
Model-Driven Development of an Interpreter
for the Object Constraint Language

Gonzalo Sintas, Leticia Vaz Lutz, Daniel Calegari, Marcos Viera
Instituto de Computación, Facultad de Ingenierı́a

Universidad de la República
Montevideo, Uruguay, 11300

{gonzalo.sintas,leticia.vaz.lutz,dcalegar,mviera}@fing.edu.uy

Abstract—The Object Constraint Language (OCL) plays a
central role in many Model-Driven Engineering (MDE) initiatives
for expressing invariant conditions in models, among other uses.
It is defined as a side-effect free language combining model-
oriented and functional features. There are works that explore the
use of the functional paradigm for the interpretation of OCL such
that most of the functional infrastructure could be predefined and
automatically generated. In this work we present the MDE-based
automatic generation of such functional infrastructure based on
Haskell. We also present how the infrastructure is connected
with the Eclipse Modeling Framework for final users, allowing
the internal complexity to be transparent to them. We provide
a different perspective on the interpretation of OCL, together
with a sandbox that allows to evaluate in a unified way several
proposals that already exist in the scientific community, as well
as to collaborate with the migration of functional aspects to the
MDE paradigm.

Keywords: Object Constraint Language, Model-Driven Engi-
neering, Haskell, Eclipse Modeling Framework.

I. INTRODUCTION

The Model-Driven Engineering paradigm (MDE, [1]) adopts
a model-centric approach for the software engineering process
(construction, maintenance, reverse engineering, etc.) Models
are abstractions of a system (or some aspects of it) allowing
us to deal with its intrinsic complexity in a simplified man-
ner. They are formally defined based on metamodels, which
capture the syntax and semantics of a modeling language and
thus provide the context needed for expressing well-formed
constraints for them (known as the conformance relation).
Moreover, the use of automated mechanisms (model trans-
formations), e.g.: for building the software system, tends to
improve efficiency on the whole engineering process.

In this context, the Object Constraint Language (OCL, [2],
[3]) plays a central role. In many concrete MDE initiatives,
e.g.: the Model-Driven Architecture (MDA, [4]) approach, the
OCL is used to specify conditions (invariants) that cannot be
captured by the structural rules of the metamodeling language,
and also used for constraining and computing object values in
the definition of model transformation rules. OCL is also used
for the description of pre- and post-conditions on operations,
and the specification of guards in behavioral diagrams, among
many other purposes.

The OCL is defined as a side-effect-free language com-
bining model-oriented and functional features, e.g. type in-
heritance and functions composition, respectively. In the last

few years, many authors propose the inclusion of functional
features in the language, e.g. pattern matching [5], lambda
expressions [6] and lazy evaluation [7]. These concepts have
a direct representation in functional programming languages
(e.g.: Haskell [8]) and could be not easily interpreted following
a model-oriented approach. Thus, a functional approach comes
as a reasonable alternative for exploiting such features.

To cope with this kind of situations, a separation of duties
between software developers is usually proposed, giving rise
to different technological spaces [9], i.e.: working contexts
with a set of associated concepts, body of knowledge, tools,
required skills, and possibilities. In this case, on the one side,
MDE experts define models and transformations and, on the
other, functional experts conduct an evaluation or verification
process. The connection between the technological spaces is
often aided by some (semi)automatic circular process which
translates the MDE elements to their functional representation,
and also retrieves some feedback to the MDE experts.

In previous work [10] we have explored a functional ap-
proach to support the construction of an OCL interpreter with
respect to its use for expressing invariant conditions in models.
We have presented a Haskell-based representation of the main
aspects of OCL and we have discussed how it provides a direct
and clear interpretation for advanced OCL features proposed
in the literature. We claimed that the functional infrastructure
can be predefined and automatically generated, but it required
further work in order to be put into real action.

In this work we continue reducing the gap between both
technological spaces by providing an MDE-based automatic
generation of such functional infrastructure. In particular, we
develop a predefined functional version of the OCL library,
and we provide an automatic transformation of models, meta-
models and OCL invariants into Haskell. We also present
Haskell OCL [11], an Eclipse Modeling Framework (EMF,
[12])-based tool for final users, allowing to both: generating
the infrastructure and also checking invariants, in such a way
that the internal complexity is transparent to them. These
results provide a different perspective on the interpretation of
OCL, together with a sandbox that allows to evaluate in a
unified way several proposals that already exist in the scientific
community, as well as to collaborate with the migration of
functional aspects to the MDE paradigm.

We believe that the main ideas and solutions we propose can

Figure 1: Team Meeting (Metamodel)

be understood by non-functional experts. However, in order to
reach a wider audience, as far as possible we hide the details
of the functional representation. In order to fully understand
them, we suggest to refer to [10].

The rest of this paper is organized as follows. In Section
II we define a case study used for the general understanding
of the ideas provided in this paper. In Section III we present
the general approach for the functional interpretation of OCL
invariants. In Section IV we describe the automatic generation
of the functional infrastructure. In Section V we provide
details on how the infrastructure is connected with the EMF.
In Section VI we present related work and provide some
discussions about compliance of our proposal with the OCL.
Finally, in Section VII we present some conclusions and an
outline of future work.

II. CASE STUDY

All along this paper, we consider the following case study
as a proof of concepts and for a better understanding of the
technical details. Complete information on the source code of
our running example is available at [11]. The Team Meeting
example was taken from [13] and adapted to our purposes.
Besides it is simple, it involves a very expressive subset of
OCL.

The metamodel in Figure 1 represents teams of people and
team meetings, such that each meeting has certain number of
participants and a moderator from the same team.

In Figure 2 there are some of the OCL invariants that must
be ensured for any model. The invariants consider primitive
and user-defined types, operations on collections, navigation
through properties, and comparison operators.

In Figure 3 there is a model satisfying the constraints, in
which three meetings are defined, one for each team (IT,
Marketing and Sales), such that every member of the team
participates in its corresponding meeting.

−− Inv1 : A meeting ends af te r i t s t a r t s
context Meeting inv:
self.end> self.start

−− Inv2 : A meeting has at leas t 2 part icipans
context Meeting inv:
self.participants−> size() >= 2

−− Inv3 : A teammeeting has to be organized for a whole team
context Teammeeting inv:
self.participants−> forAll(team = self.for)

Figure 2: Team Meeting (OCL invariants)

Figure 3: Team Meeting (Model)

III. FUNCTIONAL INTERPRETATION OF OCL

In Figure 4 we depicted the functional interpretation of
OCL as a process starting with the definition of models,
metamodels and OCL invariants, going through the generation
of the functional infrastructure and the checking of invariants,
and ending with the visualization of the results. Our Haskell
OCL tool is defined as an EMF plugin in which three different
tools collaborate: Eclipse OCL1, Acceleo2 and Haskell. In
what follows we present a general overview of the activities
to be performed during the process, their inputs, outputs and
tool support.

A. Model domain and invariants

The first activity to be performed is the modeling of the
different domain elements, i.e.: a metamodel together with
their corresponding OCL invariants, and a model in which the
invariants must be verified in order to check its conformance
with the metamodel. Eclipse OCL is used for this purpose,
since it is an EMF-based plugin providing modeling capa-
bilities for models, metamodels and OCL invariants, as well
as an OCL interpretation engine. The metamodel, as the one
in Figure 1, is defined using Ecore; the OCL invariants, as
those in Figure 2 are embedded within the Ecore metamodel,

1Eclipse OCL: https://projects.eclipse.org/projects/modeling.mdt.ocl
2Acceleo: http://www.eclipse.org/acceleo/

https://projects.eclipse.org/projects/modeling.mdt.ocl
http://www.eclipse.org/acceleo/

Figure 4: HaskellOCL process

and the models, as the one in Figure 3, are well-formed XMI
instances of the Ecore metamodel. From a practical point of
view, by using Eclipse OCL we can assume that parsing and
type checking issues are satisfied by the environment.

B. Generate Haskell structure & Haskell invariants

The OCL infrastructure is generated in two steps (as will
be detailed in Section IV). We use Acceleo, an EMF-based
implementation of the MOF Model to Text Language (MTL)
standard, providing model transformation capabilities. The first
step involves taking the metamodel and model provided by
the first activity and generating the functional structure (in
Haskell) that will be used for expressing the OCL constraints.
The transformation is based on the ideas already presented in
[10]. The second step takes as an input the OCL invariants
defined in the first activity and generates the Haskell-based
representation of the invariants, been consistent with the
functional structure already generated.

The output is a Haskell file (.hs) with the complete func-
tional infrastructure. Although the functional infrastructure
could be not easily readable for an inexperienced user, it is
automatically generated and there is a direct representation of
the OCL invariants mimicking its structure. Besides the pur-
pose of this output is to be used for transparently running the
evaluation (the transformation also generates a main function
for running the evaluation), it is made available in order to
allow functional experts to directly experiment with it.

C. Evaluate invariants & Show results

Haskell provides the environment for the functional in-
terpretation of OCL constraints. Once the Haskell file is
generated, the tool runs the evaluation of each OCL invariant
within the file with respect to the given model. The execution
needs a predefined functional OCL library. This library does
not depend on the concrete information provided by the
metamodel and models, so it is statically defined and not
generated on each use. In Section VI we summarize the current
level of compliance of this library with respect to the OCL
standard.

The Haskell evaluation allows a clean handling of errors
and a precise definition of the four-valued semantics of OCL
(True, False, Invalid or Null). In this sense, Haskell provides
the result of the evaluation as a list of values, one for each
invariant. These results can be seen in the command console.
However, in parallel, this information is also displayed in the
Validity View of Eclipse OCL. The Validity View provides
a much more detailed view of the problems by relating the
invariants with their context, i.e.: the main metamodel element
for which the invariant is defined. In Section V we show how
this is used.

IV. GENERATION OF THE FUNCTIONAL INFRASTRUCTURE

We defined Acceleo model to text transformations to gener-
ate a Haskell file out of an Ecore model and its corresponding
metamodel and invariants. The transformations are based on
the representation introduced in [10].

A. The OCL Library

In our previous work we introduced a library that defines a
type for the invariants and a set of functions to construct and
execute them with. An invariant has type OCL m (Val Bool),
which can be read as an OCL expression that applies to a
model represented by a value of type m and returns a boolean.
The Val type that wraps the boolean represents the OCL four-
valued logic with the notion of truth, undefinedness and nullity.

We defined operators to represent the object navigation
(|.|) and the collection navigation (|−>|). We also provided
a somehow limited support to operate over booleans, integers,
reals and collections into the four-valued logic.

In this work we extended the library in order to increase the
level of compliance with the OCL standard. In Table I there is
a summary of the compliance with the OCL (as defined in [2]),
taking the original work and the last version of the Eclipse
OCL tool3 as references. We use a semaphore-like notation
where: green, yellow and red means that the OCL aspect

3Eclipse Oxygen OCL 6.3 Compliance: https://wiki.eclipse.org/OCL/
Compliance

https://wiki.eclipse.org/OCL/Compliance
https://wiki.eclipse.org/OCL/Compliance

Table I: OCL compliance and limitations

Original
work [10]

Haskell
OCL

Eclipse
OCL

OCL Constructs
context
Specifies the context for OCL expressions
inv
States a condition that must always be met by all instances of a context type
pre/post j

States a condition that must be true at the moment when an operation starts/end its execution
init
Specifies the initial value of an attribute or association role
derive
Specifies the value of a derived attribute or association role
body a a

Defines the result of a query operation
def
Introduces a new attribute or query operation
package b b

Specifies explicitly the package in which OCL expressions belong
OCL Expressions

self
Denotes the contextual instance
result a j

In a postcondition, denotes the result of an operation
@pre a a j

In a postcondition, denotes the value of a property at the start of an operation
Navigation c c

Navigation through attributes, association ends, association classes, and qualified associations
if-then-else expression
Conditional expression with a condition and two expressions
let-in expression
Expression with local variables
Messaging d d j

Indicates that communication has taken place
OCL Standard Library

Boolean Type
Values: true / false
Boolean Operations i

Operations: or, and, xor, not, =, <>, implies
Integer/Real Type i

Values: -10, 0, 10, ..., -1.5, 3.14, ...
Integer/Real Operations i

Operations: =, <>, <, >, +, −, ∗, /, mod, div, max, round, ...
UnlimitedNatural Type
Values: ∗
String Type
Values: "value"
String Operations
Operations: =, <>, concat, size, toLower, substring, ...
OCLAny e

Supertype of all UML and OCL types
OCLAny Operations i f k

Operations defined for any type: =, <>, oclIsNew, oclAsType, T::allInstances, ...
OCLVoid g g

Type with one single instance (undefined) that conforms to all others types
OCLMessage d d

Messages that can be sent to and received by objects
Tuple Type
A tuple consists of named parts each of which can have a distinct type
Collection Types i

Four collection types: Set, OrderedSet, Bag, and Sequence
Collection operations i h

Operations: any, append, asBag, count, collect, excludes, exists, first, ...
a Operations within metamodels, and pre-/post-conditions on operations, are not supported.
b Syntactic sugar, can be easily supported.
c Association classes and qualified associations are not supported in our metamodels.
d Messaging is for other OCL uses, not for invariants definition.
e OCLAny is not defined as a type, but its operations are implemented for any type.
f The following operations are not supported: oclIsInState, oclIsNew, oclType.
g OCLVoid is not defined as a type, but undefined considerd as a possible value during evaluation.
h The following operations are not supported: flatten, sortedBy, collectNested.
i We support a very limited version in comparisson with the one defined for this work.
j Supports parsing of the expression, but not its interpretation.
k The following operations are not supported: oclIsInState, oclIsNew.

is fully, partially or not supported, respectively. We added
the interpretation of new OCL constructs and expressions
(e.g.: def and if-then-else, respectively), and we also
provide full support for all the primitive types (except for
UnlimitedNatural) and collection types, together with
their corresponding operations. For this, we basically support
our implementation on standard Haskell types and libraries,
such that the functional representation is as direct as possible.
In Section VI we provide deep insights in this sense, and in
[11] there is the complete definition of the library.

B. Metamodels and Models
Classes, attributes, relationships and invariants of the meta-

model, as well as the entities that are part of the model, are
transformed to their corresponding representations in Haskell.

We start by translating every class of the metamodel to a
Haskell datatype using the transformation of Figure 5. The
following code shows the Haskell datatypes generated for
Person and Teammember:
data Person = Person String Int String String (Maybe PersonChild)

data PersonChild = TeammemberCh Teammember

data Teammember = Teammember String [Int] [Int] [Int]

Without delving into details, the transformation generates for
each class (EClass) a data named with the name of the
class and one constructor with the same name. The fields
of the constructor represent the properties of the class. In
case of EAttribute, the type of the attribute is translated
to the corresponding Haskell type; e.g. for the attribute name

of Person, which has type EString, a String parameter
is added to the constructor Person. For a EReference with
multiplicity one, an Int parameter is added to the constructor,
representing the identifier of the refereced object. In case
of other multiplicities a [Int] (list of integers) is generated
instead. This is the case for the refereces to Meeting and Team
in Teammember. If the class has subclasses a field of type
ClassChild is added, with Class the name of the class. This
datatype is also generated (second part of the transformation of
Figure 5), which defines one constructor (ClassCh) for each
subclass (Class) with its corresponding type. For non abstract
classes the ClassChild field is wrapped with a Maybe type,
whose values are of the form (Just v), with v a value of type
ClassChild or Nothing.

Inspired by the Zipper[14] structure, we allow to navigate
up and down the class hierarchy by pairing the representation
of the classes with their inmediate superclasses. This is done
by the transformation of Figure 6, which for the examples of
Person and Teammember generates:
type Person_ = (Person, ModelElement_)

type Teammember_ = (Teammember, Person_)

Some other transformations define some boilerplate that is
useful to be able to navigate through the representation of
the model in a uniform way. An example of this code is the
following function to access to the attribute name from an
element which is of class Person or any of its subclasses.

name : : Cast Model Person_ a
=> Val a−> OCL Model (Val String)

name a = upCast _Person a>>=
pureOCL(\ (Person x _ _ _ _ , _) −>

return (Val x))

Again, without delving into the details of this code, the
function goes upwards (upCast) in the hierarchy until it finds
a value of type Person, and then returns the value representing
the name.

Another example is a function to access to the moderator of
a Meeting. In this case the value stored in the Meeting is an
identifier, so the value of type Teammember has to be looked
up into the model.

moderator : : Cast Model Meeting_ a
=> Val a−> OCL Model (Val Teammember_)

moderator a = upCast _Meeting a>>=
pureOCL(\ (Meeting _ _ _ _ _ _ x _ , _) −>

lookupM _Teammember x)

In the transformation we define an abstract class ModelEle-
ment which is superclass of all the orphan classes of the
metamodel. This class includes an integer which is used as
the unique identifier the other elements can refer to.

data ModelElement = ModelElement Int ModelElementChild

data ModelElementChild = PersonCh Person
| TeamCh Team
| MeetingCh Meeting
| RootCh Root

Then, the Haskell representation of the model is a list of values
of type ModelElement.

data Model = Model [ModelElement]

The model is generated by another Acceleo transformation,
which takes as input an EObject. Figure 7 shows an example
of a model generated for the Case Study.

C. OCL Invariants

The invariants are translated to Haskell functions. Since
the Haskell representation mimicks the structure of the OCL
invariants, the transformation basically travers the model repre-
senting an OCL invariant and produces for each subexpression,
the corresponding string, also considering the context (the
types involved) of the subexpression been transformed in order
to use the corresponding Haskell functions. As an example,
the following are the functions generated from the invariants
of Figure 2. As can be seen, the functions are very similar to
the original ones.

invariant1 = context _Meeting [inv1]
inv1 self = ocl self | . | end |>| ocl self | . | start

invariant2 = context _Person [inv2]
inv2 self = ocl self | . | participants

|−>| size |>=| (oclInt 2)

invariant3 = context _TeamMeeting [inv3]
inv3 self = ocl self | . | participants |−>|

forAll (\a−> ocl a | . | team |==| ocl self | . | for)

[template public generateData(aClass : EClass)]
[comment @main /]
[file (’ACCELEO.hs’ , true)]

data [aClass.name/] = [aClass.name/] [for (attr : EAttribute | aClass.getAttributes())] [toHaskellType(attr.eType.name) /] [/for]
[for (ref : EReference | aClass.getReferences())] [if (ref.lowerBound=1 and ref.upperBound=1)]

[’Int’ /] [else] [’ [Int] ’ /] [/if] [/for]
[let allClasses : Sequence(EClass) = aClass.ancestors() .eAllContents(”EClass”)]

[if (aClass.hasChildren(allClasses))] ([aClass.name/]Child) [/if] [/let]

[let allClasses : Sequence(EClass) = aClass.ancestors() .eAllContents(”EClass”)]
[if (aClass.hasChildren(allClasses))]
data [aClass.name/]Child = [for (elem : EClass | aClass.getDirectChildren(allClasses))]

[if (i> 1)] | [/if] [elem.name/]Ch ([elem.name/]) [/for]
[/if] [/let]

[/file]
[/template]

Figure 5: Class to Datatype Transformation (excerpt)

[template public generateZipper(aClass : EClass)]
[comment @main /]
[file (’ACCELEO.hs’ , true)]
type [aClass.name/]_ = ([aClass.name/] , [if (aClass.hasFather())] [aClass.getFather() .name/] [else]ModelElement[/if]_)
[/file]
[/template]

Figure 6: Class to Datatype Transformation

example = Model
[(ModelElement 0 (RootCh (Root [7 ,8 ,9 ,10 ,11 ,12 ,13] [1 , 2 , 3] [4 , 5 , 6])))
, (ModelElement 1 (MeetingCh (Meeting ”Daily Meeting − IT Dept” ”19/05/2018” 10 11 True [7 ,8 ,9] 7 []

(Just (TeammeetingCh (Teammeeting 4))))))
, (ModelElement 2 (MeetingCh (Meeting ”Daily Meeting − Marketing Dept” ”20/05/2018” 15 16 True [10 ,11] 10 []

(Just (TeammeetingCh (Teammeeting 5))))))
, (ModelElement 3 (MeetingCh (Meeting ”Daily Meeting − Sales Dept” ”19/05/2018” 8 9 False [12 ,13] 12 []

(Just (TeammeetingCh (Teammeeting 6))))))
, (ModelElement 4 (TeamCh (Team ”IT” [7 , 8 , 9] [1])))
, (ModelElement 5 (TeamCh (Team ”Marketing” [10 , 11] [2])))
, (ModelElement 6 (TeamCh (Team ”Sales” [12 , 13] [3])))
, (ModelElement 7 (PersonCh (Person ”John Smith” 53 ”Chief” ”Male” (Just (TeammemberCh (Teammember ”Chief” [4] [1]))))))
, (ModelElement 8 (PersonCh (Person ”Jake White” 26 ”Developer” ”Male” (Just (TeammemberCh (Teammember ”Developer” [4] [1]))))))
, (ModelElement 9 (PersonCh (Person ”Rebecca Anderson” 23 ”Developer” ”Female” (Just (TeammemberCh (Teammember ”Developer” [4] [1]))))))
, (ModelElement 10 (PersonCh (Person ”Zoe Zheng” 38 ”Chief” ”Female” (Just (TeammemberCh (Teammember ”Chief” [5] [2]))))))
, (ModelElement 11 (PersonCh (Person ”May Falkner” 27 ”Staff ” ”Female” (Just (TeammemberCh (Teammember ”Staff ” [5] [2]))))))
, (ModelElement 12 (PersonCh (Person ”Lindsey Scott” 36 ”Chief” ”Female” (Just (TeammemberCh (Teammember ”Chief” [6] [3]))))))
, (ModelElement 13 (PersonCh (Person ”James Pattern” 32 ”Salesman” ”Male” (Just (TeammemberCh (Teammember ”Salesman” [6] [3]))))))
]

Figure 7: Example of a Model in Haskell

V. TOOLS SUPPORT WITHIN ECLIPSE

In this section we describe tool support from a user’s
perspective through the case study presented in Section II.
Haskell OCL [11] takes as an input a metamodel, together with
their corresponding OCL invariants, and a model in which the
invariants must be verified in order to check the conformance
relation. These models are expressed using Eclipse OCLa con.

The difference between both tools is how the evaluation of
invariants is performed: Eclipse OCL uses its own Java-based
OCL interpreter, and we perform a functional interpretation
following the process depicted in Figure 4. Our Haskell OCL
plugin integrates both options in a menu, as shown in Figure 8,
allowing to obtain the result in the most convenient way.

The results view in console (when executing the functional
interpretation) is not user-friendly, as shown in Figure 8. It is
just a list of ordered results, one for each invariant, such that
in each case the result value of the interpretation is shown
(for invariants, one of the four values of the semantics of
OCL is expected). It can be noticed that, in this case, the
second invariant results in the value Val False, i.e.: it is
not satisfied. Besides it is possible to generate more detailed
results with descriptive messages, we benefit from the use of
the Eclipse OCL reporting tool (Validity View), as shown in
Figure 10. Since both, Eclipse OCL and Haskell OCL, use
the same inputs and provide the results in the same way, all
the evaluation process (in the lower levels of Figure 4) can be
completely transparent for the user.

Figure 8: Haskell OCL validation

Figure 9: OCL evaluation results

As a concrete example, if we evaluate the model of the
case study, in Figure 3, with respect to the invariants defined
in Figure 2, we got that every invariant is satisfied. The results
are those shown in the Validity View depicted in Figure 10a.
For each result a colored icon is used. In this case, a green
tock is used in order to express a successful execution.

By changing the model, we can make the evaluation of the
invariant Inv3 fail. As shown in Figure 11, we can add a new
team member named John Smith, which does not belongs
to the Sales team, to the team meeting Daily Meeting -
Sales Dept. In this way, when evaluating this new model,
the third invariant fail, thus the Validity View reports that with
a yellow attention icon, whilst the others are still satisfied, as
shown in Figure 10b.

Since the generated Haskell file is available for expe-
rienced functional users, it is possible to directly change
the representation of the model and evaluate the invariants
using the Haskell perspective, without performing the whole
transformation process. This can be useful when working
with big models. However, it could be useful to have reverse
engineering capabilities in order to keep models synchronized.

As an example, we can modify the model in Figure 12 such
that the team meeting Daily Meeting - Sales Dept
is expected to start (time 9) after it ends (time 8). By running
again the evaluation of the constraints, we get that the invariant
Inv1 is not satisfied.

VI. RELATED WORK AND DISCUSSIONS

The use of other semantic domains for the interpretation of
OCL is usual for providing semantics and a formal environ-

ment for verification. In this context, many proposals provide
a shallow embedding of the OCL into, e.g.: rewriting logic
[15], constructive type theory [16], higher-order logic[17] and
theory of institutions [18]. These works neither consider func-
tional aspects nor a functional interpretation of such aspects.
The more related works are our own. In [19] we propose the
representation of MDE elements using Attribute Grammars
which are expressed as Haskell expressions. We addressed
the inclusion of OCL expressions for structural and semantic
conformance checking, but we did not exhaustively study its
representation. In [10] we explored the use of Haskell as an
interpreter for OCL and provided insights on how advanced
aspects could be supported, providing the basis for this current
paper.

There are many OCL editors and interpreters, as those
listed in the OCL Portal4. The most popular tools are Eclipse
OCL [12] and Dresden OCL [20]). These two tools provide a
(almost) complete support of the OCL language, not only for
expressing invariants, but also for other used as pre- and post-
conditions on operations. They are also focused on providing
a direct representation of model-oriented features, which are
useful in a wider model-driven environment. An interesting
case is the one of HOL-OCL [17], an interactive proof environ-
ment for the OCL based on a formalization using Isabelle/HOL
(a higher-order logic instance of the interactive theorem prover
Isabelle) of a core part of OCL. This work is focused on a
formal treatment of the key elements of the language rather
than a complete implementation of it. It could be desirable
indeed to examine the relation between our definitions and
this work since Isabelle/HOL can be considered a functional
programming language. A broader empirical assessment of our
tool with respect to these other proposals is devised as future
work.

4OCL Portal: https://www-st.inf.tu-dresden.de/ocl/

https://www-st.inf.tu-dresden.de/ocl/

(a) All invariants are satisfied

(b) Invariant (Inv3) is not satisfied

Figure 10: Eclipse OCL Validity View

Figure 11: Change on the participants of the meeting

example = Model
[(ModelElement 0 (RootCh (Root [7 ,8 ,9 ,10 ,11 ,12 ,13] [1 , 2 , 3] [4 , 5 , 6])))
. . .
, (ModelElement 3 (MeetingCh (Meeting ”Daily Meeting − Sales Dept” ”19/05/2018” 9 8 False [12 ,13] 12 []

(Just (TeammeetingCh (Teammeeting 6))))))
. . .
]

Figure 12: Team Meeting model in Figure 7 (start and end time are swapped)

A. Compliance with the OCL and Limitations

It is useful to know the current level of compliance with
the OCL standard and the limitations in order to state that
its interpretation is comparable to the ones provided in more
mature proposals, and also that it represents an extension of
the original work in [10]. In general terms, it can be seen in
Table I that our Haskell OCL proposal currently provides an
almost complete representation of OCL as a query language
and to specify invariants on classes and types in metamodels.
The OCL elements not supported are those less used or related
to metamodeling issues. With respect to the work in [10],
besides we made some adjustments, we keep the same Haskell

representation for models, metamodels and invariants, and we
basically improved the OCL library.

We can state that most of the limitations correspond with
the fact that we are supporting what is called Essential OCL,
which provides the core capabilities for expressing invariants
on models. In fact, Eclipse OCL supports parsing of other
OCL aspects as pre- and post- conditions, messages and states,
but does not provides any interpretation for them, since it
is also focused on Essential OCL. Our biggest limitation,
is not the support of OCL itself, but the support of other
model constructs, in particular: composition of associations,
ordered associations, operations on types, multiple inheritance,

association classes and qualified associations. However, we
postpone their interpretation since they are not focused (or not
commonly used) on metamodels, but on other type of models
(e.g.: class diagrams). Nevertheless, we need to continue
developing the interpreter, and there are some OCL aspects
that could be not easily represented (e.g.: tuples without a
fixed length and heterogeneous collections) so they deserve
further analysis. Moreover, it will be desirable to essay an
extension of the interpreter to capture more expressive error
messages, related to the work in [21].

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented how a functional perspective
on the interpretation of OCL can be supported in practice,
with respect to its use for expressing invariant conditions in
models within the MDE paradigm. This approach allows to
evaluate in a unified way several proposals that already exist
in the scientific community, as well as to collaborate with the
migration of functional aspects to the MDE paradigm.

We developed a predefined functional version of the OCL
library, improving the one defined in [10], and we provided an
Acceleo-based automatic transformation of models, metamod-
els and OCL invariants into Haskell for the interpretation of
OCL. In this way, we showed that the functional infrastructure
can be predefined and automatically generated. Besides there
are some aspects still outside scope, and that some others
could be not easily interpreted, the infrastructure covers a
huge portion of OCL. In this context, we are working on the
evaluation of advanced proposals, e.g.: extending the OCL
with pattern matching and lambda expressions. Moreover,
we need to consider other OCL uses, e.g.: for expressing
constraints, pre- and post-conditions on operations, and for
supporting the definition of model transformations.

We also presented Haskell OCL, an Eclipse-based tool
support for final users, allowing to both: generating the infras-
tructure and also checking invariants, in such a way that the
internal complexity is transparent to them. The use of Eclipse
OCL as a base project allows us to avoid the complexity of
parsing and type checking issues. Besides our proposal tends
to be a sandbox for experimentation and not for professional
use, it can be used in practice for real projects. A benchmark
comparison between our interpreter and others is also of
interest in this sense. Some important concerns that might be
addressed are how the tool behaves on some (larger) real world
examples, e.g.: dealing with performance concerns, and how
the lack of features with respect to related approaches might
or might not affect the user’s ability to model these examples
using the tool. Haskell OCL can also be improved in several
ways: by capturing more expressive error messages from the
functional evaluation of constraints; by adapting the tool to use
OCL as a query language (which does not require any changes
in the infrastruture), or other OCL uses (which indeed require
further work for extending the functional infrastructure); and
by applying a reverse engineering process in order to keep
models synchronized when changes are made within the
Haskell representation.

REFERENCES

[1] S. Kent, “Model-driven engineering,” in IFM, ser. Lecture Notes in
Computer Science, vol. 2335. Springer, 2002, pp. 286–298.

[2] OMG, “Object Constraint Language,” Object Management Group, Spec.
V2.4, 2014.

[3] J. Warmer and A. Kleppe, The Object Constraint Language: Getting
Your Models Ready for MDA, 2nd ed. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

[4] OMG, “Model Driven Architecture,” Object Management Group, Spec.
V2.0, 2014.

[5] T. Clark, “OCL pattern matching,” in Proc. OCL Workshop, ser. CEUR
Workshop Proceedings, vol. 1092. CEUR-WS.org, 2013, pp. 33–42.
[Online]. Available: http://ceur-ws.org/Vol-1092/clark.pdf

[6] E. Willink, “Ocl 2.5 plans,” presentation in the 14th Intl. Workshop on
OCL and Textual Modelling, 2014.

[7] M. Tisi, R. Douence, and D. Wagelaar, “Lazy evaluation for OCL,” in
Proc. 15th Intl. Workshop on OCL and Textual Modeling, ser. CEUR
Workshop Proceedings, vol. 1512. CEUR-WS.org, 2015, pp. 46–61.

[8] S. P. Jones, Ed., Haskell 98 Language and Libraries: The Revised
Report. http://haskell.org/, September 2002.

[9] I. Kurtev, J. Bezivin, and M. Aksit, “Technological spaces: An initial
appraisal,” in International Symposium on Distributed Objects and
Applications, 2002.

[10] D. Calegari and M. Viera, “On the functional interpretation of OCL,”
in Proc. of the 16th Intl. Workshop on OCL and Textual Modelling co-
located with 19th Intl. Conf. on Model Driven Engineering Languages
and Systems (MODELS 2016)., ser. CEUR Workshop Proceedings,
vol. 1756. CEUR-WS.org, 2016, pp. 33–48. [Online]. Available:
http://ceur-ws.org/Vol-1756/paper03.pdf

[11] G. Sintas, L. V. Lutz, D. Calegari, and M. Viera,
“HaskellOCL: A Haskell-based functional interpreter for
the Object Constraint Language,” 2018. [Online]. Available:
https://gitlab.fing.edu.uy/open-coal/haskellOCL

[12] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework. Boston, Massachusetts: Addison-Wesley Profes-
sional, 2008.

[13] B. Demuth, “Ocl (Object Constraint Language) by example. lecture
at mine summer school, nida,” 2009. [Online]. Available: https:
//st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf

[14] G. Huet, “The zipper,” J. Funct. Program., vol. 7, no. 5, pp.
549–554, Sep. 1997. [Online]. Available: http://dx.doi.org/10.1017/
S0956796897002864

[15] A. Boronat and J. Meseguer, “Algebraic semantics of OCL-constrained
metamodel specifications,” in TOOLS (47), ser. LNBIP, vol. 33.
Springer, 2009, pp. 96–115.

[16] D. Calegari, C. Luna, N. Szasz, and A. Tasistro, “A type-theoretic frame-
work for certified model transformations,” in 13th Brazilian Symposium
Formal Methods, ser. LNCS, vol. 6527. Springer, 2010, pp. 112–127.

[17] A. D. Brucker, F. Tuong, and B. Wolff, “Featherweight OCL: A
proposal for a machine-checked formal semantics for OCL 2.5,”
Archive of Formal Proofs, vol. 2014, 2014. [Online]. Available:
http://afp.sourceforge.net/entries/Featherweight OCL.shtml

[18] D. Calegari, T. Mossakowski, and N. Szasz, “Heterogeneous verification
in the context of model driven engineering,” Sci. Comput. Program., vol.
126, pp. 3–30, 2016.

[19] D. Calegari and M. Viera, “Model-driven engineering based on
attribute grammars,” in Proc. 19th Brazilian Symposium Programming
Languages, ser. LNCS, vol. 9325. Springer, 2015, pp. 112–127.
[Online]. Available: http://dx.doi.org/10.1007/978-3-319-24012-1 9

[20] C. Wilke, M. Thiele, and B. Freitag, “Dresden OCL - manual for
installation use and development,” TU Dresden, Tech. Rep., 2009-2011.

[21] D. S. Kolovos, R. F. Paige, and F. A. C. Polack, “On the evolution
of OCL for capturing structural constraints in modelling languages,”
in Rigorous Methods for Software Construction and Analysis, ser.
LNCS, vol. 5115. Springer, 2009, pp. 204–218. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-11447-2 13

http://ceur-ws.org/Vol-1092/clark.pdf
http://ceur-ws.org/Vol-1756/paper03.pdf
https://gitlab.fing.edu.uy/open-coal/haskellOCL
https://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
https://st.inf.tu-dresden.de/files/general/OCLByExampleLecture.pdf
http://dx.doi.org/10.1017/S0956796897002864
http://dx.doi.org/10.1017/S0956796897002864
http://afp.sourceforge.net/entries/Featherweight_OCL.shtml
http://dx.doi.org/10.1007/978-3-319-24012-1_9
http://dx.doi.org/10.1007/978-3-642-11447-2_13

	Introduction
	Case Study
	Functional Interpretation of OCL
	Model domain and invariants
	Generate Haskell structure & Haskell invariants
	Evaluate invariants & Show results

	Generation of the Functional Infrastructure
	The OCL Library
	Metamodels and Models
	OCL Invariants

	Tools Support within Eclipse
	Related Work and Discussions
	Compliance with the OCL and Limitations

	Conclusions and Future Work
	References

