
from data using adaptive concepts and supervised learning
techniques, such as obtaining IF-THEN rules from data. The
approach is based on sequential covering strategies which
involve problem decomposition: the task of finding a complete
rule base is reduced to a sequence of subproblems in which
the solution to each subproblem is a single rule. The global
solution gathers all partial solutions [4]. Additionally, the self-
modification feature of adaptive rule-driven devices allows
an iterative knowledge inspection, adding rules that improve
predictions on the complete rule base and also replacing one or
more rules in order to simplify the knowledge representation.
Observe that algorithms AQ [12] and CN2 [13] implement this
strategy.

Adaptive technology has been successfully used in pattern
recognition and machine learning. Pistori and Neto [14] pro-
pose a decision tree induction algorithm using adaptive tech-
niques, combining syntactic and statistical strategies. In [15],
Pistori presents an adaptive automaton as device for an auto-
matic recognition process of sign language. Adaptive automata
are also reported to be used in syntactic pattern recognition
of shapes [16] and in construction of hybrid maps for robot
navigation [17]. Other applications of adaptive techniques
include skin cancer recognition [18] and optical character
recognition [19].

II. THEORETICAL FRAMEWORK

This section provides the theoretical framework needed for
our proposal, covering the classification problem itself, rule-
based systems and rule-driven adaptive devices.

A. Rule-based systems

Decision rules are widely used to represent knowledge
obtained from data [20]. An IF-THEN rule has a simple
construction; for instance, if an certain object swims and has

scales, then such object is a fish. Fig. 1 shows the structure
of an rule. A rule-based system can be learned through a
strategy known as divide and conquer. Rule-based methods are
fundamental to expert systems in artificial intelligence, where
classes can be characterized by general relationships among
entities. Here we shall focus on a broad class of IF-THEN rules
for representing and learning such relationships. The general
form of a IF-THEN rule is P → Q or IF P THEN Q, where P
is a proposition that can contain a conjunction of n arbitrary
attribute-value pairs, P = condition1 ∧ . . .∧ conditionn. It is
important to observe that n is known as the rule length, and
Q is the value of the categorical target attribute.

Ri: IF P THEN Q

Rule

Fig. 1. Structure of an IF-THEN rule.

According to Mitchell [1], a possible approach to learn sets
of rules involves learning a decision tree through an induction
algorithm, such as ID3 [21], followed by a translation of such
tree to an equivalent set of rules. A decision tree can be
mapped to a set of rules, transforming each branch into a
rule, i.e, each path from the root to one leaf corresponds to a
rule. Fig. 2 presents a hypothetical example of decision tree.

x1 > 1?

a x1 < 10?

b c

no yes

yes no

Fig. 2. Example of a decision tree. Each path from the root to a leaf can be
written down as a conjunctive rule, composed of conditions defined by the
decision nodes on the path.

The decision tree shown in Fig. 2 can be written down as
the following decisions rule set:

• RULE 1: IF x1 > 1 THEN class = a;
• RULE 2: IF x1 > 1 ∧ x1 < 10 THEN class = b;
• RULE 3: IF x1 > 1 ∧ x1 >= 10 THEN class = c;
As reported by [22], this approach produces rules that are

unambiguous in the sense that the order they are executed
does not matter. However, the rules are more complex than
necessary. As we have just seen, we can obtain IF-THEN
rules by learning a decision tree and converting it to rules.
Another approach covers the direct rule learning. Decision
rules learning works similarly to a decision tree except that the
rule induction does a depth-first search and generates one rule

at a time, whilst the decision tree induction does a breadth-first
search and generates all paths simultaneously [23].

Sequential covering algorithms use a popular technique for
learning rule sets based on the strategy of learning one rule
at a time, removing the data it covers, then iterating this
process [22]. The following steps show a sketch of how a
general set covering algorithm works [20]:

1) Create a rule that covers some examples of a certain
class and does not cover any examples of other classes,

2) remove covered examples from training data, and
3) if there are some examples not covered by any rule, go

to step 1.
A prototypical sequential covering algorithm is described in

Algorithm 1.

Algorithm 1 Sequential Covering algorithm
1: procedure SEQUENTIAL COVERING (target attributes, attributes,

examples, threshold)
2: learned rules← {}
3: rule← LEARN-ONE-RULE()
4: while PERFORMANCE(rules, examples) ≤ threshold do
5: learnedRules← learned rules + rule
6: examples← examples− {examples correctly}
7: end while
8: return learned rules
9: end procedure

As reported by Mitchell [1], LEARN-ONE-RULE must return
a single rule that covers at least some of the examples.
PERFORMANCE is a user-provided subroutine to evaluate the
rule quality. This covering algorithm learns rules until it can
no longer learn a rule whose performance is above the give
threshold. Common evaluation functions include [1]:

• Relative frequency. Let n denote the number of examples
the rule matches and let nc denote the number of these
that it classifies correctly. The relative frequency estimate
of rule performance w is given by:

w =
nc
n

(1)

• m-estimate of accuracy. This accuracy estimate is biased
toward the default accuracy expected for the rule. Let p be
the prior probability that a randomly drawn example from
the entire dataset will have the classification assigned by
the rule. Let m be the weight, or equivalent number of
examples for weighting this prior p. The m-estimate of
rule accuracy is given by:

me =
nc +mp

n+m
(2)

• Entropy. Entropy measures the uniformity of target func-
tion values for this set of examples. Let S be the set of
examples that matches the rule preconditions. We take
the entropy negative so that better rules will have higher
scores.

S =

n∑
i=1

pi log2 pi (3)

where p is the probability that an event occurs and i is
the index of the event.

B. Rule-driven adaptive devices

This subsection formally introduces the mathematical for-
malism proposed by José Neto [11]. Observe that the theory
relies on an adaptive mechanism enclosing a non-adaptive
rule-driven device, such that the latter may be enhanced in
order to accommodate an adaptive behavior while preserving
its integrity and original properties.

Definition 1 (rule-driven device). A rule-driven device is
defined as ND = (C,NR, S, c0, A,NA), such that ND is a
rule-driven device, C is the set of all possible configurations,
c0 ∈ C is the initial configuration, S is the set of all possible
input stimuli, ε ∈ S, A ⊆ C is the subset of all accepting
configurations (respectively, F = C − A is the subset of
all rejecting configurations), NA is the set of all possible
output stimuli of ND as a side effect of rule applications,
ε ∈ NA, and NR is the set of rules defining ND as a relation
NR ⊆ C × S × C ×NA.

Definition 2 (rule). A rule r ∈ NR is defined as r =
(ci, s, cj , z), ci, cj ∈ C, s ∈ S and z ∈ NA, indicating that, as
response to a stimulus s, r changes the current configuration
ci to cj , processes s and generates z as output [11]. A rule
r = (ci, s, cj , z) is said to be compatible with the current
configuration c if and only if ci = c and s is either empty or
equals the current input stimulus; in this case, the application
of a rule r moves the device to a configuration cj , denoted by
ci ⇒s cj , and adds z to the output stream.

Definition 3 (acceptance of an input stimuli stream by a rule–
driven device). An input stimuli stream w = w1w2 . . . wn,
wk ∈ S − {ε}, k = 1, . . . , n, n ≥ 0, is accepted by a
device ND when c0 ⇒w1 c1 ⇒w2 . . . ⇒wn c (in short,
c0 ⇒w c), and c ∈ A. Respectively, w is rejected by ND when
c ∈ F . The language described by a rule-driven device ND is
represented by L(ND) = {w ∈ S∗ | c0 ⇒w c, c ∈ A}.

Definition 4 (adaptive rule-driven device). A rule-driven de-
vice AD = (ND0,AM), such that ND0 is a device and AM
is an adaptive mechanism, is said to be adaptive when, for all
operation steps k ≥ 0 (k is the value of an internal counter
T starting in zero and incremented by one each time a non-
null adaptive action is executed), AD follows the behavior of
an underlying device NDk until the start of an operation step
k + 1 triggered by a non-null adaptive action, modifying the
current rule set; in short, the execution of a non-null adaptive
action in an operation step k ≥ 0 makes the adaptive device
AD evolve from an underlying device NDk to NDk+1.

Definition 5 (operation of an adaptive device). An
adaptive device AD starts its operation in configura-
tion c0, with the initial format defined as AD0 =
(C0,AR0, S, c0, A,NA,BA,AA). In step k, an input stim-
ulus move AD to the next configuration and starts the
operation step k + 1 if and only if a non-adaptive

rule is executed; thus, being the device AD in step k,
with ADk = (Ck,ARk, S, ck, A,NA,BA,AA), the exe-
cution of a non-null adaptive action leads to ADk+1 =
(Ck+1,ARk+1, S, ck+1, A,NA,BA,AA), in which AD =
(ND0,AM) is an adaptive device with a starting underlying
device ND0 and an adaptive mechanism AM , NDk is an
underlying device of AD in an operation step k, NRk is the
set of non-adaptive rules of NDk, Ck is the set of all possible
configurations for ND in an operation step k, ck ∈ Ck is
the starting configuration in an operation step k, S is the set
of all possible input stimuli of AD , A ⊆ C is the subset of
accepting configurations (respectively, F = C−A is the subset
of rejecting configurations), BA and AA are sets of adaptive
actions (both containing the null action, ε ∈ BA ∩ AA), NA,
with ε ∈ NA, is the set of all output stimuli of AD as side
effect of rule applications, ARk is the set of adaptive rules
defined as a relation ARk ⊆ BA× C × S × C × NA× AA,
with AR0 defining the starting behavior of AD , AR is the
set of all possible adaptive rules for AD , NR is the set of all
possible underlying non-adaptive rules of AD , and AM is an
adaptive mechanism, AM ⊆ BA × NR × AA, to be applied
in an operation step k for each rule in NRk ⊆ NR.

Definition 6 (adaptive rules). Adaptive rules ar ∈ ARk

are defined as ar = (ba, ci, s, cj , z, aa) indicating that, as
response to an input stimulus s ∈ S, ar initially executes the
prior adaptive action ba ∈ BA; the execution of ba is canceled
if this action removes ar from ARk; otherwise, the underlying
non-adaptive rule nr = (ci, s, cj , z), nr ∈ NRk is applied and,
finally, the post adaptive action aa ∈ AA is applied [11].

Definition 7 (adaptive function). Adaptive actions may be
defined as abstractions named adaptive functions, similar to
function calls in programming languages [11]. The specifi-
cation of an adaptive function must include the following
elements: (a) a symbolic name, (b) formal parameters which
will refer to values supplied as arguments, (c) variables which
will hold values of applications of elementary adaptive actions
of inspection, (d) generators that refer to new value references
on each usage, and (e) the body of the function itself.

Definition 8 (elementary adaptive actions). Three types of
elementary actions are defined in order to perform tests on
the rule set or modify existing rules, namely:

1) inspection: the elementary action does not modify the
current rule set, but allows inspection on such set and
querying rules that match a certain pattern. It employs
the form ?〈pattern〉.

2) removal: the elementary action removes rules that match
a certain pattern from the current rule set. It employs the
form −〈pattern〉. If no rule matches the pattern, nothing
is done.

3) insertion: the elementary action adds a rule that match
a certain pattern to the rule set. It employs the form
+〈pattern〉. If the rule already exists in the rule set,
nothing is done.

Such elementary adaptive actions may be used in the body

of an adaptive function, including rule patterns that use formal
parameters, variables and generators available in the function
scope.

Fig. 3 presents the general concept of a set of rules enhanced
with adaptive actions being mapped to adaptive functions.
Note that B and A denote adaptive actions to be triggered
before and after the rule application, respectively.

III. AN ADAPTIVITY-BASED RULE LEARNING TECHNIQUE

Our approach for an adaptivity model is inspired on the
sequential covering description presented in Algorithm 1, with
subtle yet significant differences. According to Algorithm 1,
subroutine LEARN-ONE-RULE accepts a set of positive and
negative training examples as input and returns as output a
single rule that covers many of the positive examples and
few of the negative ones. We propose a modification to this
subroutine, such that it now returns different rules that cover
both positive and negative examples (we have also renamed
such subroutine to LEARN-RULES). We also treat the set
of examples differently, such that LEARN-RULES is invoked
on all available training examples. Additionally, it removes
positive or negative examples completely covered by the rule
it learns, according to some heuristic (i.e, whenever relative
frequency is equal to 1).

The sequential covering strategy uses a greedy approach
that takes the best local actions where it iteratively learns a
single rule, so that each learned rule is added to the rule base.
Generally, those rules being added in each iteration keep being
part of the rule base until the end of the learning process.
Thus, our proposal aims at modifying the sequential covering
strategy, such that the new technique is able to review already
learned rules through adaptive functions. In each step, it is
possible to decide among three options:

1) add a new rule that improves the prediction capability
of the rule base,

2) add the best rule that replaces one or more rules of
the rule base, as an attempt to increase the prediction
capability, or

3) the rule base it is not updated.
Algorithm 2 learns rules until all instances have been

covered by the rule set, or there are no more attributes to
be added.

Algorithm 2 Adaptive algorithm
1: procedure MAIN(attributes, D)
2: learned rules← {}
3: examples← D
4: attributes← INFORMATION-GAIN(attributes, D)
5: while PERFORMANCE(attributes, examples) ≤ threshold do
6: candidate rules← {}
7: learnedRules← LEARN-RULES()
8: examples← examples− {correctly classified examples}
9: end while

10: return learned rules
11: end procedure

The main loop searches for a default rule Ri in a set of rules
ARk. Default rule Ri is defined as Ri = P→ Q (w)[Ai], i =

1 . . . n, where [Ai], is an adaptive function and it is defined
in Algorithm 3.

Algorithm 3 Adaptive Function Ai

1: procedure Ai(rj , P,Q, fr)
2: −[P→ Q(w)[Ai]]:
3: +[rj(fr)[Ai]]:
4: end procedure

A possible approach to implement the LEARN-RULES sub-
routine - see Algorithm 4, consists of organizing the hypothesis
space search similarly to ID3 algorithm’s behavior [21], but
restricting the search to the most promising tree branch at each
step. Our approach uses a breadth-first search to construct the
next rule. Since the rule consequent must be the given class
(in this case, positive or negative), only the antecedent needs
to be constructed; this is achieved by starting with an empty
antecedent and iteratively adding an attribute-value pair for all
attribute values.

Algorithm 4 Procedure to learn rules
1: procedure LEARN-RULES(examples)
2: canditate rules← GET-CANDIDATES()
3: while i = 1 ≤| CANDIDATE RULES | do
4: rule← EVALUATE(rj)
5:
6: if rule 6= null then
7: In this case, the performance of the rule is compared:

(fr > w) =

{
0 then do not anything
1 then apply the rule

8: else
9: A new rule [Ri : P→ Q(fr)[An]] is added in ARk.

10: end if
11: end while
12: return learned rules
13: end procedure

An evaluation function is used to rate candidate rules,
called EVALUATE(rj). Each candidate rule rj is defined as
rj = P → Q (fr), where fr is the calculated frequency.
This breadth-first search continues until the resulting rule is
specific enough. The resulting classifier can contain three types
of rules: (a) rules with 100% accuracy (higher rank), (b) rules
with good accuracy (lower rank), i.e. < 100% and > 50%,
and (c) rules with poor accuracy (mean rank), i.e. <= 50%.
When searching for an applicable rule, the algorithm goes
over the rules in a topdown fashion starting with the primary
rules (higher rank) until reaching rules with a poor rank.
Whenever two or more rules have identical performance then
the algorithm favors rules with the least number of terms in
their P.

IV. AN ILLUSTRATIVE EXAMPLE

This section presents a didactic example in order to illustrate
the rule learning process through our adaptive algorithm.
We have selected a well-known dataset proposed by [21],

Rule 1

Rule 2

Rule 3

. . .

Rule n

B

B

B

B

A

A

A

A

Adaptive rule-driven device

Adaptive function f1

Adaptive function f2

Adaptive function f3

. . .

Adaptive function fm

Adaptive functions

Fig. 3. Set of rules enhanced with adaptive actions being mapped to adaptive functions.

named Weather dataset1, described in Table I. In general, the
approach assumes that:

1) the algorithm obtains a dataset containing training ex-
amples as input (e.g, the ones described in Table I),

2) the dataset consists of nominal attributes (e.g, the ones
described in Table II),

3) the attributes hold a predefined order (e.g, the ones
described in Table III), and

4) each instance is mapped to exactly one element from
the set of positive and negative class labels.

Given requirement #4, we begin by considering classifica-
tion problems using only two classes of interest.

TABLE I
WEATHER DATASET.

id Outlook Temperature Humidity Wind Play?

1 Sunny Hot High False No
2 Sunny Hot High True No
3 Overcast Hot High False Yes
4 Rain Mild High False Yes
5 Rain Cool Normal False Yes
6 Rain Cool Normal True No
7 Overcast Cool Normal True Yes
8 Sunny Mild High False No
9 Sunny Cool Normal False Yes
10 Rain Mild Normal False Yes
11 Sunny Mild Normal True Yes
12 Overcast Mild High True Yes
13 Overcast Hot Normal False Yes
14 Rain Mild High True No

In this case, the learner starts with a simple rule representa-
tion in which each P consists of a conjunction of constraints
on the instance attributes. In particular, let each condition P be
a vector of four constraints, referring to the values of attributes
outlook, temperature, humidity and wind. For each attribute,
the rule will either:

1http://storm.cis.fordham.edu/ gweiss/data-mining/weka-data/weather.arff

TABLE II
DATASET ATTRIBUTES AND THEIR CORRESPONDING VALUES.

Outlook Temperature Humidity Wind Play?

Sunny Hot High False No
Overcast Mild Normal True Yes
Rain Cool

TABLE III
ORDERED ATTRIBUTES USING INFORMATION GAIN.

Ranking Attribute Gain

1 Outlook 0.2467
2 Humidity 0.1518
3 Windy 0.0481
4 Temperature 0.0292

1) indicate with the wildcard symbol ? that any value is
acceptable for this attribute, or

2) specify a single required value (e.g., sunny) for the
attribute.

A. First step through the loop

The frequency is calculated for each attribute value (out-
look). Then the relative frequency is computed for all candi-
date rules in the form P→ Q (w).

TABLE IV
FREQUENCY FOR ATTRIBUTE outlook.

Sunny Overcast Rain Play?

2 4 3 Yes
3 0 2 No

5 4 5 Total

According to Table IV, we can get a frequency table for
outlook values. Based on the frequency tables, the relative
frequency for each candidate rule can be calculated, as seen

in Table V. Each candidate rule is evaluated according to the
current rule set in ARk. The achievement of this step is shown
in Table VI.

TABLE V
CANDIDATE RULES FOR ATTRIBUTE outlook.

Input Relative frequency

r1 : (Sunny, ?, ?, ?)→ Yes fr = 0.4
r2 : (Sunny, ?, ?, ?)→ No fr = 0.6
r3 : (Rain, ?, ?, ?)→ Yes fr = 0.6
r4 : (Rain, ?, ?, ?)→ No fr = 0.4
r5 : (Overcast, ?, ?, ?)→ Yes fr = 1.0

TABLE VI
CONSTRUCTING OUR RULE SET, STEP 1.

rj EVALUATE(rj) Action Update ARk

r1 rule← null add R1 ← r1 AR0 → AR1

r2 rule← null add R2 ← r2 AR1 → AR2

r3 rule← null add R3 ← r3 AR2 → AR3

r4 rule← null add R4 ← r4 AR3 → AR4

r5 rule← null add R5 ← r5 AR4 → AR5

This completes the first pass through the inner loop in
the sequential covering algorithm. Since there is still one
uncovered remaining instance, another step is performed in
order to generate additional rules. After the first step the rule
set AR5 is as seen in Table VII.

TABLE VII
RULE SET AR5 AFTER STEP 1.

ID Rule w Adaptive Function

R1 (Sunny, ?, ?, ?)→ Yes (0.4) [A1]
R2 (Sunny, ?, ?, ?)→ No (0.6) [A2]
R3 (Rain, ?, ?, ?)→ Yes (0.6) [A3]
R4 (Rain, ?, ?, ?)→ No (0.4) [A4]
R5 (Overcast, ?, ?, ?)→ Yes (1.0) null

When the five candidate rules are chosen, rule R5 has the
maximum relative frequency, i.e. w = 1. Since the maximum
value is reached, the learning process for this rule is complete.
So there is no need for adaptive functions to improve the rule
performance. Also, all four instances with the attribute-value
pair outlook = overcast are deleted from the training set.

B. Second step through the loop

The frequency is calculated for each attribute value (humid-
ity). Then the relative frequency is computed for all candidate
rules.

TABLE VIII
FREQUENCY FOR ATTRIBUTES OUTLOOK/HUMIDITY.

Sunny/High Sunny/Normal Rain/High Rain/Normal Play?

0 2 1 2 Yes
3 0 1 1 No
3 2 2 3 Total

TABLE IX
CANDIDATE RULES FOR ATTRIBUTE HUMIDITY.

Input Relative frequency

r1 : (Sunny, ?, High, ?)→ No fr = 1.0
r2 : (Sunny, ?, Normal, ?)→ Yes fr = 1.0
r3 : (Rain, ?, High, ?)→ Yes fr = 0.7
r4 : (Rain, ?, High, ?)→ No fr = 0.3
r5 : (Rain, ?, Normal, ?)→ No fr = 0.5
r6 : (Rain, ?, Normal, ?)→ Yes fr = 0.5

According to Table VIII, we can obtain a frequency table
for humidity values. Based on the frequency tables, the relative
frequency for each candidate rule can be calculated, as seen
in Table IX. Each candidate rule is evaluated according to the
current rule set ARk. The brief of such step is presented in
Table X.

TABLE X
CONSTRUCTING OUR RULE SET, STEP 2.

rj EVALUATE(rj) Action Update ARk

r1 rule← R2 apply [A2] and R2 ← r1 AR5 → AR6

r2 rule← R1 apply [A1] and R1 ← r2 AR6 → AR7

r3 rule← R3 apply [A3] and R3 ← r3 AR7 → AR8

r4 rule← R4 fr ≤ w, do not anything −
r5 rule← R4 apply R4 ← r5 AR8 → AR9

r6 rule← null add R6 ← r5 AR9 → AR10

After the second step, the rule set AR10 is as described in
Table XI.

TABLE XI
RULE SET AR10 AFTER STEP 2.

ID Rule w Adaptive Function

R1 (Sunny, ?, Normal, ?)→ Yes (1, 0) null
R2 (Sunny, ?, High, ?)→ No (1, 0) null
R3 (Rain, ?, High, ?)→ Yes (0, 7) [A3]
R4 (Rain, ?, Normal, ?)→ No (0, 5) [A4]
R5 (Overcast, ?, ?, ?)→ Yes (1.0) null
R6 (Rain, ?, Normal, ?)→ yes (0, 5) [A6]

Similarly to the previous step, rules R1 and R2 have the
maximum relative frequency, so the learning process for these
rules is complete. All instances not covered by them are
deleted from the training set. Observe that R4 and R6 are
currently conflicting rules.

C. Third step through the loop.

The frequency is calculated for each attribute value (wind).
Then the relative frequency is computed for all candidate rules.

In accordance with Table XII, we can obtain a frequency
table for humidity values. Based on the frequency tables, the
relative frequency for each candidate rule can be calculated,
as seen in Table XIII. Each candidate rule is evaluated ac-
cording to the current rule set ARk. This step is displayed in
Table XIV.

The resulting rule set AR13 is presented in Table XV. As
all rules reached w = 1.0, that means that all samples from

TABLE XII
FREQUENCY FOR ATTRIBUTES OUTLOOK/HUMIDITY/WIND.

Rain/High Rain/High Rain/Normal Rain/Normal Play?
/False /True /False /True

0 1 1 0 Yes
1 0 0 1 No
1 1 1 1 Total

TABLE XIII
CANDIDATE RULES FOR ATTRIBUTE WIND.

Input Relative frequency

r1 : (Rain, ?, High, False)→ Yes fr = 1.0
r2 : (Rain, ?, High, True)→ No fr = 1.0
r3 : (Rain, ?, Normal, False)→ Yes fr = 1.0
r4 : (Rain, ?, Normal, T rue)→ No fr = 1.0

the training set (Table I) are covered, and thus there is no need
for another iteration.

The algorithm mainly focus on maximizing the rule accu-
racy, even when the discovered rules covers one sample from
the training data. Further studies are needed regarding potential
data overfit on large rule sets.

V. FINAL REMARKS

This paper presented an approach towards the definition
of an adaptive learning algorithm for rule inference. Our
approach is based on modifications of conventional sequential
covering strategies in order to adapt acquired knowledge
during the learning process. Studies indicate that adaptive
techniques confer a more adequate rule set fitting. Additional
advantages are noteworthy:

• simplicity of rule generation, in which only a single
performance measure is computed in order to decide the
rule significance,

TABLE XIV
CONSTRUCTING OUR RULE SET, STEP 3.

rj EVALUATE(rj) Action Update ARk

r1 rule← R3 apply [A3] and R3 ← r1 AR10 → AR11

r2 rule← null add R7 ← r2 AR11 → AR12

r3 rule← R6 apply [A6] and R6 ← r3 AR12 → AR13

r4 rule← R4 apply [A4] and R4 ← r4 AR13 → AR14

TABLE XV
SET RULES AR13

ID Rule w Adaptive Function

R1 (Sunny, ?, Normal, ?)→ Y es (1, 0) null
R2 (Sunny, ?, High, ?)→ No (1, 0) null
R3 (Rain, ?, High, False)→ Y es (1.0) null
R4 (Rain, ?, High, True)→ No (1.0) null
R5 (Overcast, ?, ?, ?)→ Y es (1.0) null
R6 (Rain, ?, Normal, False)→ Y es (1.0) null
R7 (Rain, ?, Normal, T rue)→ No (1.0) null

• comprehensible rule set for decision making, specially
for domains that require immediate interpretation, such
as medical applications, and

• compact and efficient model representation, such that the
rule set growth or reduction is dictated by calls to adaptive
functions during construction time.

As a means to improve our proposal, as well as the
current adaptive algorithm, we compiled a list of features and
enhancements, as follows, to be contemplated in a near future:

• Search space reduction for candidate rules. When consid-
ering large dimensional datasets, the numbers of candi-
date rules might significantly increase, and thus impose
operational limits to certain applications. A potentially
heuristic-based mechanism to reduce the search space
might allow better handling of huge datasets.

• Numerical attribute handling and support for noisy
datasets. A dataset is said to be noisy when it contains
incomplete attributes and missing values. An approach
to handle and potentially predict completeness of partial
information might provide better model convergence.
Additionally, the algorithm must offer a discretization
strategy for covering attributes in a continuous domain.

• Resolution policy for conflicting rules. The algorithm
must provide a policy for resolving conflicts in the rule
set being constructed, e.g, by adopting class labels with
the largest linked frequency as decision criterion.

• Tiebreaker mechanism. The algorithm must provide a
mechanism to decide whether a rule should be replaced
by another, when both have the same frequencies.

• Pruning support. As a means to avoid a rapid growth
of nonessential candidate rules (leading to an inevitable
combinatorial explosion), the algorithm must support
pruning methods in order to keep the rule set cardinality
at an acceptable number.

We are working on comparative experiments with other
sequential coverage algorithms, in order to verify the model
accuracy. Prospectively, we aim at studying the algorithm
adaptability when new examples are available, as well as
certain cases in which missing values must be considered.
However, preliminary results indicate a significant improve-
ment in accuracy, as well as a more comprehensible rule set.
Adaptivity poses as an interesting phenomenon to be explored
in rule learning, as the rule set construction process potentially
accommodates new contexts over time.

REFERENCES

[1] T. Mitchell, Machine learning, 1st ed. McGraw-Hill Science, 1997.
[2] C. M. Bishop, Pattern recognition and machine learning, 1st ed.

Springer, 2006.
[3] F. Thabtah, I. Qabajeh, and F. Chiclana, “Constrained dynamic rule

induction learning,” Expert Systems with Applications, vol. 63, pp. 74–
85, nov 2016.

[4] J. Fürnkranz, “Separate-and-conquer rule learning,” Artificial Intelli-
gence Review, vol. 13, no. 1, pp. 3–54, 1999.

[5] J. Cendrowska, “PRISM: An algorithm for inducing modular rules,”
International Journal of Man-Machine Studies, vol. 27, no. 4, pp. 349–
370, oct 1987.

[6] H. A. Elgibreen and M. S. Aksoy, “Rules-TL: a simple and improved
rules algorithm for incomplete and large data,” Journal of Theoretical
and Applied Information Technology, vol. 47, no. 1, pp. 28–40, Jan.
2013.

[7] F. Stahl and M. Bramer, “Random prism: An alternative to random
forests,” in Research and Development in Intelligent Systems XXVIII.
Springer London, 2011, pp. 5–18.

[8] J. J. Neto, “Solving complex problems with adaptive automata,” in Im-
plementation and Application of Automata 5th International Conference,
ser. Lecture Notes in Computer Science, S. Yu and A. Paun, Eds., vol.
2088, 2000.

[9] R. L. Stange and J. J. Neto, “Applying adaptive technology in machine
learning,” IEEE Latin America, vol. 12, no. 7, pp. 1298–1306, 2014.

[10] ——, “Learning decision rules using adaptive technologies: a hybrid
approach based on sequential covering,” Procedia Computer Science,
vol. 109, pp. 1188–1193, 2017.

[11] J. J. Neto, “Adaptive rule-driven devices: General formulation and case
study,” in Implementation and Application of Automata 6th International
Conference, ser. Lecture Notes in Computer Science, B. Watson and
D. Wood, Eds., vol. 2494, 2001, pp. 234–250.

[12] R. S. Michalski, “On the quasi-minimal solution of the general cov-
ering problem,” in Proceedings of the 5th International Symposium on
Information Processing, Bled, Yugoslavia, 1969, pp. 125—-128.

[13] P. Clark and T. Niblett, “The cn2 induction algorithm,” Machine Learn-
ing, vol. 3, no. 4, pp. 261–283, 1989.

[14] H. Pistori and J. J. Neto, “Adaptree: Proposta de um algoritmo para
indução de Árvores de decisão baseado em técnicas adaptativas,” in
Anais da Conferência Latino Americana de Informática – CLEI 2002,
2002.

[15] ——, “An experiment on handshape sign recognition using adaptive
technology: Preliminary results,” in XVII Brazilian Symposium on Arti-
ficial Intelligence – SBIA 04, 2004.

[16] E. R. Costa, A. R. Hirakawa, and J. J. Neto, “An adaptive alternative
for syntactic pattern recognition,” in Proceeding of 3rd International
Symposium on Robotics and Automation, ISRA 2002, 2002, pp. 409–
413.

[17] A. R. Hirakawa, A. M. Saraiva, and C. E. Cugnasca, “Autômatos
adaptativos aplicados em automação e robótica,” IEEE Latin America,
vol. 5, no. 7, pp. 539–543, 2007.

[18] H. S. Ganzeli, J. G. Bottesini, L. O. Paz, and M. F. S. Ribeiro,
“Skan: Skin scanner, software para o reconhecimento de câncer de
pele utilizando técnicas adaptativas,” in Quarto Workshop de Tecnologia
Adaptativa – WTA 2010, 2010, pp. 22–28.

[19] B. T. M. Doy, D. F. Souza, and R. G. Jankauskas, “Aocr: adaptive optical
character recognition,” in Quarto Workshop de Tecnologia Adaptativa –
WTA 2010, 2010, pp. 50–54.

[20] P. Berka and J. Rauch, “Machine learning and association rules,” in
Proceedings of the 19th International Conference on Computational
Statistics, 2010.

[21] J. R. Quinlan, “Induction of decision trees,” Machine Learning, vol. 1,
no. 1, pp. 81–106, mar 1986.

[22] I. H. Witten, E. Frank, and M. A. Hall, Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann, 2011.

[23] E. Alpaydin, Introduction to Machine Learning, ser. Adaptive Compu-
tation and Machine Learning. MIT Press, 2014.

