
VISMELLS: An Interactive Visualization for
Identifying and Evaluating the Effects of Code

Smells on Software Projects
Isaac de Jesus Silva∗, Matheus Sampaio R. Santos∗, Leandro Lopes Ramos∗, Luis Paulo da S. Carvalho∗

∗ Instituto Federal da Bahia (IFBA)
Address: Av. Amazonas, 3150, Zabelê
Cite/State: Vitória da Conquista, Bahia,

Postcode: 45.075-265
{yzaak.silva, msampaio.mail, leandrolopesramos1992, luispscarvalho}@gmail.com

Abstract—Context: Code Smells indicate potential problems
in the making of software projects. If considered harmful, they
must be removed from the source code. Thus, it is important
to enable developers to spot the source code artifacts that have
been affected by Smells. Problem: however, there is a lack of
adequate approaches to make the identification of Code Smells
easier while providing details about their occurrences. Goals:
in order to help developers to identify Code Smells, we have
developed VISMELLS, an interactive visualization. Method: we
elicited requirements with the purpose of defining the function-
alities of VISMELLS. After implementing the visualization we
went through a qualitative analysis of its application with the
help of professional software developers and computer science
students. Lastly, we used the data obtained from the evaluation to
determine if VISMELLS met the targeted requirements. Results:
as a result, we were able to confirm that VISMELLS fulfilled its
intended purpose as it received good reviews from testers.

Index Terms—Code Smells, Visualization, VISMELLS

I. INTRODUCTION

Code Smell is a concept that refers to patterns or aspects
of a project that can cause problems in the development and
maintenance of a system [1] [2]. Although several researchers
have already studied Code Smells, demands related to their
detection and visualization have not been fully satisfied yet
[3] (more details in Section IV).

Oliveira et al. [4] claim that Code Smell identification can
cause evaluation failures on a software source-code if done
manually. They mention the case of inexperienced developers,
who can face difficulties to confirm whether a given element
is affected or not by a Code Smell.

A way to help developers verify and understand the oc-
currence of Code Smells in software is the use of software
visualization. Koschke [5] defines Software visualization as
the mapping between software artifacts and graphical rep-
resentations. As a motivation for the use of visualizations,
he highlights the fact that software is invisible to developers
and need to take a visual form so that they can manage it.
According to Carneiro [6], visualization allows the represen-
tation of a complex conceptual structure through an intuitive
visual display that reveals patterns of interest to users. Thus,
visualizations abstract from users the cognitive effort required

to interpret patterns, and he/she just needs to use her/his
perception abilities.

Considering the perception-related advantages associated
with software visualizations, this paper aims to evolve the Vis-
miner platform [7], using the Zoomable Circle Packing chart
from D3.js1 library, to create the VISMELLS visualization.
D3.js has been used by many approaches as a standard library
to create visualizations. For instance, Rodriguez et al. [8] used
D3.js to create a tool to enable the visualization of refactoring
opportunities in SOA applications. Specifically, the goal of
VISMELLS is to present Code Smells and the values of the
software metrics used in their detection in a visual manner.

In order to implement VISMELLS, we considered the
following requirements, which were obtained from consulting
with specialists in the academic area of development and
software engineering (Section III contains more details about
how we elicited the requirements):

1) Requirement 1 (RQ1): the visualization must allow the
visual identification of classes and methods affected
by Code Smells. Thus, making it easier for software
developers to diagnose the loss or increase of source
code quality by visualizing either the occurrence or
absence of Code Smells.

2) Requirement 2 (RQ2): the visualization must inform
the values of the metrics used in Code Smell detection,
enabling a visual evaluation of their quantification.

3) Requirement 3 (RQ3): the visualization must allow
filtering by: (a) methods and classes affected by Code
Smells; and (b) project’s versions throughout its evo-
lution. By allowing filtering methods and classes, the
system facilitates their identification, enabling the user
to give them specific attention during the identification
of Code Smells. Filtering by the version of the project
allows verifying in which version the Code Smells
appeared while allowing the monitoring of their devel-
opment as software systems evolve.

We confirm the fulfillment of the requirements in Section
VI, which presents an evaluation on the use of VISMELLS.

1https://d3js.org/



We based the evaluation on a survey submitted to professionals
and students in the area of Information Technology and Com-
puter Science. As a result, we found out that the visualization
was well accepted by the users.

The rest of this paper is divided into the following sections:
the method used in this study is explained in the Section II;
details about how we elicited the requirements can be found in
Section III; Section IV presents a study on papers that report
works similar to this; the details about how the Visminer plat-
form was used to create VISMELLS are described in Section
V; Section VI presents information about how VISMELLS
was evaluated; threats to validity are highlighted in Section
VII; and conclusion and future work are covered in Section
VIII.

II. METHOD USED TO DEVELOP AND EVALUATE
VISMELLS

In this section, we highlight the activities of the method
we used to carry out the development and evaluation of
VISMELLS. The method is shown in Figure 1.

Requirements elicitation was the first activity we performed
during VISMELLS development. This activity led to the
definition of the features and functional principles that should
be fulfilled by VISMELLS. We studied the state of the art
during the second activity of the method to check the existence
of similar previous efforts that had the same requirements. The
third activity concerned the implementation of VISMELLS.
After the development phase, The users evaluated VISMELLS.
With this purpose in mind we conducted a qualitative analysis
during the fourth activity. The fifth step is related to the com-
pilation of the data obtained from the analysis. We obtained
statistical data from the qualitativy analysis and used it to
determine if VISMELLS fulfilled the expected requirements.

III. REQUIREMENTS FOR VISMELLS

According to Kienle and Miller [9] visualization tools are
more effective when they meet some functional requirements
that are considered important to improve user understanding.
As valid functionalities, they mention: filtering options, focus
by zoom and colorization. When these requirements are met,
the user can interact with the tool and they are not overloaded
with excessive amount of information. This can be made
possible by: (i) filtering data through the visualization, which
can allow the selection of what the user wants to view and, (ii)
changing the focus of the visualization in an interactive way,
as, for instance, highlighting items of the visualization, making
possible for users to differentiate objects by their color.

With the purpose of eliciting VISMELLS requirements,
we contacted experts with professional and academic profiles
comprised of university teachers, software programmers, and
system analysts. Provided that the participants’ experience
varies between 3 to 30 years, we are sure that we considered
an adequate spectrum of opinions among people who have
been working for both long and short periods of time in
the area of Information Systems (six experts participated in
the evaluation). The requirements were introduced to them

and, later on, a survey was applied to collect their opinions.
The survey contained 5 answers for each requirement. Each
answer corresponding to a degree of agreement relative to
the relevance of the requirements. That is to say, for each
requirement, they should choose an option among 5: very
relevant, reasonably relevant, indifferent, little relevant, not
relevant. The list below describes the requirement and the
agreement/disagreement scenario:

1) Requirement 1 (RQ1): VISMELLS must allow the
visual identification of classes and methods affected
by Code Smells. Therefore, helping software engineers
to diagnose the loss or increase of the quality of the
source code considering the occurrence/absence of Code
Smells. 5 out of 6 participants answered that this require-
ment is “Very Relevant” while 1 of them answered it is
“Reasonably Relevant”.

2) Requirement 2 (RQ2): VISMELLS has to inform the
values of the software metrics used to detect Code
Smells in relation to methods and classes affected by
them, allowing a visual evaluation of metrics quantifica-
tion. 4 out of 6 answered it is “Very Relevant” and two
of them answered it is “Reasonably Relevant”.

3) Requirement 3 (RQ3): VISMELLS has to allow the
filtration of Code Smells by: (a) methods and classes
affected by them; and (b) versions of the project through
the software evolution. By allowing to filter methods
and classes, VISMELLS can support the identification of
Smells in a way that the user can focus his/her attention
on the mitigation of the potential negative effects of
Code Smells. The filtration by the version of the project
allows users to check in which version a certain Code
Smell appeared. 5 of 6 answered it is “Very Relevant”
and 1 answered it is “Indifferent”.

From the requirements evaluation we observed that the
experts agreed towards their importance. Understanding how
the requirements would be evaluated by software development
experts was important to make us sure that VISMELLS would
have valid and useful functionalities. In order to comply with
these requirements, we embedded in VISMELLS the following
features:

1) Coloring of selected Code Smell: when the user selects
a particular Code Smell, its occurrences will be visually
differentiated by a specific color (red) in the graphics
(Requirement RQ1).

2) Filtration by: (a) version of the project (or tags): it is
possible to choose a version of the software that the user
wants to investigate; and (b) affected objects: the user
can visualize only the objects that contain the selected
Code Smell (Requirements RQ1 and RQ3).

3) Highlighting and detailing by zoom: it is possible to ap-
ply the “zoom in” option, which allows the visualization
of details pertaining Code Smells and the metrics used
to detect them (Requirement RQ2).



Fig. 1. Method used to develop and evaluate VISMELLS.

IV. RELATED WORK

To carry out the work described in this paper we deemed
as important to check the existence of previous efforts that
have focused on providing mechanisms for Code Smells
visualization. The following paragraphs discuss such efforts.

Paiva [10] compares three Code Smells detection tools in
order to: (a) check for an increasing in the number of smells
found in software projects in the course of their evolution; and
(b) evaluate the accuracy of each detection tool. Although all
the three tools show the amount of detected Code Smells,
it is not pointed whether they can display the values of
the metrics used in the detection. Regarding evaluating the
evolution of Code Smells, the application of the tools is made
on each version of the evaluated software separately, in a non-
interactive way.

Murphy-Hill and Black [11] present Stench Blossom plugin,
that allows an interactive visualization of Code Smells in the
Eclipse environment. The plugin provides three visualization
perspectives: Ambient View, Active View and Explanation
View. The perspectives allow the programmer to know the
level of incidence, identification and technical details of Code
Smells. However, the possibility of an evolutionary visualiza-
tion of Code Smells is restricted to visualizing only the version
that is currently in use by the programmer.

Parnin et al. [12] implemented a visualization catalog for
code smells detection through their tool: NosePrints. Although
it has been tested in several commercial and open source
systems, the tool does not detail the values of the software
metrics used in the detection, nor it allows filtering the
visualizations by the software system’s version.

Vidal et al. [13] present JSpIRIT, a tool that allows the
identification of technical debt in the form of Code Smells.
JSpIRIT allows developers to add strategies for detecting new
smells, and to prioritize them through configuration settings.
However, JSpIRIT does not have visualizations that relate
detected smells to their metrics. As well, it does not allow
filtering the detection by the version of the analyzed project.

Conceição et al. [14] present Crowdsmelling, a tool that
relies on the concept of collective intelligence. This concept

uses a code smells database, which is populated by user
collaboration through a plugin integrated to the Eclipse IDE.
The Code Smells are measured from a software project and
the visualization is created by an integrated tool called Smelly
Maps. However, the paper does not inform the possibility of
visualizations between different versions of the software.

Carneiro et al. [15] present SourceMiner, a plugin for
Eclipse IDE that has multiple visualization modes. SourceM-
iner makes it possible to view project data according to
concerns: dependency, inheritance, security and persistence.
Code Smells can be evaluated according to each concern. The
paper does not tell whether a user can view the metrics applied
in the detection of the Code Smells.

In Table I there is a comparative of the related works,
where it is shown whether they meet or not the requirements
considered in Section I.

V. CODE SMELLS VISUALIZATION USING VISMELLS
A. VISMELLS architecture

The architecture, presented in Figure 2, shows that VIS-
MELLS depends on two modules from the Visminer platform:

1) Repository Miner (RM): RM is the module responsible
for mining, calculating and analyzing software projects.
RM is also responsible for registering all information
about metrics and Code Smells in a non-relational
database, MongoDB2. To accomplish this, RM uses a
Java library called Java Development Tools (JDT) that
allows the analysis of Abstract Syntactic Trees (AST)
obtained from the source code of software systems.

2) Visminer Dashboard (VD): VD is the module that sup-
ports the development of visualizations by allowing the
(re)use of visualization libraries, such as D3.js. It also
enables the integration of visualization libraries with
web applications with the assistance of a JavaScript
Framework, AngularJS 3.

We chose the Zoomable Circle Packing chart to support the
visualization of Code Smells affecting classes and methods

2https://www.mongodb.com/
3https://angularjs.org/



TABLE I
REQUIREMENTS X RELATED WORK

Related work RQ3 RQ2 RQ1
Paiva [10] Does not meet Not informed Meets
Murphy-Hill and Black [11] Does not meet Not informed Meets
Conceição et al. [14] Does not meet Not informed Meets
Parnin et al. [12] Does not meet Does not meet Meets
Vidal et al. [13] Does not meet Does not meet Does not meet
Carneiro et al. [15] Does not meet Does not meet Meets

Fig. 2. VISMELLS architecture

(Requirement RQ1). In the visualization shown in Figure 8
(all figures referenced by this section can be found at the
end of this paper), the larger circle represents a version of
a software. The inner circles display packages that belongs
to the software. The circles inside the package-related circles
represent classes and their metrics (Requirement RQ2). The
metrics are illustrated by the white circles. The radius of each
circle is the value measured for a metric used to detect the
presence of a Code Smell. The size of the white circles is
proportional to values of the metrics, which allows the visual
recognition of their influence on the measurement of source
code artifacts. Classes that were identified as God Classes are
represented by red circles. The red color is used to highlight
the occurrence of smells.

One important requirement for making VISMELLS was
the possibility to filter Code Smells occurrences in different
versions of the analyzed projects (Requirement RQ3). This is
possible, because RM is able to retrieve information about ver-
sioning from tags stored on version control systems. In Figure
10 it is possible to see the filtering options of VISMELLS. In
the ‘Tags’ field (highlighted by letter A), the user can select a
version from the project under analysis. In the ‘Code Smells’
field (highlighted by letter B) it is possible to select a smell.
Available smells are: God Class, Long Method, Brain Method,
Brain Class and Complex Method. The ‘Only affected objects’
option (highlighted by letter C), if selected, will enable the
retrieval of only classes or methods affected by the selected
Code Smell. If this option is not selected, the visualization will
show all classes or methods, but emphasizing occurrences of
smells with red colored circles.

The visualization provides understanding of the details
pertaining each detected Code Smells through the zoom
functionality. It is possible to browse between application
levels (packages, classes, and methods) to visualize the metrics
values as shown in Figure 9. Letter ‘A’ highlights the zoom
applied upon a package. In this package, the red circles
represent classes identified as God Class. By zooming into
VISMELLS, the user can see which metrics was used to mine
smells, as pointed out by letter ‘B’ letter (Requirement RQ2).

VI. QUALITATIVE ANALYSIS

The qualitative analysis was performed with 15 participants.
Our intention was to validate VISMELLS. The participants
were composed of professionals and students with expertise
in Information Technology and Computer Science. They used
VISMELLS to analyze a software project and answered a
survey containing 5 questions4. The following subsections
describe the steps of our qualitative analysis.

A. Analysis Setup

To carry out our qualitative analysis, we established some
necessary conditions to give participants the support to under-
stand how to use and evaluate VISMELLS. We provided:

1) A web server in which VISMELLS was installed and
configured. The web server was made accessible through
public IP, so that users could select versions of a
software project and visualize Code Smells on their
browsers.

4the questions are described in this section’s figure’s legends.



2) A video to: (i) explain the theory about Code Smells,
(ii) show VISMELLS and demonstrate how to use
it. The purpose of the video was to provide a the-
oretical material to guide the users. Available in:
http://goo.gl/AmDVZO.

3) A tutorial with images and text explaining how to use
VISMELLS, so that they could have a better understand-
ing about how to evaluate it.

B. Analysis Results

After the conclusion of the qualitative analysis, we quan-
tified the survey’s data and used it to evaluate if the tool
efficiently met its initial requirements (as described in Section
III). We also used the results of the evaluation to identify
deficiencies.

The analysis of the information presented in Figure 3 al-
lowed us to visualize the opinion of the participants regarding
the visualization of Code Smells. Out of the 15 answers
obtained in the research, about 93.3% of the participants fully
agreed that it was possible to visualize software projects’
Code Smells with the help of VISMELLS. 6.7% participants
partially agreed that the tool met the Code Smells visualization
goal. Considering such results it is possible to conclude
VISMELLS achieved the objective to be an assisting tool
regarding the visualization of Code Smells (RQ1).

In the graphic presented in Figure 4, participants were asked
if VISMELLS allowed them to identify when Code Smells
began to appear in the project. Out of the 15 participants,
66.7% answered that they fully agreed that the tool helped
them to visualize the Code Smells’ origin, while 20% said
that they partially agreed and 13.3% said that they were
indifferent about this feature. Although it was not unanimous,
such numbers showed that the participants agreed that the tool
supported them in identifying the appearance of Code Smells
in the source code of software projects. We are positive that
participants’ answers support the affirmation that VISMELLS
fulfills RQ3.

Figure 5 shows how the participants agreed/disagreed about
VISMELLS having presented the metrics of Code Smells in
an explicit adequate way. Out of the 15 responses, 93.3%
fully agreed that the metrics were clearly detected and 6.7%
partially agreed with the affirmation. The results showed the
participants’ agreement that the tool allows users to visualize
the values of the metrics used to detect the Code Smells
(fulfilling RQ2).

Figure 6 shows the degree of agreement of the participants
in respect with VISMELLS making the visualization of the
classes and methods affected by Code Smells possible. The
agreement was unanimous, with 53.3% of the participants fully
agreeing and the rest agreeing partially. This indicates that the
tool achieves the objective of evidencing the elements of code
affected by Code Smells (RQ3).

Figure 7 reveals that it was difficult for the participants
to understand the information visualized with the help of
VISMELLS. There was a divergence of opinions among the
participants, where 39% disagreed (6.7% totally disagreed

and 33.3% partially disagreed) about the opinion that they
had difficulties in understanding the information. 26.7% were
indifferent and 33.4% (6.7% fully and 26.7% partially) an-
swered that the information from the graphics was difficult
to understand. The difficulties about the interpretation of the
visualizations can be explained by the fact that some of them
were not familiar with the concepts related to Code Smells and
software metrics. Perhaps, a future reevaluation of VISMELLS
must include a thorough enlightenment of the participants
about such concepts.

VII. THREATS TO VALIDITY

This section highlights the limitations and threats related to
the development and evaluation of VISMELLS.

Threat to the Construct: this type of threat is associated
with the relationship between theory and observation. The
main threat dwells in the fact that not all specialists that
participated in the qualitative analysis had knowledge about
Code Smell until the day they evaluated VISMELLS. Even
though they were trained about the main concepts related
to Code Smells, their lack of experience on this knowledge
area may have affected some answers provided by them.
Consequently, this can reinforce the necessity of considering
further evaluation steps, as the one suggested by [4]: the
inclusion of difficulties of inexperienced developers when they
have to identify smells in software projects.

Threat to the Internal Validity: internal validity concerns
factors that could have influenced the results of our study.
We relied on the opinions provided by six specialists to elicite
VISMELLS’ requirements. Later on, we used a different group
of people to carry out our qualitative analysis. This meaning,
the specialists who helped us to shape the requirements were
not present in the evaluation. This does not reflect the usual
software engineering approach of validating software systems
by consulting the people who originally define a system’s
requirements. While we are positive that having 15 participants
to evaluate VISMELLS helped us to ensure its applicability,
we should have included the six original ones in the evaluation
with the purpose of confirming with more accuracy that the
requirements were fulfilled.

Threat to the External Validity: this threat is related to the
degree to which our findings can be generalized. The fact the
participants tested VISMELLS accessing it through public IP
can be considered a threat. As they could evaluate it at home,
this situation does not reflect a scenario in which developers
work in groups to identify smells. Thus, although we have
not considered such threat to be too critical to invalidate the
qualitative analysis, we do not encourage extrapolating the
results to fully reflect a real usage scenario.

Threat to the Conclusion: conclusion validity comprises
reasons why conclusions based on an analysis may be incor-
rect. The evaluation of VISMELLS was based on only one
example of software project, i.e, just one software project was
mined and analyzed to detect Code Smells, PagSeguro-Java85.

5https://github.com/pagseguro/java



Fig. 3. Question “Has the tool made possible the visualization of Code Smells?”

Fig. 4. Question “Has the tool made possible to identify when Code Smells appeared in a software project?”

This can cause a threat in the sense that it was not offered to
participants a variability of software projects to provide them
conditions to evaluate other examples of use of VISMELLS.
We will look further to evaluate VISMELLS on different types
of project and rerun our qualitative analysis.

VIII. CONCLUSION AND FUTURE WORK

This paper describes the development and the validation of
VISMELLS, an interactive visualization for the identification
of Code Smells. VISMELLS aims at supporting interaction
of users with information related to the occurrence of Code

Smells in software projects. We used the visual library,
D3.js, and its chart, Zoomable Circle Packing, to develop
VISMELLS. The making of VISMELLS also counted on its
integration with Visminer, a platform for mining and analyzing
software projects. The motivation behind this work resides on
the fact that there is still a demand to help software developers
to identify smells. As such demand has not been fully satisfied
yet an approach that uses software visualization would be
appropriate to meet this need.

After defining VISMELLS’ requirements and developing
the visualization, we evaluated VISMELLS during a quali-



Fig. 5. Question “Has the tool clearly presented the metrics used to detect Code Smells?”

Fig. 6. Question “Has the tool highlighted the identified Code Smells, including classes and/or methods that can potentially, in the future, be affected by
Code Smells?”

tative analysis. We based the analysis on tests that counted
on the participation of users. At the end of the evaluation
users filled answers into a survey. The analysis of the survey’s
data concluded that VISMELLS can facilitate the discovery
of Code Smells. VISMELLS also enables the visualization
of values from software metrics used to detect Code Smells.
In general, the visualization fulfilled the initial goals. We
highlight how each requirement was fulfilled in Table II.

As future work, we highlight the application and tests of
new visualization metaphors using D3.js. We also intend to

improve the display of information related to Code Smells
in a way to solve the difficulties in the use of VISMELLS
as pointed out by some participants during the qualitative
analysis. As well, it is important to incorporate the detection
of other Code Smells and new filtering options (e.g., classes
and methods by name).

ACKNOWLEDGMENT

We would like to thank the professors and students at the
Federal Institute of Bahia for their valuable contribution in the



Fig. 7. Question “Were there any difficulties to understand the display of information by the visualization?”

TABLE II
REQUIREMENTS FULFILLMENT

Requirement How we fulfilled it
RQ1 VISMELLS allows the visual identification of

classes and methods affected by Code Smells
through the use of the library D3.js and
the Zoomable Circle Packing chart

RQ2 VISMELLS informs the values of software metrics
used to detect Code Smells in methods
and classes

RQ3 VISMELLS allows the filtering of methods and
classes affected by Smells. It also provides ways to
filter the visualization to show data of
specific versions of software projects

making and validation of VISMELLS.

REFERENCES

[1] S. M. Olbrich, D. S. Cruzes, and D. I. K. Sjberg, “Are all code smells
harmful? a study of god classes and brain classes in the evolution of
three open source systems,” in 2010 IEEE International Conference on
Software Maintenance, Sept 2010, pp. 1–10.

[2] W. Ribeiro, V. Braganholo, and L. Murta, “A study about the life
cycle of code anomalies,” in 2016 X Brazilian Symposium on Software
Components, Architectures and Reuse (SBCARS), Sept 2016, pp. 71–80.

[3] M. Steinbeck, “A new approach of visualizing code smells,”
Softwaretechnik-Trends, vol. 36, no. 2, 2016.

[4] R. Oliveira, B. Estácio, A. Garcia, S. Marczak, R. Prikladnicki, M. Kali-
nowski, and C. Lucena, “Identifying code smells with collaborative
practices: A controlled experiment,” in 2016 X Brazilian Symposium on
Software Components, Architectures and Reuse (SBCARS), Sept 2016,
pp. 61–70.

[5] R. Koschke, “Software visualization in software maintenance, reverse
engineering, and re-engineering: A research survey,” Journal of
Software Maintenance, vol. 15, no. 2, pp. 87–109, Mar. 2003. [Online].
Available: http://dx.doi.org/10.1002/smr.270

[6] G. d. F. Carneiro, “Sourceminer: Um ambiente integrado para
visualização multi-perspectiva de software,” Ph.D. dissertation, Federal
University of Bahia (UFBA), 2013.

[7] T. S. Mendes, D. Almeida, N. Alves, R. Spı́nola, R. Novais, and
M. Mendonca, “Visminertd – an open source tool to support the
monitoring of the technical debt evolution using software visualization,”
in 17th International Conference on Enterprise Information Systems.
ICEIS, 2015.

[8] G. Rodriguez, A. Teyseyre, . Soria, and L. Berdun, “A visualization tool
to detect refactoring opportunities in soa applications,” in 2017 XLIII
Latin American Computer Conference (CLEI), Sept 2017, pp. 1–10.

[9] H. M. Kienle and H. A. Muiller, “Requirements of software
visualization tools: A literature survey,” 2007. [Online]. Available:
http://ieeexplore.ieee.org/document/4290693/

[10] J. P. E. F. C. S. Thanis Paiva, Amanda Damasceno, “Experimental
evaluation of code smell detection tools,” in 3th Workshop on Software
Visualization, Evolution and Maintenance. SBC, 2016.

[11] E. Murphy-Hill and A. P. Black, “An interactive ambient visualization
for code smells,” in Proceedings of the 5th International
Symposium on Software Visualization, ser. SOFTVIS ’10. New
York, NY, USA: ACM, 2010, pp. 5–14. [Online]. Available:
http://doi.acm.org/10.1145/1879211.1879216

[12] C. Parnin, C. Görg, and O. Nnadi, “A catalogue of lightweight
visualizations to support code smell inspection,” in Proceedings of
the 4th ACM Symposium on Software Visualization, ser. SoftVis ’08.
New York, NY, USA: ACM, 2008, pp. 77–86. [Online]. Available:
http://doi.acm.org/10.1145/1409720.1409733

[13] S. Vidal, H. Vazquez, J. A. Diaz-Pace, C. Marcos, A. Garcia, and
W. Oizumi, “Jspirit: a flexible tool for the analysis of code smells,” in
2015 34th International Conference of the Chilean Computer Science
Society (SCCC), Nov 2015, pp. 1–6.

[14] Conceicao, G. d. F. Carneiro, and F. B. e. Abreu, “Streamlining code
smells: Using collective intelligence and visualization,” in 2014 9th
International Conference on the Quality of Information and Commu-
nications Technology, Sept 2014, pp. 306–311.

[15] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo, C. Sant’Anna,
A. Garcia, and M. Mendonca, “Identifying code smells with multiple
concern views,” in 2010 Brazilian Symposium on Software Engineering,
Sept 2010, pp. 128–137.

APPENDIX
VISMELLS IN ACTION

We further provide samples from VISMELLS’s visualiza-
tion as it is used to analyze PagSeguro’s source code.



Fig. 8. Highlighting the occurrence of Code Smells.



Fig. 9. Zooming into the metrics.

Fig. 10. Filtering options.


