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Abstract—Inexperienced drivers usually use the most-known
paths to move inside the cities, while drivers with a better
knowledge of the road network normally taken alternative routes
that are shorter, faster or safer. This knowledge about roads
usage, when shared with other drivers, could offer more paths
options to distribute the traffic load across the city by suggesting
alternative routes. However, the problem lies in how to suggest
alternative route directions for ordinary drivers considering
knowledge gathered from experienced drivers. In order to try
to solve this problem, it is proposed an algorithm, named TODS
- Trajectory Outlier Detection and Segmentation, to group and
segment car road trajectories in standard and alternative routes
based on city roads usage in different day times periods. After
that, the segmentation results are suggested as driving directions
for ordinary drivers. To evaluate the results was performed a
qualitative comparison with TRA-SOD algorithm considering
the segmentation process. The tests were executed using two
trajectories datasets collected by drivers in San Francisco - USA
and Joinville - Brazil. The results assessment indicate that TODS
is superior to TRA-SOD due to its segmentation characteristics.
Besides that, it has been observed that the time period of the
day influences how routes are used along the day.

Index Terms—Trajectory similarity, moving objects analysis,
frequency-based clustering, standard segments, alternative seg-
ments, real-world scenarios

I. INTRODUCTION

The study of road traffic planning focuses on understanding
how people use the city paths to make improvements and
arrangements in the road network [25]. However, this task is
becoming even more difficult with the increasing number of
vehicles in the cities. But, with the growth of big data field due
to investments in software, hardware and services, combined
with the advance of data mining and data analysis techniques,
new opportunities to improve people’s lives are appearing [22].
Due to this fact, the use of data analysis techniques is getting
even more important in the study of road traffic users behavior.

In the traffic planning field is necessary to know when,
where and how people travel daily inside the city in order
to reorganize the distribution of the traffic flow. Investigating
the traffic behavior, a possible factor that causes traffic jams
could be the intensive use of main roads by ordinary drivers
that do not know alternative routes. Usually, these drivers make
use of navigation devices to suggest routes with shortest paths
or, more recently, with congestion constraints. But, there are
situations where the paths suggested by these devices hide the

existence of less used paths, that could improve the traffic
distribution flow when suggested as alternative routes.

In contrast to ordinary drivers, there are the expert drivers
that usually know pretty well, partially or entirely, the city
road network. These expert drivers are seen as outliers due
to their ability to get alternative routes, depending on the
time of the day or the day of the week, that lead to shorter,
faster and even safer roads. So, the use of this knowledge
could be applied to decrease congestions as well as to improve
mobility inside the cities, mitigating or avoiding the necessity
of road network arrangements by public traffic offices. Besides
that, this knowledge could improve the answers of navigation
systems, as Google Maps [6], providing suggestions of near
less frequently used alternative trajectories from the standard
route directions, like shortcuts and deviations.

Based on the aforementioned assumptions, this work ad-
dresses the following research question: how to suggest al-
ternative routes for ordinary drivers considering knowledge
gathered from trajectories of experienced drivers? To answer
this question clustering techniques from the data mining field
are used to approach this problem. Clustering is an unsu-
pervised technique widely adopted in scenarios where it is
necessary to find patterns or outliers in datasets. Therefore,
this work proposes an algorithm to group and segment car
road trajectories applying a clustering technique based on the
collected data. After that, the clusterization results are used to
suggest standard and alternative routes as driving directions
for ordinary drivers. This algorithm is named as Trajectory
Outlier Detection and Segmentation (TODS).

Actually, one of the main problems to separate trajectories
segments in standard and alternative relies on how to calculate
and compare the similarity between them. Several studies
propose to analyze alternative trajectories [2], [4], [7], [15],
[16], but none of them evaluate the alternative trajectories
segmentation based on the road usage level. To tackle this
problem, an approach for grouping users’ trajectories by dis-
tance is performed in order to identify standard paths with high
vehicles flow and alternative segments with fewer vehicles
flow.

The algorithm proposed here is evaluated using automobiles
trajectories collected in San Francisco - EUA and Joinville
- Brazil. A qualitative evaluation is executed to analyze the



TODS segmentation process considering the temporal evo-
lution (along time periods of the day), while a quantitative
analysis evaluates run-time statistics. In addition, the TODS
is compared to one of the most know benchmarks in the
literature, the TRA-SOD algorithm [4].

The next sections are organized as follows. Section II
presents the related works. Section III define the terms and
notations of this study. Section IV presents the proposed
algorithm, and section V presents the performed tests and
results. Finally, section VI outlines the conclusion and future
works.

II. RELATED WORKS

Various studies have already addressed the identification of
outliers in trajectory analysis. A summary of these studies is
presented bellow.

Ma et al. [11] propose the use of Local Outlier Factor
(LOF) density technique combined with Principal Component
Analysis (PCA) to find errors and anomalies analyzing im-
ages from automotive traffic data captured by cameras. The
proposed method presented a 93.5% hit rate. Fontes et al.
[4] propose an algorithm (TRA-SOD) that uses the space
and space-time semantic analysis to find outliers between
trajectories moving together between regions on the map.
This technique classifies as default the trajectories that have
a minimum amount of neighbors grouped in a cluster. In
contrast, trajectories that do not meet this minimum number
of neighbors are classified as outliers. Qualitative analyses
indicate that several outliers were classified as shortcuts and
stoppages routes. Zhu et al. [16] propose an online algorithm
(TPRRO) to detect abnormal trajectories using historical data
and popular routes. This method focuses on space and time
anomalies. The time semantics context allows to find outliers
for considering different periods of the day that could be
unidentified without the use of time context. The authors
also suggest that the algorithm can be improved by adding
the sub-trajectory (segments) processing. Bessa et al. [2] use
convolutional neural networks to detect outliers in bus lines.
The study proposes a visual tool to help users to visualizes
bus drivers anomalous behaviors. However, due to the use
of supervised techniques some data mining operation can be
negatively affected by lack of road network information from
trajectories. Lee et al. [7] propose a framework based on
partitioning and detection to find outliers. This framework
divides trajectories in segments sets and classifies the outliers
based on the similarity between them. The qualitative results
obtained by visual inspection indicate that the addition of the
time context can improve the classification of outliers. Finally,
Yuan et al. [25] propose a method to find the best route
between an origin and destination point based on the analysis
of taxi drivers route preferences. The method suggests the best
driving direction considering a graph where the vertices are
city landmarks and the edges are routes that connect them.
The routes are calculated according to the road frequency of
use, total travel time, weather conditions, context of the day
(weekday or weekend) and the time of the day. The method

presents 60 to 70 percent better suggestions when compared
with other methods from literature.

In contrast with the related works, the presented study uses
a different approach to find alternative (outliers) directions.
The proposed algorithm, named TODS, evaluates trajectories
path utilization using clustering and segmentation techniques
based on trajectories grouping by usage frequency in different
time intervals. So, it is possible to evaluate the standard roads
utilization in different periods of the day. Besides that, the
trajectories segmentation distinguishes between standard and
alternative paths, this segmentation technique allows users to
identify alternative trajectories segments that could be used as
shortcuts and deviations by drivers.

III. DEFINITIONS

This section describes the definitions applied in the TODS
algorithm.

Definition 1 - Point: A point p is a tuple pi = (xi, yi, ti),
where x and y are geospatial coordinates and t is the time
(year, month, day, hour, minute e second) when the point was
collected [4].

Definition 2 - Trajectory: A trajectory T is given by n > 1
points

[
p1, p2, . . . , pn

]
collected over time, where t1 < t2 <

. . . < tn [4]. Besides that, for a given trajectory Tj its start
time is given by TSTj

= t1 and its end time is given by
TETj

= tn.
Definition 3 - Segment: A segment S in a trajectory T

is a list of consecutive points
[
pk, pk+1, pk+2, . . . , pm

]
where

∀i, k ≤ i ≤ m, pi ∈ T [4].
Definition 4 - Region: A region RG is a rectangular area

composed by
[
pi, pj

]
, where pi and pj points are the rectangle

lower left corner and the top right corner, respectively.
Definition 5 - Route Candidate: A route candidate C is

a segment S =
[
pk, pk+1, . . . , pm

]
from one trajectory T

that crosses two given regions RGstart and RGend, where
RGstart ∩ RGend = ∅, within a given time interval defined
by δstart and δend with δstart < δend. To compute the
candidate minimum amount of trajectory points linking two
given regions respecting the time interval, the time difference
between the first and the last candidate points are calculated
by (1) in order to get the last point inside the RGstart and
the first point inside the region RGend.

minimize
k,m

timeDiff(k,m) = tm − tk

subject to k < m

∧ pk ⊆ RGstart ∧ pm ⊆ RGend
∧ tk > δstart ∧ tm < δend,

(k,m) ∈ C.

(1)

Definition 6 - Group: A group G is a set of candidates
G =

[
C1, C2, . . . , Cl

]
, with l ≤ N (N is the number of

candidates), where ∀pi ∈ Ck ∧ Ck ∈ G exists another point
pj ∈ G ∧ pj /∈ Ck with dist(pi, pj) < D [8], [9], [12], [15].
In this work it has been use as distance function the Euclidean
distance (2):



dist(pi, pj) =
√

(xi − xj)2 + (yi − yj)2 (2)

The group size SZG is defined as the number of candidates
C ∈ G.

Figure 1 shows a grouping example. In this case the group
G1 contains the candidate

[
C1

]
and the group G2 contains the

candidates
[
C2, C3, C4

]
. Therefore, the group size of both are

SZG1
= 1 and SZG2

= 3.

Fig. 1. Candidates grouping

Definition 7 - Standard and alternative Group Sets:
Standard and alternative group sets, named STG and NSTG,
respectively, are defined as follows. Given the whole group set
GT =

[
G1, G2, G3, . . . , Gh

]
where h ≤ N (N is the number

of candidates), ordered according to SZG1
≥ SZG2

≥ . . . ≥
SZGh

, the STG is determined by STG =
[
G1, . . . , Gk

]
with

a user defined number of k standard groups, where k ≤ h, and
NSTG is determined by NSTG =

[
Gk+1, Gk+2, . . . , Gh

]
.

So, the set of standard groups is composed of the groups with
most candidates number while the other groups compose the
alternative set.

Definition 8 - Route: A route Ri represents a path that
connects a start region RGstart and an end region RGend
to be used as driving direction for an ordinary driver. The
routes are classified as standard and alternative routes. A
standard route Ri is derived from every candidate Ci ∈ STG,
while an alternative route Ri is derived from every candidate
Ci ∈ NSTG. Alternative routes may have part of their
trajectories in common with standard routes. Therefore, it is
necessary to determine for the candidates that belong to the
NSTG which segments make intersection with candidates
from STG in order to classify them as standard or alternative
segments. This is a two-step approach performed based on
literature available in [1], [3], [13], [14], [18]. In the first step,
an alternative route Ri is segmented by distance resulting in
a set of standard segments DSRi

=
[
Sα, Sα+1, . . . , Sα+l

]
,

where ∀pi ∈ DSRi
,∃pk ∈ STG, dist(pi, pk) < D, and a

set of alternative segments NDSRi
=
[
Sβ , Sβ+1, . . . , Sβ+q

]
,

where ∀pi ∈ NDSRi
∧∀pk ∈ STG, dist(pi, pk) > D. Figure

2 exemplifies the segmentation of C1 by distance that results
in the route R1. In this case, the route R1 is segmented in two
sets, the set of standard segments DSR1

=
[
S1

]
and the set of

alternative segments NDSR1
=
[
S2

]
. Besides that, Figure 2

also presents the standard route R2 derived from the standard
candidate C2. As C2 belongs to the STG it does not have
alternative segments.

In the second-step, the angular distance is used to improve
the route segmentation by re-calculating the alternative seg-

Fig. 2. Candidate segmentation by distance

ments’ starts and ends. This is necessary because Euclidean
distance could present shortcomings. Figure 2 exemplifies
a wrong segmentation of route R1 using distance. As can
be seen, it is missed the real moment where the alternative
trajectory diverges from the standard group. Works like [3],
[14], [18] present approaches to segment trajectories having
into account angular distance. In cases like those presented
in Figure 2, the solution is to go backward in C1 until
to find the point where it diverges from the standard path
C2, comparing the angular difference between alternative and
standard segments using (3).

atan2(x, y) =



arctan( yx ), if x > 0

arctan( yx ) + π, if x < 0 and y ≥ 0

arctan( yx )− π, if x < 0 and y < 0

+π
2 , if x = 0 and y > 0

−π2 , if x = 0 and y < 0

undefined, if x = 0 and y = 0

(3)

Figure 3 exemplifies the application of angular difference
to improve the segmentation process. In this example it is
compared the angular difference of the alternative edge A2

and the nearest standard edge A5. As the angular difference of
them is greater than a threshold θ, the points of A2 are added
to the alternative segment. However, the angular difference
between edge A1 and A4 is less than θ, so the points from
A1 are kept in the standard group set.

Fig. 3. Candidate segmentation by angular difference

IV. TODS - TRAJECTORY OUTLIER DETECTION AND
SEGMENTATION ALGORITHM

This study proposes an algorithm, named TODS, to detect
and segment alternative trajectories between two regions, con-
sidering time interval context. The main algorithm is presented
in Algorithm 1 and its inputs are defined as follows:



• Start region (SR) and end region (ER): represent the
rectangular regions where the selected trajectories should
cross (Definition 4);

• Start hour (SH) and end hour (EH): represent the time
when the trajectories should cross SR and ER, they must
respect the inequality SH < EH;

• Interpolation size (I), standard deviation (SD) and sigma
(σ): are used to apply filters and pre-process the trajec-
tories;

• Clustering distance (D), angular difference threshold (θ)
and standard groups number (KS): are used to identify
the segments of alternative trajectories.

The algorithm output is two sorted sets of standard and
alternative trajectories, additionally with their respectives seg-
ments classified accordingly. The next sections presents more
details about each algorithm phase.

Algorithm 1 TODS - Algorithm
Require: SH,EH,SR,ER, I, SD, σ,D, θ,KS

1: t← FindTrajectories(SR,ER)
2: for i← 0 to Length(t) do
3: FilterNoisePoints(t[i], SD, σ)
4: InterpolatePoints(t[i], I)
5: end for
6: C ← GetCandidates(t, SH,EH,SR,ER)
7: idx← CreateClusteringGrid(C,D)
8: GT ← GetTrajectoriesGroups(C, idx)
9: SGT ← GetStandardTrajectories(GT,KS)

10: R← GetTrajectoriesRoutes(GT, SGT,D, θ)
11: return SGT,R

A. Recovering

The recovering phase is executed by lines range 1-7 pre-
sented in Algorithm 1. This phase starts obtaining raw tra-
jectory data from an external source (FindTrajectories line
1). In this study, the external database system used was the
MongoDB [17], due to their capacity to execute geometrical
queries to retrieve all stored trajectories that intersect two given
distinct rectangular geometries (SR and ER).

After that, the method FilterNoisePoints (line 3) is used
to remove invalid points or even the entire trajectory in a two
steps approach. The first step calculates a normal distribution
using the distance between all adjacent points (using Equation
2). The points that extrapolate the confidence interval defined
by σ are removed. The second step calculates the trajectory
points standard deviation to remove completely trajectories
that overpass the defined SD parameter.

The InterpolatePoints function (line 4) is applied after
FilterNoisePoints to normalize the distribution of points
per space and time for each filtered trajectory. The I parameter
defines the upper bound distance between two adjacent points.
Thus, if the distance between two adjacent points is greater
than the value of I , an interpolation is executed to insert
as many middle points as necessary to fit the distance of
point shorter than I . The interpolation increases the trajectories

points density in order to improve the classification performed
by the clustering algorithm in the next step. It is suggested to
use an I value lower than the distance value, parameter D, to
guarantee that two distinct trajectories with intercalated points
will be classified by the clustering algorithm.

The next step is the GetCandidates function (line 6), that
removes trajectories that do not meet the time interval given by
SH and EH . Besides that, this function also filters segments
that respect the trajectory direction, leaving SR and going to
ER.

Finally, the CreateClusteringGrid function is called to
create an index structure based on a grid to map the trajec-
tories’ points (line 7). This structure is used to reduce the
complexity of queries executed by the clustering algorithm
[5], [19], [20]. In this work, a DBScan-based algorithm is
used to cluster the trajectories’ points in sequential order, the
algorithm minPoint parameter was defined with value 1. When
a current trajectory is being processed, all near trajectories are
indexed in an auxiliary structure to be used in the grouping
phase of the TODS.

B. Grouping

The grouping phase uses shape similarity to group trajec-
tories. The Algorithm 2 details the GetTrajectoriesGroups
function (line 8) of Algorithm 1. The algorithm inputs are: the
set of candidates C and structure index idx. Both variables are
produced by recovering phase. The algorithm output is a set
of groups (GT ), where each group contains trajectories with
a similar path to connect SR and ER.

Algorithm 2 TODS - Trajectory grouping
Require: C, idx

1: SortTrajectories(C)
2: GT ← CreateSetStructure()
3: for all c ∈ C do
4: currentGroup← empty
5: for all G ∈ GT do
6: if FitInGroup(c,G, idx) then
7: currentGroup← G
8: break
9: end if

10: end for
11: if currentGroup = empty then
12: currentGroup← CreateGroup()
13: AddGroup(GT, currentGroup)
14: end if
15: AddCandidate(currentGroup, c)
16: end for
17: return GT

The Algorithm 2 starts ordering the candidates list in as-
cending order by the number of points (line 1). For each candi-
date, the algorithm starts cleaning the variable currentGroup
(line 4). After that, it compares the current candidate c with the
groups in GT set (line 6). If the candidate fits in an existent
group then the variable currentGroup receive that respective



group and the search ends (lines 7-8). The FitInGroup
function uses the index structure to check the distance of all
points belonged to c in the current trajectories cluster group G.
If no group G has been found (line 11), then a new group is
created to assign the candidate (line 12) and the new group is
added to the GT set. Finally, the candidate c is allocated to the
currentGroup (line 15) and the next candidate is taken to the
compared (line 3). This process guarantees that all candidates
will be assigned to a group.

C. Separation

In this phase, the function GetStandardTrajectories in
line 9 of Algorithm 1 is executed to define the set of standard
groups (STG) and the set of alternative groups (NSTG). This
function performs the Definition 7 by ordering the trajectory
groups GT in descending order and selecting the top KS
groups with the highest number of trajectories as the set of
standard groups (STG). The remaining groups are allocated
in the set of alternative groups (NSTG).

D. Segmentation

The segmentation phase called by Algorithm 1 in line 10
is described in the Algorithm 3. The trajectory segmentation
process is applied to the candidates of the alternative groups
set (NSTG). The input parameters of Algorithm 3 are: set
of groups (GT ), set of standard groups (STG), set of alter-
native groups (NSTG), clustering distance (D) and angular
difference threshold (θ). The algorithm returns the alternative
routes segments separated in standard and alternative sets.

In Algorithm 3, the segmentation process is performed in
two steps, the first one executes the segmentation by clustering
the trajectories using distance, the second one executes the
segmentation correction by assessing the angular difference
among trajectories segments, as stated in Definition 8. The
segmentation by distance (lines 3-5) identifies all trajectories
points as standard or alternative using the clustering function
HasNear. This function classifies a given point as standard
due to their proximity to points from trajectories in STG.
The trajectory segmentation correction (lines 6-11) reclassifies
head and tail points from alternative segments by calculating
the angular difference between them and the standard segments
using BackExtension and FrontExtension functions, re-
spectively. After all candidates points have been classified,
the Split function creates a route composed of standard and
alternative segments, DS and NDS sets, respectively (lines
12-13). Finally, the route is included in the routes set (line 15)
which is returned by the algorithm (line 16).

V. RESULTS

In order to evaluate the TODS algorithm, was performed a
qualitative and a quantitative analysis. The qualitative analysis
evaluates the segmentation process in order to identify if it
is suitable for detecting standard routes changes during the
day. This evaluation was carried out using the Google Maps
API [6] to support the visualization of the results in the road

Algorithm 3 TODS - Trajectory segmentation
Require: GT, STG,NSTG,D, θ

1: res← CreateList()
2: for all C ∈ NSTG do
3: for all p ∈ C.points do
4: p.std← HasNear(STG, p,D)
5: end for
6: for all p ∈ C.points do
7: if p.std = FALSE then
8: BackExtension(p, C, STG,D, θ)
9: FrontExtension(p, C, STG,D, θ)

10: end if
11: end for
12: R← CreateRoute()
13: Split(R.DS,R.NDS,C)
14: AddRoute(res,R)
15: end for
16: return res

network city map. Besides that, the quantitative analysis eval-
uates the algorithm runtime efficiency. The runtime analysis
of each TODS phase has been taken and the TODS index
structure efficiency was compared with the well-known tree
indexes RNNSearch [21] and CoverTree [23] methods. Both
algorithms are implemented in the Java Framework Smile [21].

Finally, a comparison with the TRA-SOD (Trajectory Out-
lier Detection Algorithm) [4] was performed to assess the
proposed method (TODS) with a similar algorithm. The TRA-
SOD algorithm is a clustering algorithm that takes into con-
sideration space and time context to find outliers in moving
objects trajectories. The main difference between TODS and
TRA-SOD is that the former has the capability to segment
trajectories in standard and alternative segments. Besides that,
TODS allow to configure the number of standard paths,
different from TRA-SOD that can classify multiple paths as
standard. This happens in TRA-SOD due to the difficulty to
define the appropriated value for the k-nearest neighborhood
parameter. The k-nearest neighborhood parameter is not trivial
to estimate because it is necessary to understand quite well the
dataset to quantify a good value to execute the clustering.

The whole analysis was performed using two heterogeneous
datasets. The first dataset contains data collected by smart-
phone users in Joinville - Brazil. The second one dataset was
collected by taxi drivers in San Francisco - USA. Both cities
were selected due to the availability of data and the complex
road networks. The Brazil dataset contains approximately
5000 trajectories collected during 2013 by 10 people using
8 different smartphone devices. In contrast, the USA dataset
contains approximately 25000 trajectories collected by 500
taxi drivers during 30 days from May to June 2008. Table
I presents the datasets summary where it can be observed
that trajectories collected in Brazil are denser than the ones
collected in the USA. This characteristic impacts directly on
the algorithm performance.

In order to perform the experiments, the values defined to



TABLE I
DATASETS STATISTICAL SUMMARY ABOUT COLLECTED TRAJECTORIES

AND POINTS (COORDINATES).

Statistics Brazil EUA
Trajectories quantity 5083 24999
Trajectory points quantity (Mean) 252.9 45.1
Trajectory points quantity (SD) 494.9 32.9
Trajectory points quantity (Max) 4810 1127
Trajectory points quantity (Min) 1 1
Points quantity 1280484 1103663
Adjacent points distance (Mean) 6.4(m) 48.9(m)
Adjacent points distance (SD) 7.9(m) 908.1(m)
Adjacent points distance (Max) 234.9(m) 669323.1(m)
Adjacent points distance (Min) 0.0(m) 0.0(m)

TRA-SOD parameter are the ones suggested in [4], which are:
maxDist = 50m and minSup = 4. While, the parameter
values defined in the algorithm TODS are: SH = 0h,
EH = 23h, I = 35m, SD = 100m, σ = 99.7%, D = 50m,
θ = 30 and KS = 1. Although, the TODS algorithm has more
parameters compared to TRA-SOD, some parameters like
SD, σ and I can be automatically defined in future studies.
These parameter values were empirically defined based on
analysing performed using the selected datasets as well as by
the literature related suggestions.

Regarding the development of the algorithms, they were
developed using Java (JDK version 1.8.0 121 [10]) and the
datasets were stored using MongoDB version 3.2.12 [17].
MongoDB was chosen due to its geospatial handling capabil-
ity. Concerning the hardware specification, a computer with
Intel Core I5 processor and 6GB RAM was used to execute
the analysis.

Fig. 4. Trajectories temporal evolution

A. Temporal evolution

As previously described, the TODS algorithm uses the
time context to filter trajectories to be analyzed. Figure 4
demonstrates how time evolution modifies the usage of the
roads in different periods of the day. Images A, B, C, and
D show the scenario 1 with trajectories from the United
States and images E, F, G, and H depict the scenario 2
with trajectories from Brazil. Images A, B, E, and F show

the classification of all trajectories (standard and alternatives)
while C, D, G, and H show only standard trajectories. These
trajectories were filtered at two different time intervals. For
the United States the values were 0H-12H and 12H-24H and
for Brazil, the values were 0H-16H and 16H-24H. As can be
seen in Figure 4, the standard route is sensitive to the time
of the day, as observed in images C, D, G, and H, where the
standard route of both scenarios changed during the day. In
scenario 1, it has been selected 72 trajectories from 0H to
12H (image A), they were classified into 21 groups and the
standard route has 18 trajectories (image C). In contrast, also
in scenario 1, it was selected 38 trajectories from 12H to 24H
(image B), they were classified in 15 groups and the standard
route has 14 trajectories (image D). Besides that, in scenario
2, it has been selected 36 trajectories from 0H to 16H (image
E), they were classified in 5 groups and the standard route
has 29 trajectories (image G). However, also in scenario 2, it
has been selected 26 trajectories from 16H to 24H (image F),
they were classified in 5 groups and the standard route has 15
trajectories (image H).

Fig. 5. Comparison between TODS and TRA-SOD

B. Comparison between TODS and TRA-SOD

TODS and TRA-SOD algorithms were compared using
Brazil and USA datasets. To execute the tests, temporal out-
liers were not considered as in [4], only the spatial classifica-
tion is used due to different methods applied to deal with time
contexts in both algorithms. The algorithms were executed
using the same regions. One of the obtained results can be seen
in Figure 5, where images A, B, G, and H show the complete
classification, images C, D, I and J show the trajectories
belonged to standard routes, and the images E, F, K and L
show the trajectories belonged to alternative routes. Regarding
the results, for the tests executed with the USA dataset, TRA-
SOD classified 12 trajectories in 2 standard routes (image I)
and 4 trajectories in 3 alternative routes (image K), while the
TODS classified 8 trajectories in 1 standard route (image C)
and 8 trajectories in 3 alternative routes, segmented into 2
standards and 3 alternative segments (image E). In contrast,



the tests executed in the Brazil dataset, TRA-SOD algorithm
found 64 trajectories in 2 standard routes (image J) and 7
trajectories in 7 alternative routes (image L), while the TODS
algorithm found 45 trajectories in 1 standard route (image D)
and 26 trajectories in 8 alternative routes, segmented into 2
standards and 8 alternative segments (image F).

The alternative trajectories results using the Brazil dataset
(image F) were expanded for visualization purposes in Figure
6. This figure demonstrates all alternatives groups and their
respective segments. In this figure, the group 0 has 19 trajec-
tories, while the remaining have only one.

Analyzing the trajectories classification it is possible to
observe that TRA-SOD found more standard routes than
TODS. It is explained due to the fact that TRA-SOD algorithm
is not sensitive to the amount of data, but rather to a fixed
value of K neighbors used in clustering. Besides that, when
data collection grows, TRA-SOD has it classification capacity
decreased. It happens because when there are many similar
trajectories the algorithm starts to classify a greater number
of trajectories in the standard routes. In addition, the lack of
segmentation technique in TRA-SOD difficulties the analysis
to find the moments that a given trajectory is following a stan-
dard route. In contrast, the TODS algorithm by means of the
segmentation processes turns easy the process of identifying
when a trajectory segment is standard or alternative.

C. Algorithm runtime performance

In order to evaluate the TODS runtime performance, 7000
samples (3500 from Brazil and 3500 from the USA) were
selected from randomly generated pairs of regions that have, at
least, one alternative route connecting them. Figure 7 A shows
the sample distribution regarding number of trajectories per
number of points before TODS pre-processing phase. Figure 7
B uses a boxplot to shows the runtime performance of TODS
concerning the number of trajectory points. The number of
point has been chosen as assessment criteria because it is
the most relevant trajectories’ characteristic that impacts the
algorithm runtime performance. As observed in Figure 7 B,
the runtime grows as long as the trajectory number of points
increases. Some outliers runtime performances, represented as
circle in Figure 7 B, were detected. This was probably caused
by the Java Garbage Collector mechanism that executes extra

operations during the trajectories processing. The more points
the trajectory has the more impact Java Garbage Collector
causes. Besides that, it is observed that trajectories with 0 and
30k points have a very similar execution time in the second
and third quartiles. This indicates that the algorithm is stable
and hence spends almost the same time to provide the result,
according to the number of points. However, for trajectories
with 30k to 70k points the runtime is more unstable due to
the reduced number of analyzed trajectories to support better
runtime execution analysis.

Fig. 7. Samples distribution and runtime

When analyzing the runtime performance of TODS algo-
rithm considering each one of its phases, in Figure 8 is possible
to see that in average more than 90% of execution time is spent
in step 1 (Recovery). This is explained because the process
of generating the clusters and creating the index structure is
very time consuming. On the other way around, the remaining
phases have reduced execution time due to the benefits brought
by the index structure that speed up the search for neighbor
trajectories.

As the TODS creation index structure is one of the most
expensive process, it has been evaluated against two of the

Fig. 6. Alternative groups classified by TODS



Fig. 8. Runtime by steps

most well-know indexing algorithms available in the literature,
that are: CoverTree [23] and RNNSearch [21]. To perform this
assessment, the analyzed index algorithms were implemented
in Java and were tested under a clusterization process handled
by a standard implementation of DBScan algorithm [24]. The
test scenarios were generated based on routes suggested by
Google Maps [6] between two predefined regions of Joinville.
One example of those scenarios is presented in Figure 9 (A).
These routes were used as templates to artificially generate a
suitable amount of similar trajectories to compare the index
algorithms. The generation of artificial trajectories consists of
interpolating points with a random applied noise in latitude
and longitude of those points belonged to the routes suggested
by Google Maps using 50m as default seed. To execute the
tests, five scenarios were generated with 100, 200, 300, 400,
and 500 trajectories resulting in 15000, 30000, 45000, 60000,
75000 points, respectively.

Concerning the results, Figure 9 (B) presents the clustering
runtime performance for each one of the analyzed indexing
algorithms. As can be seen, TODS indexing algorithm per-
formed better than CoverTree and RNNSearch algorithms.
This is explained because TODS indexing algorithm organizes
the trajectories’ points in a n×m grid structure, where n and
m are defined considering that each grid cell presents a square
of 100m2 and the grid must represent the entire search space
of trajectories. Besides that, TODS has some performance
improvements tailored to deal with issues presented in the
TODS approach. For example, TODS index structure does
not maintain in memory points already processed. Finally,

CoverTree does not show suitable performance for trajectories
with high number of points because it was conceived to be
efficient with small amount of data [23].

Fig. 9. Clustering algorithms runtime analysis

VI. CONCLUSION AND FUTURE WORKS

This work proposes an algorithm to suggest alternative
routes for ordinary drivers named TODS. This algorithm uses
a clustering technique to group and segment car trajectories as
standard and alternative segments by analyzing roads’ usage
frequency. The less used segments are identified as outliers
and are suggested as alternative driving directions for ordinary
drivers to allow them to avoid traffic jams.

The algorithm was tested in two trajectory datasets with
different point collection distribution. Based on the performed
analysis, it has been observed that TODS is capable to
support different real-world scenarios, giving to users different
alternative routes considering the road usage during the time
of the day. A comparison with TRA-SOD algorithm was
performed and shows that TODS is more effective in present-
ing alternative routes for ordinary drivers due to trajectories
segmentation in standard and alternative parts. Besides that,
TODS also better suggests the most relevant standard routes
by approaching the road usage as a trajectories grouping by
distance. This avoids the wrong classification of trajectories
as standard. Finally, the last analysis showed that standard
routes usage is influenced by the time of the day as both
standard and alternative routes changes along the day. One
of the TODS limitations is the configuration of the angle



parameter used to perform the segmentation, because it is
necessary to adapt it to different road network scenarios. For
example, in highway roads the angle must be small as the roads
diverge smoothly and hence it should be earlier identified. On
the other way around, in downtowns the angle must be big to
avoid unexpected segmentation.

As future works, first, it is necessary to evaluate self-
parametrization methods to reduce the empirical parameters
configuration. Another proposed study is to use statistical
methods to analyze bottlenecks in the city and suggest im-
provements in the road network. Finally, a method to identify
experts users could be developed to improve the alternative
routes suggestion.
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