
Applying Event sourcing in a ERP system:
a case study

Pedro R. G. Vasconsellos
School of Computing and Informatics

Mackenzie Presbyterian University
São Paulo, São Paulo, 01302-907

e-mail: prgoes@gmail.com

Vinicius M. Bezerra
School of Computing and Informatics

Mackenzie Presbyterian University
São Paulo, São Paulo, 01302-907

e-mail: vinicius.bezerra@mackenzie.br

Calebe P. Bianchini
School of Computing and Informatics

Mackenzie Presbyterian University
São Paulo, São Paulo, 01302-907

e-mail: calebe.bianchini@mackenzie.br

Abstract—Most software can be seen as a set of business rules
that are executed when triggered by an internal event or user
input. Usually, these business rules are designed to process the
input data and change the software’s internal state match this
event. As a consequence of such design, software usually does not
have reliable means to keep memory from its past states unless
specifically programmed to do so. Even when such capabilities
are built into the system, they are often too detached from the
system’s rules to be useful or they are built only in particular
points of the system selected as relevant. This article discusses
Event Sourcing, a software architecture design that organizes
software’s classes in such a way to provide a native memory of its
past states, enabling the system to even replay old computations
at will. We also present a case study where this architecture is
applied in the development of an ERP System. The architecture
was particularly useful to the development team as it dramatically
increased error traceability.

Keywords—event sourcing, ERP, software design, software
architecture

I. INTRODUCTION

Object-oriented software is usually composed of at least
three specialized layers [1]: presentation, business and data.
The presentation layer is responsible for presenting informa-
tion for a user and collecting general input, the business layer
focuses on modeling the relevant business rules for achieving
software’s goals and the data layer is the one that saves and
retrieves operational software state from a reliable persistence
mechanism, usually after a process known as Object Relational
Mapping [2].

The business layer is where most (if not all) business rules
are concentrated and its interface can usually be split into
commands and queries [3][4], where commands are methods
that alter the current state of an object and queries are the
ones that retrieve this state for other interfacing objects. This
way, software emulating a business world process will change
its current internal state over the course of operation and
frequently inform the interested parties when queried about
it.

An important aspect to consider from this architecture is
that new software state will effectively erase the previous
one unless it was specifically programmed to do so. When
a command is received, it will be intended to change the
current state of the objects that will be loaded by the data
layer and later overwritten in the persistence mechanism. As

such, software programs usually do not have any kind of its
internal state history although in many cases this information
can be very relevant to be analyzed.

The lack of internal state history memory in software makes
it hard to understand past computations. From a basic possible
software operating cycle (receive an input, load a previous
state, change the state and save the new one), one can infer that
a computation’s results depend exclusively on three aspects:
the software’s objects current state, the received input and the
business rules programmed into it. This means that in order
to understand a computation done in the past one would need
all this information as it were back in the day the computation
was done. Analysing the 3 pieces of information needed, the
input is very much tied to the computation itself so, if one
needs to study a past procedure, the input is mostly known.
Next, the business rules as they were programmed in that time
is an issue mostly covered by a source code versioning system.
This leaves the whole software state as the only aspect hard
to obtain in the future since any operation after that particular
point in time will most likely have overwritten any relevant
data to replay it.

This article presents a case study where Event Sourcing
was applied in the refactoring of an ERP system. The main
difficulties and the advantages of this change in the system
architecture are discussed and analyzed.

In the next section, the literature on the internal state
history issue is presented and the alternative solutions to
Event Sourcing are analyzed. Then, Domain Driven Design
and Event Sourcing patterns are presented. Finally, a case
study where presented when Event Sourcing was applied in
the process.

II. THE INTERNAL STATE HISTORY LOSS PROBLEM

The fact that software, in some level, lacks history about
its past states affects different areas for different reasons. Two
of such areas are production code debugging and analysis and
business intelligence.

A. Production code debugging and analysis

One of the main challenges in production code debugging
is error traceability and reproducibility [5][6]. It is known
that it is nearly impossible to guarantee a software program

to be free of bugs despite the different valid attempts of
minimizing bugs in early development stages such as Test
Driven Development and other quality oriented techniques [7].
However, this means the problems that are left in code will
usually be the the hardest to find [8] and fix. One of the
reasons fixing production bugs is very hard is because one
has to understand what was happening inside the code when a
given error was detected. Many times, error reports will end up
with a ”Cannot Reproduce”/”Works for Me” reply from the
investigating party, as shown in various studies considering
bug lifecycle [9][10], that will lead nowhere as far as fixing
the problem goes. In other words, many times, an error will
be detected in production environment by a user, reported to
the proper quality assurance entity and have its correction
prevented because the error can not be reproduced. One of
the reasons for that is because it is really difficult run debug-
ging routines in production. During the software development
process, even in Quality Assurance stages, the environment is
usually very controlled with preconditions building the general
state to the testing point, test steps well documented and
relevant outputs recorded in logs. Such conveniences are rarely
available once the program reaches production stage as they
impact the system performance and size of storage required
by logs. To be able to achieve reproducibility in a software
computation three items are required:

• The Source Code Version. One will need the exact source
code version in which the error was detected in order to
reproduce the same steps the production code executed.
This is solved by the usage of any source code versioning
system.

• The Input. The error happened as someone or something -
in the case of automated interactions - tried to perform an
action, supplying an input to the system. This is usually
information known by the reporting party.

• The Environment State. As software consist of a set of
implemented rules running on some software state, the
state itself is a critical part of the computation while
being the least trivial to retrieve as it is constantly being
overwritten.

One common answer to production debugging in software
comes in the form of logging and it consists of key state-
ments inserted into specific code positions in order to gather
and record information about its current operation and state.
Among others, typical places for logging will usually be the
beginning of a method (collecting input data) and exit points,
both regular and exception ones (collecting output and error
data). Although largely used, the logging option does have
some significant drawbacks.

First, software logs don’t give the developers any tools
to actually rebuild software state on their own. They might
provide with software state information but actually rebuilding
the state will probably depend on multiple log entries that
won’t be easy to gather and then a mostly manual process
must be carried assuming the correct information was found.

Another problematic aspect of logging is that a log is only as

good as the information it collects [4]. The review of the state
of art shows two approaches that try to solve this problem.
The first is an empirical technique to enhance log generation,
which heavily relies on code quality and sub sequential follow
up and inspection to guarantee logging quality. The second is
a tool to automatically analyze source code and improve data
collection capabilities of software logs [11] that can greatly
help leveling the quality of the generated logs, but debugging
production code still remains an issue.

B. Business intelligence

The second area affected by the lack of internal state
history is Business Inteligence. In the past decade, Business
Intelligence (BI) has risen as an important decision support
tool for companies around the globe. Nowadays, it is hard to
imagine a successful company not taking advantage of the BI
tool set [12]. These applications largely use historical data in
order to generate reliable predictions for future operations. In
order to work with this historical data, BI software rely on
collecting data as it is generated and transforming it for its
own storage and purposes in a process called ETL. One of the
drawbacks of this approach is that one will only have valid
BI historical data on that information which was predicted
to be needed and thus included in the whole collection and
transformation processes.

On a high-level, any BI architecture will work pretty much
the same way. In a first tier, there are the various Data Sources
of interest where the raw data the company intends to analyze
lie. The second tier (Data Movement, Streaming Engines) is
where the collection of this data into the BI engine will happen
and is normally comprised of two kinds of process: the Extract
Transform Load (ETL) will query the tier one data sources
periodically for data and transform it into a more analysis-
friendly format and the Complex Event Processing (CEP) will
continuously monitor a data stream looking for predefined
patterns interesting to the business in question. Both the ETL
and CEP will push its data into the third tier (Data Warehouse
Servers) where BI data will actually be analyzed and stored.
In the fourth tier various Mid-Tier Servers will be present
to query and organize the collected data in different ways.
Finally, the fifth tier will contain the Front-End Applications
to present the data to the business in various forms.

One of the critical aspects for a successful BI system
is the presence of a cohesive, organized and historical data
warehouse [13] [14]. If one does not correctly predict which
data would be needed, in which interval and how to correctly
organize it during the ETL, one might end up with a large
amount of pointless data.

The main point here is that the ETL process is based on a
static model. One will watch the general state of the data and
take predefined snapshots of that state. If one changes its mind,
the new way of thinking will only be applied to subsequent
data extracted. As these analyses rely heavily on the amount
of data collected for effectiveness anytime a change is needed,
it will take sometime before new ones can be made.

III. DOMAIN DRIVEN DESIGN BUILDING BLOCKS

Before discussing Event Sourcing (ES) as a technique, it
is important to define three of the Domain Driven Design
building blocks [5], which are used on ES and their definitions.
Those concepts are Entity, Value Object and Aggregate.

Entity and Value Object are types of objects that are used
for defining the domain model. An Entity is an object with a
personal identity. This identity will never change throughout
its entire lifecycle even if all its internal attributes and state
change drastically. It should be noted that the concept of
lifecycle here mentioned is broader than that of the object
- which lasts from instantiation to destruction. This lifecycle
is the Entity’s, which continues even if its representing objects
are temporarily destroyed and stored in a database. A Value
Object, on the other hand, lacks this sort of identity. As the
name suggests, one is only worth for its internal value. When a
concept is modeled as a Value Object, the instance in question
is irrelevant for its use and, if you have two instances of a
Value Object with the same internal values, for all purposes
they are the same and can be used without differentiation.
Value Objects should also be treated as immutable.

The final construct, Aggregate is a cluster of Entities and
Value Objects that model a larger concept. Modeling such
concept in a single class would break the Single Responsibility
Principle [4] and most certainly be accounted as a Code Smell
and be candidate for refactoring [15]. Still, despite being
modeled as a group of classes, it is highly convenitent to
identify such concepts as a single construct and this idea was
called an Aggregate.

When discussing an Aggregate a few important related
concepts must be defined. The first of them is the Aggregate
Root which is the class that will hold its identity and all its
inner components (be them other Entities with Identities or
Value Objects).

The second point to be noted in an Aggregate is that the
Aggregate Root is in charge of Invariant Control. This concept
handles the idea that, within an Aggregate, there can be rules
that span more than one inner component and they must be
checked and enforced by a central component and componente
which should be the Aggregate Root.

With these concepts defined, we can move on to the
discussion on Event Sourcing itself.

IV. EVENT SOURCING

Event Sourcing (ES) was first proposed as a pattern by
Vernon Vaughn [16] while studying and extending Eric Evans’
Domain Driven Design (DDD) [5]. As it stands, ES presents
a very viable alternative to fix the aforementioned internal
state history loss problem. Although it is theoretically possible
to work on ES on different software contexts, this article
will only analyze the application of ES on object-oriented
software, specifically those created based on Evans’ Patterns
and Principles presented on his book [17]. As a specific
derivative of Evans’ DDD language, this article will discuss
his patterns and lessons learned during the ES implementation.

The concept behind event sourcing is a simple one: what
if, instead of storing the software state, one would store
the actions that led to this state? In a simple analysis, one
could relate this change of perspective to a Turing Machine.
Having universal computation power, a Turing Machine’s
computations consist of the same basic principles as modern
software and since Object Oriented languages, such as C#, are
usually Turing Complete, one could analyze ES behavior from
a Turing Machine’s perspective. In a simple model, a Turing
Machine will have:

• A state register, which will mark the machine’s current
internal state.

• A tape, filled with a finite alphabet.
• Production Rules, which define: if the machine is on state

X1 and reads the symbol Y1 from the tape, it will write
symbol Y2 on the tape, move it in direction D and assume
state X2.

Now suppose one would want to interrupt a Turing Machine
computation to restart it in the future. One way of doing it
would be to store the Production Rules, the current tape and
state register. When attempting to continue the computation,
simply reloading the Production Rules in to the machine,
using the same - or an effective copy - tape and setting
the State Register to the remembered state would make the
machine continue from the exact same point. That is a lot
like what we do in modern software. The business rules are
pretty much always ”saved” in the form of the executables and
libraries. The internal state is what one saves to the database,
transforming software objects into a relational structure.

Although this is the most usual way of running this opera-
tion, there is an alternative. Since Turing Machine is always
deterministic (a non-deterministic one can be converted into a
deterministic counterpart) executing the same production rule
over the same state-symbol tuple will always yield the same
result. This effectively means that, instead of storing a complex
mid-computation state, one could store a simple initial state
and the rules, and from that point the computation history
would follow the same steps again. This same logic could
be applied to modern software. Instead of storing the whole
software state from one computation to another, one could
store every ”action” or ”event” that triggered a state change.
That way, when one would need the software’s current state,
one could simply replay the events in the order they occurred
and obtain the exact same state again. By going through this
approach, though, one would be able to discover the state of
the software program in any given point in time, simply by
replaying the events only until that moment. Vernon [16] called
this technique Event Sourcing.

In an ES implementation, a DDD-style Domain Model
[18] contains Entities representing a strategic abstraction of
the real world domain being represented. These Entities will
then expose commands, i.e. methods with no return value
intended to alter the Object’s internal state, as proposed by
the Command Query Separation principle (CQS). Once a
command is triggered by an external actor [19], instead of

directly updating the Entity’s internal state, it should fire and
register an internal Domain Event [5] object which will then go
through an Event Handler that will be responsible for updating
the Entity’s state. To stay in accordance to the principles of
DDD this Domain Event can easily be in full compliance to
the Ubiquitous Language (UL) [5], by using terms of the UL
reflecting the action it represents. Figure 1, drawn as a free
form model, illustrates this process.

Fig. 1. Event sourcing processing an Entity command

As an example, a sales system is presented. The main con-
cept in this system is an Order. This Order will be composed
of several Line Items, each of them representing a Product and
a Quantity included. A way of modeling this would be having
two distinct Aggregates (Order and Product) with Order being
an Entity and the Aggregate Root of the Order Aggregate and
Line Item being another Entity but a member of the same
Aggregate. Product then, is the Entity Aggregate Root of the
Product Aggregate, limiting the kind of reference Line Item
can hold to it. Quantity is also a part of the Order Aggregate
being a Value Object and not an Entity. Figure 2 contains a
free form model representing this scenario.

Fig. 2. Order and Product Aggregates example

This conceptual model could be developed in both a regular
and ES way, but the difference to their coding would be drastic.
The pseudo-codes presented on Listing 1 and 2 show the
difference in organization and spirit of both approaches.

Listing 1. Common Coding Approach.
1 c l a s s Order
2{
3 p u b l i c vo id AddItem (P r o d u c t aP roduc t , I n t e g e r

q u a n t i t y)
4 {
5 t h i s . I t e m s . Add (new L i n e I t e m (aProduc t , q u a n t i t y))

;
6 }
7}

Listing 2. Event Sourcing Approach.
1 c l a s s Order : DomainEnt i ty
2{
3 p u b l i c vo id AddItem (P r o d u c t aP roduc t , I n t e g e r

q u a n t i t y)
4 {
5 t h i s . T r i g g e r (new LineI temAdded (aP roduc t ,

q u a n t i t y)) ;
6 }
7

8 p u b l i c vo id OnLineItemAdded (LineI temAdded e v e n t)
9 {

10 t h i s . I t e m s . Add (new L i n e I t e m (e v e n t . p r o d u c t , e v e n t
. q u a n t i t y)) ;

11 }
12

13 }

At a first glance, it should be noted that ES involves a lot
more coding. The simple method AddItem (lines 4-7) from
Listing 2 will be handled all in itself in a Common Coding
Approach, but will need four support methods to perform its
job in ES: OnLineItemAdded, Trigger, RegisterNewEvent and
ExecuteHandler. That way, at a first sight, ES presents one
drawback on making code bigger and more complex. Despite
the disadvantage, let’s take a look into the methods and classes
that will take part in an ES routine:

• LineItemAdded: This is the class that will carry the event
payload, i.e. the data needed to fulfill the event at a later
step. This class is mostly a data bag, carrying support
information (such as event date, see the implementation
analysis section for further details) and the actual payload
for the event, which in this example would be the Product
and Quantity involved in the Item creation.

• OnLineItemAdded: This method is the Event Handler for
the LineItemAdded Domain Event, which means it will
do most of the work the original method in the common
coding approach did, i.e., actually performing the state-
changing task.

• Event: Base class for all Domain Events.
• Trigger: The main method (common for all Event

Sourced Entities, present in the base class: DomainEntity)
to trigger any domain event from inside an Event Sourced
Entity. It calls RegisterNewEvent and ExecuteHandler.

• RegisterNewEvent: Inherited from DomainEntity, records,
on some sort of internal structure, which new events have
been triggered since the last time the class was loaded
from previous events.

• ExecuteHandler: Inherited from DomainEntity, looks for
an appropriate handler for a given Domain Event and will
invoke it immediately. The Event/Event Handler mapping

can be created in a few different ways which will impact
code readability and performance and are discussed in
the implementation section.

From the pseudo-code and element descriptions, it is notice-
able that, despite the fact that an Event Sourced command will
involve more coding than a standard one, much of this extra
code will be a one-time effort common to all Event Sourced
Entities. The actual extra code is restricted to the Domain
Event and its Event Handler. Also, it should be clear that
there is no delay between the issuing of a command and the
command effect to be observable from outside the Entity (i.e.
by the time the AddItem method finishes and execution control
returns to the calling method, the effect of the command will
have taken place in both ES and Common strategies).

Another aspect that should be clear is that from a client
point of view, operating on the Event Sourced Entity does
not represent any change in behavior or programming style.
Both queries and commands issued upon the Entity will behave
and look like exactly as a regular Entity would. The aspects,
though, which will present more changes in the process are
both persisting and loading such an Entity.

Since every command issued upon the Order Entity will
generate a new Event that will be registered in some internal
structure by means of the RegisterNewEvent method, it will
be possible to query which Events happened in an Aggregate
since the last time it was loaded from the database. That way,
when a command is issued to the Data Layer to Save the Order
Aggregate, instead of mapping the Order Aggregate’s fields to
a set of Tables or other paradigm’s storage structures, the Unit
of Work [18] will gather the Events issued since the Entity’s
last load and will store them into the Database. This database
will then be essentially an Event Store, recording primarily
every single Event from every Event Sourced Entity in its
context [20]. As an example, Table I shows how a portion of
an Event Source database could look like. For this example,
assume a unit of product 927 costs 10 units and product 478
costs 100 units. As it can be seen, the sequence of events is
quite easy to read and understand. In the first line a Customer,
coded 102, had its Purchase Limit Reduced to a New Limit of
100 currency units. One minute after that, Sales Rep 8 placed
a new Order to this Customer 102 with an Order Number 507.
One minute after, this Order 507 had 3 units of Product 927
Added to it. One minute further, the item containing Product
927 had its quantity changed to 4. Finally, fifty-seven minutes
after, Customer 102 had its Purchase Limit Increased to a New
Limit of 1000 currency units.

Now suppose this Sales Rep 8, at some point later in the
18th, calls the vendor of this particular software complaining
that, after adding 4 units of Product 927, he could not add 2
units of Product 478 and thus could not complete his sale. The
person investigating the issue, aware of the program’s business
rules, would ask whether Customer 102 has enough Purchase
Limit to have that Order, since the 6 units would total around
240 currency units. As we are past 3 PM (15:00) in the 18th,
the Sales Rep would verify that indeed Customer 102 has got
a limit of 1000 currency units and a new set of investigations

TABLE I
EVENT SOURCED DATABASE EXAMPLE

would take place in attempt to either find a bug - in this case,
a non-existing bug - or to understand what actually happened,
which could take a long time. Instead of that, using the Event
Sourced database, the investigating person could simply replay
the database in a local copy up to 2014-10-18 14:02:01 (or
even just 1 millisecond after 14:02:00), and actually perform
- and debug - the action to add an item of Product 478, with
2 units, to Order 507. He would then see that, by the time
the Order was being placed, Customer 102 indeed did have
a lower Purchase Limit, which was not enough to fulfill this
particular Order.

The second relevant aspect that should be noted in this
database extract is that every Event of every Entity is placed in
the same structure - in this case, a table. The reason for such
decision is that when time has come to rebuild the system
from its temporal data, having Events scattered over multiple
sources would present a great deal of issues. Suppose on
the example above that Order Events and Customer Events
either had its own table. When attempting to replay Order
Event number 101, one would need to check if every other
Event Structure had its events replayed up until 2014-10-18
14:01:00. This verification of other sources would need to
be done on every Event of every Entity greatly increasing the
number of queries needed for a rebuild. If Events are all stored
in a single timeline, though, no dependency checks are needed
and one can simply replay the Events in the order they appear.
The drawback of this decision is that all events would have to
fit under the same schema. To solve this problem, the Event
table contains a free form Event Data field that can hold some
serialized form of the Event-specific operational data.

With the basic structure of an Event Sourced command
and the storage structure for the Events out of the way, we
should look at how an ES system can rebuild its entities from
the Event Storage. The easiest way to rebuild an ES Entity
is to get it from its id. The Repository [18] responsible for
the operation will then simply query the Event Storage for
every single Event with that particular Entity Id and rebuild
the Entity from there. On the side of the Entity, one should
have a constructor that accepts a Collection of Events as its
parameter and rebuilds the Entity from that Collection. The
pseudo code is shown at Listing 3.

One might notice this constructor goes straight to the
event handlers ignoring the original commands and the event
registration. Of course, the original commands were only

responsible for keeping invariants checked and triggering the
event. If the event has already been triggered, it has passed
the invariant checking step not needing to be evaluated again.
Also, this way the event registration is not triggered again,
meaning this particular instance of the Entity will have a
clean record of recent events, thus, making the job easier
to save it when time comes - every event registered by the
RegisterEvent method will have been inserted after the load
from history, meaning it is not already in the database and
should be persisted.

Listing 3. An example of a constructor in an Entity type.
1 c l a s s Order
2{
3 p u b l i c Order (L i s t<Event> h i s t o r y)
4 {
5 f o r e a c h (Event e i n h i s t o r y)
6 {
7 t h i s . E x e c u t e H a n d l e r (e) ;
8 }
9 }

10 }

A question that might arise regarding ES is how well the
system performs with an entity that changes a lot during its
lifetime, i.e. an Entity that will have a large amount of history
events to be rebuilt from. In such cases, the ES system can
be expanded to support the concept of Snapshots. The idea of
a Snapshot is to capture an Entity in its entirety at a given
moment of time, thus removing the need from the system to
replay every single event in the event stream - only those
events that happened after the Snapshot need to be replayed.

V. CASE STUDY - EVENT SOURCING AT LIERA

Liera is an ERP being developed in a logistics-focused com-
pany during the operation of a previous ERP system. The new
ERP is evolving replacing module by module of the old one
during the company’s day-to-day operations, and integrating
with the old ERP’s modules that are still live in production.
That scenario, aggravated by an ERP’s natural complexity and
Brazil’s complicated tax laws - with various complex scenario-
specific tax rate changing - made in-production debugging
a critical aspect of development. Another important issue to
be dealt with was regarding answering questions about past
operations like why that particular tax rate was applied to
that particular order or what happened with this order being
rejected three times by logistics team before being shipped
to the customer. All these questions invoke knowledge about
past software rules and parameters usually unavailable in a
regular object oriented piece of software. With all those aspects
into play also being pushed by past issues with log-based
debugging, Event Sourcing quickly rose as the option to go
for the team.

A. Database Selection

Despite all the positive aspects pointed to adopting Event
Sourcing into the project, quite a few issues were still in
the way for the development team. The first of them lied
with the choice of database, where ACID/Non-ACID and the

usage of well-defined/flexible scheme are some of the analyzed
features.

Although a hot topic, the performance difference between
them was left out of discussion because too many factors
come into play when deciding the best performance achievable
in a given scenario. As pointed out by [21], MongoDB
performance is superior in inserts, updates and simple queries
while MSSQL is faster when querying non-key attributes and
aggregate queries. In another study, [22] concludes that, on
average, MongoDB would be faster than MSSQL but looking
at the data it is easy to see the performance varying depending
on the number of operations performed.In a third article, [23]
analyses, without benchmark data, the factors which might
improve NoSQL performance and concludes some of them to
be absent on different NoSQL implementations and able to be
replicated on SQL ones, that way, the performance would be
better analyzed from case to case.

Adding to these articles, Event Sourcing also brought a few
concerns regarding its own performance as a model. First,
the heavy usage of BLOBS in a MSSQL implementation
would probably mean a performance hit to that of the average
MSSQL system. Second, the fact that an Event Sourced system
does not run update operations on the Event Store - new
events are pushed into the store, never to be changed or
deleted - would certainly have some level of impact on the
performance balance between implementations. Finally, the
system being developed would not be possible without some
level of transaction control, which would hinder an eventual
MongoDB implementation. Considering all those factors, the
performance indicator was kept at large through most of the
decision process.

With the performance factor out of way, the database deci-
sion was reduced to native transaction handling on MSSQL’s
favor and schema flexibility pointing to MongoDB. In the end,
the team considered the BLOB overuse risk to outweigh the
manual transaction control to be performed on MongoDB, so
the NoSQL implementation was given a go.

B. Concurrency

The transaction control implementation took advantage of
the fact that the Event Store is an Insert-Only Collection and
new Events are only appended to the end of the stream. The
only conflict possible in this scenario is to have two events
altering the same entity being written at the same time by two
different sources, which can be handled in a basic scenario of
Optimistic Concurrency. To deal with this, both the base Event
Class and the base EventSourced Entity Class of the system
were given an Integer representing its Event Version. The
EventSourced Version value would be that of the last Event
either replayed during its reconstruction or the one of the last
Event generated through a command on its current instance.
The Event Version value would be one plus the current Version
of the EventSourced Entity where the Event was generated.
As the Event also carries the SourceId GUID of the Entity it
belongs to, on the Database side the pair SourceId - Version
of the Event Store documents was made unique. Since Events

should always be inserted in the order they were generated,
two concurrent UnitOfWork objects would not be able to push
Events that fail the Optimistic Concurrency constraint into the
Event Store.

Figure 3 illustrates this concept. In the first step, two concur-
rent processes load the same entity 101, which is currently in
version 10. Then, in step two, they both generate new events on
their local instances of the entities, creating events versioned
as 11. After that, in step three, process 1 saves its changes to
the event store, pushing its new event into the stream. Finally,
when we reach step four, process 2 attempts to do the same, it
meets an Optimistic Concurrency conflict as the Event Store
already possesses an event with Version 11 for Entity 101.
This shows process two holds an out of date version of the
Entity and its save operation must fail, but the Event Store
integrity will be safe.

Although this was a nice safeguard for the Event Store, it
still would not cover all the possible concurrency damages.
First, multi-entity transactions would not be protected at all.
One UnitOfWork could be committing two Entities at the
same time, and a concurrent one could be committing a single
Entity that would conflict with the other transaction (as in the
example shown before). If the second commit takes place first,
the first UnitOfWork would make an inconsistent commit of a
single Entity, since the other would fail through the Optimistic
Concurrency safeguard. Another possible failure would be an
UnitOfWork committing two Events of the same Entity and,
between the actual write operation of the first and the second
Event to the database, a very fast concurrent UnitOfWork reads
the updated Entity - thus having the Version number of the first
written Event of the other UnitOfWork - and writes a single
Event of its own. The second Event of the original UnitOfWork
would fail, and the first commit would then be inconsistent.

Figure 4 illustrates this scenario. In the first step, Process
1 already has Entity 101 loaded, with original Version 10 and
two new Events, 11 and 12 generated. In step two, it starts
its save routine and successfully pushes Event 11 into the
Store. At the same time, Process 2 loads Entity 101, now
with Version 11, even though the saving routine from Process
1 is not over. After that, in step three, Process 2, which
is faster, generates an Event versioned as 12 on Entity 101
and successfully pushes it into the stream. Then in step four,
when Process 1 tries to finish its original save operation, it
reaches a conflict on the Event versioned as 12. This is a
major concern since at this point the integrity of the Event
Store is completely compromised. First, Entity 101 Version
11 should never actually exist, since it was never intended to
be saved on this state (Process 1 intended to save Entity 101
as Version 12). Second, the Entity generated from Process 2 is
completely invalid since it is based off a state that should never
exist in the first place. From these scenarios, it is clear that
the whole group of Events being committed - whether from
a single Entity or not - need to be committed as an atomic
transaction.

To deal with this scenario, a Two-Phase Commit and
Two-Phase Locking UnitOfWork was designed. The designed

locking mechanism was simple and took advantage of the
design decision that every Entity had a GUID as its primary
ID. That way, a simple MongoDB collection where the field
LockedEntity (GUID) was unique held a record for each entity
locked. A few other support fields such as the locking trans-
action and lock creation time were added to help the process
of eventual lock cleanups, but the main process consisted of
the UnitOfWork writing an entry in that for each Entity being
committed. Being successful on that meant the locks were
achieved. Failing, meant one or more entities could not be
locked by this transaction so the commit would not take place.
As for the Two-Phase Commit, the Preparation phase would
begin with the Entity locking process and continue with a
version verification of every Entity present in the transaction.
With every Entity version validated and locked, the Commit
Phase would follow, pushing the new Events into the Store
and finally releasing the locks obtained. This design, of course,
means committing a large number of independent Entities into
the database could affect performance by a large amount, but
this wasn’t considered a problem since DDD design goals aim
to avoid multi-aggregate committing, thus, minimizing this
issue.

C. Entity Searches

The second overall issue to deal with the Event Sourcing
implementation is Entity searching. In a regular development
environment, it is usual to answer questions such as Find the
Orders made by Customer X, which usually means matching a
Order record against its Customer field. In an Event Sourcing
development though, these fields are not organized in an
intuitive way: an Entity’s data will be scattered between the
many events that constitute this Entity’s state. To solve this,
a few approaches were considered by the team. The first one
was a Command Query Responsibility Separation (CQRS). In
a CQRS environment, one maintains two distinct models to
work with. The command model is responsible for receiving
all of the software commands and since commands are usually
issued through the Entity’s ID, it is simple to handle them
in an Event Sourced Event Store. The query model then is
responsible for answering for any queries ran against the
system and is generated from the commands issued. That way,
there is a possible delay between a command being issued
and its result being reflected on the query models, but the
query models are able to be tailored for specific query needs,
having aggregations and other concerns addressed during their
generation, making them very efficient in runtime. Although it
may seem very well tailored for an Event Sourcing approach,
since the Event Store is almost a natural representation for a
command model and query models are very easily generated
from the Events. Despite these advantages, this strategy was
not chosen one because the team felt they were not sure
how the concurrent models and update delays would work
in production environment.

The second approach considered for this development was
a very similar one, but instead of a full segregated query
model, the model used for queries would be composed of

Fig. 3. Optimistic Concurrency Conflict

the snapshots of the various Entities mapped in the Event
Store. While certainly a simpler approach than the CQRS one,
the delay generating the read model is still present and this
approach was discarded.

The third approach relied on the fact that, using MongoDB,
the Event Store could be actually queried for event data. This
approach allowed to issue a query looking for events from
entities of Order type that contained the field Customer having
its value set as ”X”. The approach ended up being discarded
as well, after taking in consideration that there wouldn’t be
an effective way to index all the possible searches, once the
Event Store grew on size, finding a single document would
probably become too slow.

The final approach considered and chosen for this scenario
came from the third one where, instead of querying directly
into event data, one could make the Entities publish a list of
queryable keywords to be searched for in the future. When
an Event is about to be written to the database, it would
incorporate the current reading of this keyword collection into
an internal keyword array. Taking advantage of MongoDB’s
array field indexing capabilities, this field, common to every
Event on the Event Store, could be queried and indexed freely.

Despite being considered the most attractive for solving
the Entity searching problem, the keyword approach was not

free from issues itself though many of them were present in
the other approaches as well. One problem is the possibility
of false positive results. For example, consider the Student
Entity publishing the Student’s Name as one of its keywords.
If one day in the past the Student’s Name has been Bob, the
events of that era would carry the Bob keyword in them.
If later this particular Student has been renamed as Robert
a search for events containing Student as their Entity Type
and Bob as a keyword would find the older events of this
Entity making it a candidate result. Only after the Entity’s
full rebuild cycle it would be verified that this Entity is in
fact not a suitable result. This issue could possibly scale very
badly if present on a queryable field too frequently updated.
That way, the amount of false positives could increase very
fast forcing the reconstruction of many unneeded Entities
crippling search performance. To help mitigate this issue, a
secondary service was designed to search through the Event
Store for predefined Events that belong to Entities prone
to generating false positives in queries. This service would
update the Event’s keywords to reflect the current state of
the Entity, effectively removing false positives until the next
Entity update. Although this action violates the concept of
an Event Store being a push-only stream, with no updates or
deletes being made on Events, this sort of support information

Fig. 4. A more complex Optimistic Concurrency Conflict

update seemed to be safe, since it does not alter the actual
event data. In addition, as the rest of the system abode by the
push-only principle, this update routine would not even have
to worry about concurrency and other issues. The other issue
found was that the amount of keywords each Entity published
had to be kept relatively small otherwise the Event Store’s
size would quickly grow out of proportion. Since every event
pertaining to a given Entity carry every keyword published by
said Entity, this can quickly become a huge overhead reducing
the ratio between an Event’s true data and its support data
wasting precious storage. This restriction would of course
conflict with the freedom to query any desirable field from
an Entity so a compromise was made with the decision to use
the keyword approach for delay-sensitive data and operations
and use the second approach, the snapshot based search for the
not so delay-sensitive ones. The responsibility to decide which
search mode to use would rely on the Entity when choosing
which keywords to publish and the respective repository when
deciding how to query the database to find its results.

D. Code Versioning versus Events

The final aspect to be considered in the Event Sourcing
implementation was that, in order to replay and emulate past
operations, the Events had to be closely matched against the

code version that generated them since replaying an Event in
a different code version could generate very different results.
As such, every Event would carry the code version they were
created in among their support information and, on every code
release to production environment, the whole database was
snapshotted so that no Events from the previous code version
had to be replayed. In addition, whenever an old operation
had to be evaluated, the source code would be rolled back to
match the analyzed event version.

VI. CONCLUSION

Software programs usually suffer from lack of memory
of its past states. The way many programs are developed,
the internal state of its objects is constantly overwritten to
better represent the current scenario. Despite this reality, many
real life business scenarios could potentially benefit from the
knowledge of a program’s state evolution in time, such as
Business Intelligence (BI) and production debugging. Event
Sourcing presents itself as a different way to model Object
Oriented software, in order to incorporate the concept of state
evolution from its core. With its usage, it is expected that a
program will be able to return to its past states and be replayed
from them at any time, granting many benefits to analyzing
past computations.

The adoption of Event Sourcing at Liera brought all the
advertised advantages. In production debugging was made way
easier. Once an issue was identified with a user, the debugging
procedure was to simply get a production database mirror,
identify the event triggered by the action reported by the user
and erase the database from that point forward. After that,
take the exact action the user took and study the outcome.
This made complex production time problem solving a much
faster operation allowing for higher standards of quality of
service to be delivered. Past operation analysis was also greatly
benefited from ES. Liera’s parent company employs a complex
logistics scheme with lots of validations and security proce-
dures to enable very aggressive delivery deadlines pushing
as far as thirty minutes to shipping after order confirmation.
This scenario, which benefits from the production debugging
capabilities of ES, also takes great advantage on past operation
analysis. For instance, it is not a rare request on this scenario to
evaluate why a particular item had its shopping denied several
times during while fulfilling an order which eventually went
overdue over a week ago. ES enables the team to recreate
every attempt of including the item in the order, as it happened
back then, and understand the reasons for each denial using
the same process from production debugging. On this same
scenario, ES also allows the team to understand the whole
process involving an item denial by simply analyzing the
recorded events which will show attempts from a supervisor
to get clearance to enable shipping. This complex logistics
model also took advantage of the BI-style report generating
capabilities by transforming the events into new, business need
specific models to answer questions about past pertains. A
secondary, unpredicted, benefit of ES was that understanding
the Event flow in the Event Store was simple enough even
non-technical stakeholders were able to take part in analysis
and discussion of many of the mentioned scenarios.

In the end, though, the expected benefits from Event
Sourcing were achieved and the tradeoffs paid off but Event
Sourcing must still be considered a niche solution while it
matures to a less uncertain model.

Future works in the field could certainly explore bench-
marking some of the decisions taken in this implementa-
tion such as the difference between MSSQL and MongoDB
Event Sourcing, specifically regarding the performance loss
on MSSQL due to BLOB usage and on MongoDB due to
transaction support. Another interesting point to research and
benchmark could be classic SQL-ORM based entity searching
and materialization versus Event Sourcing approaches such as
keywords and event replay or CQRS.

REFERENCES

[1] C. Larman, Applying UML and Patterns: An Introduction to Object-
oriented Analysis and Design and Iterative Development, 3rd ed. Pren-
tice Hall PTR, 2005.

[2] C. Ireland, D. Bowers, M. Newton, and K. Waugh, “A classification
of object-relational impedance mismatch,” in Advances in Databases,
Knowledge, and Data Applications, 2009. DBKDA ’09. First Interna-
tional Conference on, March 2009, pp. 36–43.

[3] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice
Hall, 1997.

[4] R. C. Martin, Clean Code: A Handbook of Agile Software Craftsman-
ship, 1st ed. Prentice Hall, 2008.

[5] E. Evans, Domain-Driven Design: Tackling Complexity in the Heart of
Software, 1st ed. Addison-Wesley Professional, 2003.

[6] K. G. Camargo, F. C. Ferrari, and S. C. Fabbri, “Characterising the
state of the practice in software testing through a tmmi-based process,”
Journal of Software Engineering Research and Development, vol. 3,
no. 1, p. 7, 2015. [Online]. Available: http://dx.doi.org/10.1186/s40411-
015-0019-9

[7] A. Santos, P. Alves, E. Figueiredo, and F. Ferrari, “Avoiding code pitfalls
in aspect-oriented programming,” Science of Computer Programming,
vol. 119, pp. 31 – 50, 2016, selected papers of the Brazilian
Symposium on Programming Languages 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167642315004141

[8] I. Sommerville, Software Engineering, 10th ed. Pearson, 2015.
[9] P. Hooimeijer and W. Weimer, “Modeling bug report quality,”

in Proceedings of the Twenty-second IEEE/ACM International
Conference on Automated Software Engineering, ser. ASE ’07.
New York, NY, USA: ACM, 2007, pp. 34–43. [Online]. Available:
http://doi.acm.org/10.1145/1321631.1321639

[10] L. D. Panjer, “Predicting eclipse bug lifetimes,” in Proceedings of the
Fourth International Workshop on Mining Software Repositories, ser.
MSR ’07. Washington, DC, USA: IEEE Computer Society, 2007, pp.
29–. [Online]. Available: http://dx.doi.org/10.1109/MSR.2007.25

[11] D. Yuan, J. Zheng, S. Park, Y. Zhou, and S. Savage, “Improving
software diagnosability via log enhancement,” ACM Trans. Comput.
Syst., vol. 30, no. 1, pp. 4:1–4:28, Feb. 2012. [Online]. Available:
http://doi.acm.org/10.1145/2110356.2110360

[12] S. Chaudhuri, U. Dayal, and V. Narasayya, “An overview of business
intelligence technology,” Commun. ACM, vol. 54, no. 8, pp. 88–98, Aug.
2011. [Online]. Available: http://doi.acm.org/10.1145/1978542.1978562

[13] H. Watson and B. H. Wixom, “The current state of business intelligence,”
Computer, vol. 40, no. 9, pp. 96–99, Sept 2007.

[14] W. H. Inmon, “The data warehouse and data mining,” Commun.
ACM, vol. 39, no. 11, pp. 49–50, Nov. 1996. [Online]. Available:
http://doi.acm.org/10.1145/240455.240470

[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts, Refactoring:
Improving the Design of Existing Code, ser. Object Technology Series.
Addison-Wesley, 1999.

[16] V. Vernon, Implementing Domain-Driven Design, 1st ed. Addison-
Wesley Professional, 2013.

[17] B. Erb and F. Kargl, “Combining discrete event simulations and event
sourcing,” in Proceedings of the 7th International ICST Conference on
Simulation Tools and Techniques, ser. SIMUTools ’14. ICST, Brussels,
Belgium, Belgium: ICST (Institute for Computer Sciences, Social-
Informatics and Telecommunications Engineering), 2014, pp. 51–55.
[Online]. Available: https://doi.org/10.4108/icst.simutools.2014.254624

[18] M. Fowler, Patterns of Enterprise Application Architecture, 1st ed.
Addison-Wesley Professional, 2002.

[19] B. Erb, G. Habiger, and F. J. Hauck, “On the potential of event
sourcing for retroactive actor-based programming,” in First Workshop
on Programming Models and Languages for Distributed Computing,
ser. PMLDC ’16. New York, NY, USA: ACM, 2016, pp. 4:1–4:5.
[Online]. Available: http://doi.acm.org/10.1145/2957319.2957378

[20] B. Erb and F. Kargl, “A conceptual model for event-sourced
graph computing,” in Proceedings of the 9th ACM International
Conference on Distributed Event-Based Systems, ser. DEBS ’15. New
York, NY, USA: ACM, 2015, pp. 352–355. [Online]. Available:
http://doi.acm.org/10.1145/2675743.2776773

[21] Z. Parker, S. Poe, and S. V. Vrbsky, “Comparing nosql mongodb to
an sql db,” in Proceedings of the 51st ACM Southeast Conference,
ser. ACMSE ’13. New York, NY, USA: ACM, 2013, pp. 5:1–5:6.
[Online]. Available: http://doi.acm.org/10.1145/2498328.2500047

[22] Y. Li and S. Manoharan, “A performance comparison of sql and
nosql databases,” in Communications, Computers and Signal Processing
(PACRIM), 2013 IEEE Pacific Rim Conference on, Aug 2013, pp. 15–19.

[23] M. Stonebraker, “Sql databases v. nosql databases,” Commun.
ACM, vol. 53, no. 4, pp. 10–11, Apr. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1721654.1721659

