
1

Monitoring and analyzing service execution from
business processes: an AXIS extension

Andrea Delgado

Instituto de Computación, Facultad de Ingeniería
Universidad de la República

adelgado@fing.edu.uy

Abstract—Implementing Business Processes (BPs) with services
(and microservices) is nowadays the main way to support the
execution of automated activities in processes, both within the
organization itself, and externally interacting with customers,
suppliers and other participants. In order to do so, it is important
not only to model and implement services but also to define
Quality of Service (QoS) characteristics for services, to monitor
and evaluate their execution. Although there are many proposals
for services monitoring and evaluation from the services point
of view, there are not many from the BPs perspective. In this
paper we present a reference architecture for service monitoring
tools, along with a prototype implementation as an extension of
the web services execution environment AXIS2. We show that
existing service measures and new ones can be defined into the
monitor to collect execution data and relate this data with BPs
execution, to measure BPs and service execution in an integrated
manner.

Keywords: Business processes, measuring business processes
and services, Quality of Service (QoS), service monitoring.

I. INTRODUCTION

Services (and micro-services) are designed as independent
software pieces, at different granularity levels (supporting
cohesive components with several functionalities or specific
separated more fine grained functionalities) to provide support
to highly decoupled distributed systems [1]–[4]. Qualities
such as lose coupling, high cohesion, high interoperability,
explicitly defined interfaces for interactions between systems,
among others, are all desired characteristics of services.

Business Processes (BPs) can be modeled and executed
[5]–[8] within BP Management Systems (BPMS), which are
platforms providing support for systems that are based on
BPs. Although there are many approaches and tools for
analyzing and evaluating BPs execution [9], [10], and for
defining, measuring and monitoring Quality of Services (QoS)
characteristics [11]–[18], relating BPs execution with services
implementing them, has not been much analyzed yet.

In previous work we have defined a BPs Execution Mea-
surement Model (BPEMM) [22] relating BPs execution with
services execution, and defining several measures grouped in
defined categories. In [23] we presented an initial approach and
discussion of elements, but with focus on modeling services
and QoS characteristics, for services specified with the Service
Oriented Modeling Architecture Language (SoaML) [24] and
the UML Profile for Modeling QoS and Fault Tolerance

Characteristics and Mechanisms (QFTP) [25]. In [26] we
defined a services lifecycle integrated with the BPs lifecycle
as defined in [6].

In this paper we present an approach for monitoring, mea-
suring and analyzing services execution within BPs execution.
We defined a reference architecture for monitor tools based on
the analysis of key functionalities that this kind of software
must provide, and a prototype implementation as an extension
of the web services execution environment AXIS21 Complete
code is available here2. We integrate services measures within
BPs measures, based on the BPEMM model we have defined,
to be able to analyze their execution as a whole in order to
find improvement opportunities.

The main contributions of the paper are: (i) a service
monitoring reference architecture for defining monitor tools,
in order to define and collect service execution measures, (ii)
the integration of those service execution measures into a
whole measurement environment which includes BPs execu-
tion measures, and the relationships between BPs and services
execution measures, and (iii) a prototype implementation of
such reference architecture extending the well-known open
source web services environment AXIS2. In order to assess
the feasibility of our definitions, we implemented some of the
BPEMM service execution measures, but new measures can
be defined and integrated.

The rest of the article is organized as follows: In Section II
we present background and related work regarding services
monitoring. In Section III we describe our proposal including
an analysis of existing monitoring tools and the reference
architecture for monitors we have defined. In Section IV we
present an example of application regarding the monitoring
of service execution from a collaborative BP, as a proof of
concept. Finally in Section V we present some conclusions
and future work.

II. BACKGROUND AND RELATED WORK

Monitoring software (or services) execution generally im-
plies to collect and analyze execution data on real time, while
evaluating software (or services) execution can be viewed as
a postmortem analysis of data from a selected period of time.
In [18] a review providing an overview and discussion of

1Apache AXIS2 Java http://axis.apache.org/axis2/java/core/
2Complete code. https://gitlab.fing.edu.uy/open-coal/AXISmonitor978-1-5386-3057-0/17/$31.00 c©2018 IEEE

TABLE I
MAIN CHARACTERISTICS FOR EVALUATION OF MONITORS FROM [19]

Characteristic Sub-characteristic Property Description

Functionality

Suitability Quality attributes Quality attributes the monitor is able to monitor
Monitor Different configurations the monitor presents
User Different management operations for the monitor
Web Services Capacities of the monitor to define the WS to be monitored and the conditions

Accuracy Verifiableness Defines if the monitor provides a way to track state
Effectiveness Capacity of the monitor to determine the quantity of correct results or effects

Security Application Mechanisms to prevent unauthorized access to the system functionalities
Data Mechanisms to ensure data privacy and to prevent them from being corrupted
Monitor Mechanisms provided by the monitor to protect messages i.e. SOAP messages

Usability Operability System tailorability Mechanisms to configure monitor tasks in a certain way
Appearance tailorability Mechanisms to configure the external appearance of the monitor
Monitor operability Mechanisms provided by the monitor to manage its capacities

Efficiency Resource utilization Deployment Defines the monitor needed resources for deployment
Runtime Defines the monitor needed resources for runtime

existing proposals for monitors is presented. Existing academic
and industrial proposals include: SALMon [18], Dynamo [27],
Cremona [28], WebInject [29], Astro [30] and CLAMS [31].

Key requirements for monitor tools are described in [18]
and [19] based on an analysis of the services lifecycle to
be supported, and the ISO/IEC 9126-1 quality model. These
characteristics and a way to evaluate how each tool support
them is a key element when comparing and selecting service
monitors. Table I presents the main characteristics and sub-
characteristics identified for monitors from [19]. Following
the concepts from an evaluation methodology we have defined
and applied for evaluating Business Process Management Sys-
tems (BPMS) [20] [21], we evaluated a selection of monitors
based on [18]. However, in most cases, it was not possible to
obtain the software to install and execute the monitor in our
environment.

Monitors can be of different types: passive when interac-
tions between participants are only looked at, or active when
QoS characteristics are also evaluated triggering some action.

Several configurations can be set for the execution of
monitors with respect to the execution system that is being
monitored, as discussed in [19]. These configurations have dif-
ferent impact on the whole system execution and the measures
registered by the monitor, for example in performance, if the
monitor executes in the same or different environment than
the services. Figure1 puts these configurations in our context,
where the BP plays the consumer role (i.e. service tasks in
the BP invoking services execution) and the provider role
corresponds to the Web services implementing service tasks,
which are invoked from the BP.

As shown in Figure 1, these configurations correspond to:
1) Consumer, provider and monitor run all in the same

system A
2) Consumer and monitor run in the same system A, the

provider runs in a different system B
3) Consumer runs in a system A and the provider and

monitor run in a different system B
4) Consumer, provider and monitor run in three different

systems A, B and C
In [23] we discussed possible integration of monitors for

services execution within BPs execution to support service

Fig. 1. Monitor configurations adapted from [19]

tasks, and its relation with the configurations presented above.
Regarding BPs and services execution measures in [22] we
present and analysis of existing models for QoS characteristics,
and define the Business Process Excecution Measurement
Model (BPEMM) in which we consolidated key measures for
both BPs and services. Figure 2 presents the global picture for
the time execution measures definitions we use as basis.

As it can be seen in Figure 2, we proposed to measure
both BPs execution based on activities in the control flow
of the process, and services execution for those activities
that are automated based on service invocations. This will
allow the identification of improvement opportunities also
at the technical leval (i.e. services implementation and/or
execution). Although in the definition we present the process
engine and the service execution are in the same environment
(i.e. server), they can be executed in different environments.
Different monitor configurations can be applied depending on
the distribution of the system. A complete discussion of the
BPs and services measures integration, and different monitor
configurations can be seen in [22] and [23].

As an example of the measures we have defined in BPEMM,
we present in Figure 3 the definition of the service Response
time measure, from the Time category. The defined service
measures are integrated within the BPs measures as presented.

Although there are several monitors which provides the
desire characteristics, they are mostly not available for free
use. Differently to those, our approach provides the basis for
defining monitors compliant with those characteristics, and

Fig. 2. Global view for time execution measures of BPs and services from [22]

our prototype provides a way to directly implement service
execution measures upon an existing and well-known open
source web service execution environment, making it easier
to adopt.

III. PROPOSAL FOR SERVICES MONITORING

To define our proposal we firstly analyzed existing moni-
toring tools taking into account surveys such as [18] which
defined key functionalities and evaluated several monitors, as
presented in the related work section. Based on this analysis
we selected key functionalities which allowed us to define
a reference architecture for monitor tools, and to evaluate
existing tools to be used as basis of our proposal. Finally,
as we were not able to get most of the tools, and extending
them was not straightforward, we decided to extend instead
the web services execution environment Axis2.

A. Service monitoring reference architecture

Based on the analysis of key functionalities monitors must
provide, we defined a reference architecture for monitor tools
which is shown in Figure 4.

The modules we defined for the reference architecture are
as follows:

• Monitoring module: main module of the tool. In this
module web services to be monitored are defined as well
as the measures to be applied to each one. The type of
monitoring can also be set in within this module (passive,
active, both).

• Integration module: this module allows integration with
web services to be monitored. There is no restriction
for this integration, it can be a consumer or provider
environment, or a separate environment from both.

• Measuring module: this module is in charge of computing
defined service measures. This measures can be both pre-
defined and new providing a mechanism to add measures
definition.

• Data access module: this module provides an interface
for accessing data, which can be as simple as a log file
or a complex graphic interface allowing management of
the execution data registered within the monitor.

• Notification module: this module provides notification
mechanisms to inform events that can occur when mon-
itoring services. For example, when a service violates

Fig. 3. Example of services execution measures defined from [22]

Fig. 4. Reference Architecture for service monitoring tools

SLAs defined, a notification to the service provider can
be defined.

B. AXIS extension prototype

We implemented the reference architecture extending the
web services execution environment Axis2 with functionalities
to monitor web services execution, and the administration
console to be able to analyze the measure calculations results.

1) Reference architecture implementation: The implemen-
tation for each defined module in the reference architecture in
the AXIS 2 execution environment was as follows:

• Monitoring module: the type of monitoring implemented
was passive with no possibility to add new measures at
this time, although it can be extended to allow it.

• Integration module: as AXIS2 executes in the same
environment as the web services being monitored, we
use this as the basis integration option.

• Measuring module: it only calculates the predefined mea-
sures we included in the extension, although it can be
extended for new measures.

• Data access module: we decided to log events in files so
in this implementation this module only reads and writes
these files.

• Notification module: we left this module outside the
scope of the prototype, but can be easily added.

As a proof of concept, we integrated in the AXIS2 extension
the logging of events that correspond to the base measures

defined in the BPEMM model [22] to register several times
and data regarding services execution:

• Enabled time (ET): this entry logs the event when a
service has been dispatched but has not yet started its
execution.

• Completed time (CT): this entry logs the event when a
service successfully completes it execution.

• Failure time (FT): this entry logs the event when a service
failed in its execution.

• Authentication failure time (AFT): this entry logs the
event when the authentication to execute the service fails.

To implement an AXIS2 module, a class implementing
the interface org.apache.axis2.modules.Module must be added,
which allows to take actions in the lifecycle of the mod-
ule. Also, a configuration file module.xml must be provided
inside the META-INF directory, which defines the handlers
implemented by the module, and the phase each one executes.
Listing 1 shows the configuration file module.xml we added.

Listing 1. Configuration file module.xml with handlers definition

<module name ="logging"
class="monitor.loggingmodule.LoginModule">

<InFlow>
<handler name="InflowLogHandler"

class="monitor.loggingmodule.LogHandler">
<order phase="loggingPhase">

</handler>
<handler

name="InflowCheckAuthenticationHandler"
class="monitor.loggingmodule.CheckAuthen

ticationHandler">
<order phase="Addressing"

phaseLast="true">
</handler>

</InFlow>
<OutFlow>

<handler name="OutflowLogHandler"
class="monitor.loggingmodule.LogHandler">

<order phase="loggingPhase">
</handler>

</OutFlow>
<OutFaultFlow>

<handler name="FaultOutflowLogHandler"
class="monitor.loggingmodule.LogHandler">

<order phase="loggingPhase">
</handler>

</OutFaultFlow>
<InFaultFlow>

<handler name="FaultInflowLogHandler"
class="monitor.loggingmodule.LogHandler">

<order phase="loggingPhase">
</handler>
<handler

name="FaultInflowCheckAuthentication
Handler"

class="monitor.loggingmodule.CheckAuthen
ticationHandler">
<order phase="Addressing"

phaseLast="true">
</handler>

</InFaultFlow>

Two specific handlers were implemented for the mod-
ule: CheckAuthentication which is responsible for checking
whether there are failed authentications creating an entry in
the log file for each case (measure AFT); and the LogHandler
which is in charge of creating entries for the rest of the
measures: ET, CT and FT.

We also added an entry to log the start time (ST) of a ser-
vice, which corresponds to the time the service starts its execu-
tion. To do so for services defined by AXIS we added several
classes implementing the interface org.apache.axis2.engine.
MessageReceiver, since AXIS 2 supports several Message
Exchange Patterns (MEPs) which describe the message pat-
terns required by a communication protocol to establish or
use a communication channel [2]. For each MEP natively
supported by AXIS 2 we added an extension class with
the implementation of the logic needed to register the ST
entry into the logs event file. For example, a class extending
org.apache.axis2.rpc.receivers.RPCMessageReceiver was im-
plemented to support the bidirectional RPC MEP. Figure 5
presents the approach described to extend AXIS 2, and Listing
2 shows the definition of messages receivers in AXIS 2.

Fig. 5. Approach used to extend AXIS 2

Finally, we also added the logging of events corresponding
to when services stop executing as well as when they resume
execution, including the following:

Listing 2. Message receivers definition in AXIS 2

<messageReceivers>
<messageReceiver

mep="http://www.w3.org/2004/wsdl/in-only"
class="monitor.receivers.LoggingRawXLMIN

OnlyMessageReceiver"/>
<messageReceiver

mep="http://www.w3.org/2004/wsdl/in-out"
class="monitor.receivers.LoggingRawXLMINOut

MessageReceiver"/>
<messageReceiver

mep="http://www.w3.org/2006/wsdl/in-only"
class="monitor.receivers.LoggingRawXLMIN
OnlyMessageReceiver"/>
<messageReceiver

mep="http://www.w3.org/2006/wsdl/in-out"
class="monitor.receivers.LoggingRawXLMINOut

MessageReceiver"/>
<messageReceiver

mep="http://www.w3.org/2004/wsdl/in-only"
class="monitor.receivers.LoggingRPCInOnly

MessageReceiver"/>
<messageReceiver

mep="http://www.w3.org/2004/wsdl/in-out"
class="monitor.receivers.LoggingRPCMessage
Receiver"/>

</messageReceivers>

• Resuming time (RT): this entry logs the event when a
service resume its execution after being down.

• Shutdown time (SDT): this entry logs the event when a
service stops its execution.

In each case the entry is also registered associated to
each operation defined in the service, for measures calcu-
lating purposes. To log these events we implemented the
interface org.apache.axis2.engine.AxisObserver which allows
to get events from AXIS 2 associated with services execution,
as follows:

• AxisEvent.SERVICE_START: when a service resumes its
execution from the administration console.

• AxisEvent.SERVICE_DEPLOY: when a service is de-
ployed within AXIS, either when AXIS is starting up
or dynamically after.

• AxisEvent.SERVICE_STOP: when a service execution is
stopped from the administration console.

• AxisEvent.SERVICE_REMOVE: when a service is re-
moved, either from the administration console or manu-
ally deleting the files from the server.

In the first two cases the entries corresponding to the RT
measure will be registered in the event log, and when the two
last events occur the entries corresponding to the SDT measure
will be registered. We used the Log4J library to register the
entries in the event log file.

To calculate the defined measures or new ones that can be
added to the AXIS extension, we defined a general abstract
class in which the operations for parsing and calculating
measures are defined. In this way the extension is flexible
enough to integrate new measures in an easy way, just adding
the new class that implements the defined methods for the
new measure. Figure 6 shows the defined hierarchy with the
abstract class and an example of implemented measures.

Fig. 6. Generic event log parsing for adding new measures

To support the implementation of quality measures such
as confidentiality for when authentication of services failed,
we used the WS-* family of standards. In particular WS-
Security to add security to the communication channel and
WS-SecurityPolicy to define policies between the service
consumer and the provider for the exchange of user and
password.

2) Administration console extension: Axis2 administration
console already provides several functionalities to manage the
web services that are deployed in the server, by means of
several JSP pages. Among this functionalities are: upload a
new service, visualize data from services, service groups, mod-
ules and phases, visualize the execution chain among handlers
for each phase and order execution, enable a module, actions
over services such as stop, resume, edit data, etc. in Figure
7 shows a (partial) snapshot of the extended administration
console, showing the measures we added to the prototype:
time, throughput, capacity and quality.

Fig. 7. Extended AXIS2 administration console

By extending the administration console we were able to
reuse several functionalities such as the visualization capacity
over AXIS components, and also add new functionalities. To
do so, we implemented several new JSP pages containing the
new options, and extended the administration servlet which
is in charge of getting the data for each page and instantiate
the parsers for calculating the defined measures. The
administration console can be accessed navigating to the URL
<ip_servidor>:<puerto_servidor>/axis2/axis2
-admin/ using the credentials that comes with the typical
installation of AXIS 2.

IV. EXAMPLE OF APPLICATION

In this section we present the example of application we
carried out to validate the proposal and the prototype imple-
mented. To do so, we used a real but simplified collaborative
business process from a Hospital which defines several ser-
vice tasks implemented by web services, and involves three
different participants, as shown in Figure 8.

The collaborative process involves three participants: the
hospital, the central health organization, and the patient. Web
services implementation to support the execution of automated
service tasks are marked with an ellipse, two in the hospital,
and one in each other participant. In a real execution envi-
ronment, each process will execute in a different environment
within each participant, and invocations to web services will
have to cross the borders of each one via Internet channels.

To simulate the execution environment we provide two
web servers Tomcat in which we distributed the execution of
processes in Activiti BPM, and the web services and monitor
in the AXIS 2 extension prototype. In the first server we
executed Activiti BPM with the hospital process, and AXIS
2 prototype with the hospital web services, in the other we
executed Activiti BPM with the patient and central health
processes, and AXIS 2 prototype with their web services.
Invocation of web services are from one process to the other
so execution times and context are close to a real distribution
in different organizations. Figure 9 shows the distribution of
processes, web services and AXIS 2 prototype.

To be able to collect several execution events adding the
corresponding entries to the events log file, we launched
several executions using Jmeter 3 which allows to initiate the
patient process which starts the execution of the complete
collaborative process. We tried several 500 execution instances
to be able to get a considerable amount of execution data.
In Figure 10 we present as an example, the measures result
table for the execution of the ReceiveRequestAppointmentWS
defined in the hospital process.

In Figure 10 the average times and other consolidated
measures are shown on the left corner; each row of the table
shows the times for each service instance execution with the
basic measures that are registered as entries in the event log.

V. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach for monitoring,
measuring and analyzing services execution within BPs execu-
tion. We defined a reference architecture for service monitor
tools based on decoupled modules and a proof of concept
implementation as an extension of the web services execution
environment AXIS2. We integrated services measures within
BPs measures, to be able to analyze their execution as a whole,
to find improvement opportunities. To do so, we applied
service measures from our previous work in the BPEMM
model, to collect, register, calculate and visualize service
execution measures. Although we did not implemented all
measures in the simulation we carried out, we selected key
ones which allowed us to show the feasibility of the approach.

3JMeter. http://jmeter.apache.org/

Fig. 8. Case study Business Process from a Hospital

Fig. 9. Case study execution: processes, WS and prototype distribution

Although when compared to existing tools there are many
monitors that provide more advanced and/or complete func-
tionalities, they are mostly not available for free use or to
be extended (the code is also not available). Our tool is
based on standards, extending an existing open source tool,
which provides an open base for use and extension. We are
also able to generate event logs in MXML format for the

measures to be integrated within the ProM framework4, as
presented in [23]. We believe that integrating BPs and services
execution measures is a key element to support the continuous
improvement of organizations, both from the point of view
of their BPs and their services implementation. Our proposal
provides conceptual support and and initial tool support, which
we plan to enhanced in the future to support more execution
measures and monitoring functionalities, and to improve the
integration between monitoring and evaluation tools.

VI. ACKNOWLEDGEMENT

I would like to thank student Martín Vázquez who worked
in the proposal and the AXIS2 extension implementation.

REFERENCES

[1] Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F.: Service-Oriented
Computing: a research roadmap. Int. J. of Coop. Inf. Systems. 17(2),
223–255 (2008)

[2] Erl, T. : Service-Oriented Architecture: Analysis and Design for Services
and Microservices, 2nd Edition. Prentice Hall (2016)

[3] Krafzig,D., Banke, K., Slama,D.: Enterprise SOA: Service Oriented
Architecture Best Practices. Pearson Education (2005)

[4] Papazoglou, M.:Web Services and SOA: Principles and Technology, 2nd
edition, Pearson Education Canada (2012)

[5] van der Aalst, Wil M. P. and ter Hofstede, Arthur H. M., Weske, M.:
Business Process Management: A Survey. In: Int. Conf. of BPM (BPM),
pp. 1–12, (2003)

4ProM framework. http://www.promtools.org/doku.php

Fig. 10. Time measures for the execution of service ReceiveRequestAppointmentWS

[6] Weske, M.: Business Process Management: Concepts, Languages, Archi-
tectures, 2nd Edition. Springer (2012)

[7] Dumas, M., La Rosa, M., Mendling, J., Reijers,H.: Fundamentals of
Business Process Management. Springer (2013)

[8] Chang, J.F.: Business Process Management Systems: Strategy and Imple-
mentation. Auerbach Publications, Taylor & Francis Group (2005)

[9] Wil M.P. van der Aalst, Process Mining: Discovery, Conformance and
Enhancement of Business Processes, Springer-Verlag, (2011)

[10] Wil M.P. van der Aalst, Data Science in Action, Springer-Verlag, (2016)
[11] Barbacci, M., Klein, M., Longsta, T., Weinstock, C. (1995). Quality

Attributes, SW Engineering Institute (SEI), CMU/SEI-95-TR-021.
[12] O’Brien, L., Bass, L., Merson, P. , (2005), Quality Attributes and SOA,

SW Engineering Institute (SEI), CMU/SEI-20055-TN-014.
[13] ISO/IEC 25010 Systems and Software Engineering Square (Sys-

tems and Software Quality Requirements and Evaluation), (2005-11).
http://www.iso.org/.

[14] W3C, QoS for WS: Requirements and Possible Approaches, (2003).
http://www.w3c.or.kr/kr-office/TR/2003/ws-qos/

[15] OASIS, Web Services Quality Factors v 1.0, (2012). http://docs.oasis-
open.org/wsqm/wsqf/v1.0/WS-Quality-Factors.pdf .

[16] D’Ambrogio, A., A Model-driven WSDL Extension for Describing the
QoS of WS. 13th International Conference on WS (ICWS), (2006).

[17] Oriol M., Marco J.,Franch X., Quality models for web services: A sys-
tematic mapping, Information and Software Technology, 56 (3), (2014).

[18] Oriol M., Marco J.,Franch X., Marco J., Monitoring the service-based
system lifecycle with SALMon, Expert Systems with Applications (42),
pp. 6507–6521, (2015)

[19] O. Cabrera and X. Franch, A quality model for analysing web service
monitoring tools, 6th International Conference on Research Challenges
in Information Science (RCIS), pp. 1-12, (2012)

[20] A. Delgado and D. Calegari and P. Milanese and R. Falcon and E.
Garcia, A Systematic Approach for Evaluating BPM Systems: Case
Studies on Open Source and Proprietary Tools, 11th IFIP 2.13 Int.
Conference on Open Source Systems: Adoption and Impact OSS, pp.
81-90, (2015)

[21] A. Delgado and D. Calegari, Evaluating non-functional aspects of
business process management systems, XLIII Latin American Computer
Conference (CLEI), pp. 1-10, (2017)

[22] Delgado, A.: An integrated approach based on execution measures for
the continuous improvement of BPs realized by services, Information and
Software Technology,56 (2), pp. 134–162, (2014)

[23] Delgado A., Modeling and measuring services to support BPs execution:
from SoaML and QoS models to WS, Int. Journal Services Comp
(IJSC),4,pp.65, (2016)

[24] OMG: Service Oriented Architecture Modeling Language (SoaML),
https://www.omg.org/spec/SoaML/, (2012)

[25] OMG: UML Profile for Modeling QoS and Fault Tolerance Characteris-
tics and Mechanisms (QFTP), https://www.omg.org/spec/SoaML/, (2008)

[26] Delgado, A.: A Services Lifecycle to Support the BPs Lifecycle: From
Modeling to Execution and Beyond. In: IEEE International Conference
on Services Computing (SCC), pp.831–835 (2016)

[27] L. Baresi, S. Guinea, Dynamo: Dynamic Monitoring of WS-BPEL
Processes, 3rd. International Service-Oriented Computing (ICSOC), pp.
478-483, (2005).

[28] H. Ludwig, A. Dan, and R. Kearney, Cremona: An architecture and
library for creation and monitoring of ws-agreements, 2nd international
conference on Service oriented computing (ICSOC), pp. 65-74, (2004).

[29] WebInject - Web (HTTP) testing and monitoring tool,
http://www.webinject.org

[30] Barbon F., Traverso P., Pistore M., Trainotti M., Run-Time Monitoring
of Instances and Classes of WS Compositions, IEEE Int. Conf. on WS
(ICWS), pp. 63–71, (2006).

[31] Alhamazani K., Ranjan R., Mitra K., Jayaraman P., Huang Z., Wang
L., Rabhi F., CLAMS: Cross-Layer Multi-Cloud Application Monitoring-
as-a-Service Framework, IEEE International Conference on Services
Computing (SCC), (2014)

