
Understanding the Successes and Challenges of
Model-Driven Software Engineering -
A Comprehensive Systematic Mapping

Thiago Gottardi
University of São Paulo

Institute of Mathematics and Computer Sciences
P.O. Box 668 – 13.566-590 – São Carlos, São Paulo, Brazil

Email: gottardi@icmc.usp.br

Rosana Teresinha Vaccare Braga
University of São Paulo

Institute of Mathematics and Computer Sciences
P.O. Box 668 – 13.566-590 – São Carlos, São Paulo, Brazil

Email: rtvb@icmc.usp.br

Abstract—Model-Driven Software Engineering (MDSE) is a
development method in which models are used to generate
software. Despite documented advantages, projects employing
MDSE may fail due to development challenges. In this paper,
we study and document these challenges by conducting an up-
to-date systematic mapping that goes beyond reviewing MDSE
studies: we also include two derived paradigms (Model-Oriented
Programming and Models at Run-time). Therefore, we present a
systematic mapping with two objectives: The first objective was to
identify specific domains in which MDSE is successful, while the
second objective was to identify what are the challenges to apply
this methodology to general purpose development processes.
Following the review of 4859 studies (3727 are unique), we have
identified the application and technological domains in which
MDSE projects are more likely to succeed. We also discuss
challenges presented by 17 primary studies. The analysis of
the results indicate that MDSE application is consolidated in
specific domains. A common feature identified among studies
related to general purpose MDSE processes is that, initially,
authors reported lack of proper methods and training. After new
techniques have risen, it has been pointed that MDSE projects
still face maintenance problems that can discourage their usage
in other domains.

Index Terms—Systematic Mapping, Review, Model-Driven
Software Engineering, Secondary Study, Software Domains,
Model-Oriented, Models at Run-time, Domains, Challenges

I. INTRODUCTION

Model-Driven Software Engineering (MDSE) is a specific
case of Model Driven Development (MDD) applied to soft-
ware engineering. In these development methods, models
are active artifacts during the software engineering process.
Therefore, these models are not only used to describe design
and concepts, they can also drive the development [1].

In order to develop software using MDSE, it is necessary
to use modeling languages that allow the creation of machine
readable models, which, in turn, can be executed or trans-
formed into the final software. In this manner, it is possible
to replace the source-code by models that may represent the
software in higher abstraction levels, tightening the semantic
gap between the problem and its software solution [2].

Besides adequate modeling languages, development teams
also require specific tools to edit, validate and transform

models, which may be specific to the project or domain. It is
possible to categorize development teams that use MDSE into
two groups. The first group is composed by specific domains
that have suitable tools to use MDSE since the inception of
development projects. However, the second group is related
to domains with no previous tool definition, therefore, forcing
developers to either adopt general purpose or develop their
own MDSE tools by defining new modeling abstractions, for
instance, by using MDA (Model-Driven Architecture) [3].

We have conducted a secondary study with the objective of
identifying success cases in both domain specific and general
purpose MDSE approaches. Therefore, the objective was to
answer questions that relate to both of these groups.

Despite knowing that MDSE has been used successfully in
several domains, we believe that the state-of-the art should be
made much clearer. The identified related secondary studies by
other authors are not recent and may not be based on system-
atic review approaches. Therefore, the main aim of our work
is to capture the distribution of application and technological
domains and discuss challenges related to MDSE.

Our review goes beyond searching MDSE studies, we have
identified Model-Oriented Programming [4] and Models at
Run-time [5] as software paradigms that were developed upon
MDSE principles. Therefore, studies related to these concepts
were reviewed exhaustively using the available search engines.

This work contributes to the study of MDSE approaches
by providing a comprehensive secondary study in which we
discuss a range of thirty-three years of publications after
reviewing 4859 studies. We categorize success cases and
summarize a set of identified challenges.

The remainder of this paper is organized as follows: Works
related specifically to this paper are cited in Section II. In
Section III, systematic mapping (SM) concepts are presented,
as well as the activities done during the conduction of the
SM. The quantitative results gathered from the SM process are
listed in Section IV. These results are discussed in Section V,
which is done by also including qualitative data. Limitations
and threats to validity of this study are described in Section VI.
Finally, the conclusions for the study are in Section VII.

II. RELATED WORKS

Model-Driven Development is not a new topic in software
engineering. We have found 19 secondary studies among the
search results. It is worth mentioning that the work by Asadi
and Ramsin [6] is a secondary study closely related to this
one. However, their work is not a systematic mapping but a
literature survey. Also, their work is specific to MDA while we
intended to identify every MDSE related approach, including
non MDA-based.

In summary, there were no updated systematic mappings
among the secondary studies. The work by Gottardi and Braga
[7] includes a related systematic mapping but it was only
focused on MDSE and last updated in 2015.

Whittle et al. [8] have put forward a survey applied on
professional software developers in order to identify their
problems when using MDSE in practice. For example, some
authors have pointed that MDSE tools would evolve signifi-
cantly and solve most of challenges [9]. However, in another
work, Whittle et al. [8] have gathered evidences that indicate
that this conception is not accurate, as the evolution of these
tools should be more focused on the developers. In their study,
they have identified that despite improvement of tools, there
are still difficulties faced by developers, related to lack of
methods, lack of training and misconceptions about the usage
of models. The main similarity of this work is that it also
investigates challenges related to MDSE application and we
also argument that these difficulties could be all related to the
lack of adequate methodology.

III. SYSTEMATIC MAPPING EXECUTION

A Systematic Mapping (SM) is a specific method of lit-
erature review. It allows identifying and quantifying primary
studies relevant to research questions in a specific knowledge
area [10]. This SM was executed according to the guidelines
by Kitchenham and Charters [11], which were defined in order
to establish a systematic and repeatable literature review pro-
cess. They recommend three phases for the executed process:
planning; conducting and reporting.

A. Planning

The Planning Phase is the first phase. It contains activities
in which the researchers develop a document named as “Proto-
col”, which is shown in Subsection III-D. During the Planning
Phase, “Data Extraction Plan” and “Quality Criteria Defini-
tion” are also developed. By defining the execution procedure
in a review protocol, this process instance becomes controlled
and repeatable, which is one of the primary objectives of
following a systematic approach.

B. Conduction

The Conduction Phase is composed by the “Selection” and
“Extraction” activities. These activities must be performed by
following the established protocol.

The extraction activity was extended in this SM and de-
serves a further explanation. Its objective is to extract data
and fill the extraction form (“Data Extraction”), which in our

case is composed by categories planned as described in the
protocol. The extracted data is employed to distribute the
studies into the established quality criteria (“Quality Distribu-
tion”). For all studies we identified one or more categories and
checked whether they included validation. This validation was
later employed for quality distribution and for the challenges
discussion.

C. Reporting

The last phase is the Reporting, with activities related to
the data summarization. The first activity involves performing
statistical analysis on the quantitative data (“Statistical Analy-
sis”). Then, these results are summarized into text and plots. It
also involves discussing the results in the effort of identifying
new insights related to the study objects.

D. Protocol

An excerpt of the protocol definition for the SM performed
is visible on Table I. This table contains two columns, arranged
into field name and value pairs that include the objective, ques-
tions, intervention, control, results, source selection criteria,
and study selection criteria. Among these fields, the questions
and study selection criteria are frequently referenced during
the results of the conduction phase presented in Section IV.

The most important item of the protocol is its objective.
By intending to identify MDSE success/failure cases and
challenges, two questions were devised. The first question
aims to identify the success cases and the failures in specific
domains. The results of this question are important because
the search for challenges in MDSE outside these domains is
also part of the objectives. If the success cases became too
ubiquitous, then one could argue that the secondary question
is irrelevant. This is because the secondary question is related
to challenges encountered when applying MDSE into domains
that do not have visible success cases. Without visible success
cases, there would be a lack of tools or methodology, thus
making the challenges more apparent.

Another important item of the protocol is the set of inclusion
and exclusion criteria. Inclusion criteria “I1” and “I2” were
created to respond the primary question, while “I3” is related
to the secondary question. The exclusion criteria are employed
to remove the unrelated studies and other results that are not
primary studies.

E. Search Strategy

The searches were divided into different sessions, which
were conducted to collect three different categories of studies.

The first category is focused on the software development
approaches using modelling, i.e. not limited to MDSE. The
second category is related to any study that involves model
orientation, whereas the third category is related to any study
involving models at run-time.

Therefore, three search strings were created, one for each
category. It is worth mentioning that these search strings have
been constructed by joining the basic keywords defined on
Table II, complemented with synonyms and related terms.

TABLE I
PROTOCOL DEFINITION

Protocol Item Item Description
Objective The objective of this literature review is to

identify success cases and challenges in MDSE
approaches.

Primary Question What are the specific domains in which develop-
ers have achieved success by employing MDSE?

Secondary Question What are the the general purpose MDSE ap-
proaches and what are the challenges to create
such approaches? Does MDA solve these chal-
lenges?

Intervention Studies related to MDSE approaches and their
challenges must be identified and categorized.

Control The search results must involve a list of studies
related to the questions that are known by the
researchers. This list includes articles and books
by Pastor, Whittle and Czarnecki.

Results Quantitative data on approach frequency distri-
bution within domain categories. Qualitative data
on reported challenges.

Source selection criteria: Source must index studies on Computer Science,
Mathematics or Engineering. Source must allow
Boolean operators. Source must be accessible by
the researchers.

Selection Criteria: Inclusion:
• I1 - Primary studies that present a success

case of MDD, MDSE, DSL or MDA in a
specific domain;

• I2 - Primary studies that present a non
success case of MDD, MDSE, DSL or
MDA in a specific domain;

• I3 - Primary studies that present challenges
of applying MDD, MDSE, DSL or MDA
in general purpose projects;

Exclusion:
• E1 - Unrelated to MDD, MDSE, DSL or

MDA.
• E2 - Not a primary study.

The keywords shown on Table II were used as basis to
create the first category search string. The final search string
is obtained after a conjunction operation (represented by “∧”)
applied to the table rows and a disjunction operation applied
among the synonyms of each keyword. Therefore, the final
search string is (A) ∧ (B) ∧ (C) ∧ (D).

For the second category, the keywords shown on Table III
were used. Since there is only one row, the disjunction
operation is applied among the synonyms of the keyword, with
the intent of capturing any study related to this keyword.

The third category was also defined to capture any study
related to the specified keyword. Therefore the keyword shown
on Table IV was used. Since there is only one row, the
disjunction operation is applied among its synonyms.

The searches were planned to be carried out through the
following search engines: ACM Digital Library 1, IEEE Xplore
2, Engineering Village Compendex3, Wiley Digital Library4,
Web of Science5, Science Direct6, Elsevier Scopus7, Springer

1http://dl.acm.org
2http://ieeexplore.ieee.org/
3http://engineeringvillage.com
4http://onlinelibrary.wiley.com
5http://wokinfo.com/
6http://sciencedirect.com
7http://scopus.com

TABLE II
MDSE SOFTWARE DEVELOPMENT APPROACH SEARCH STRING

DEFINITION

Identifier Keyword Synonyms and Related terms
A Software Development

• software development;
• software engineering;

B Approach
• approach;
• process;

C Support
• tool;
• support;

D MDSE and MDD
• mdd;
• development;
• mde;
• engineering;
• software;
• mda;
• model-driven architecture;
• model driven architecture;
• Model-Driven;
• model;
• driven;
• model-driven.
• model-oriented
• model oriented.

TABLE III
MODEL ORIENTATION SEARCH STRING DEFINITION

Identifier Keyword Synonyms and Related
E Model Orientation

• model-orientation;
• model orientation;
• model-oriented
• model oriented.

Link8 and Google Scholar9,
However, some search engines were canceled after a few

search sessions, since it was not possible to calibrate or to
complete the selection completely.

The search was then concluded through the following search
engines: ACM Digital Library (DL), Engineering Village
Compendex (EV), IEEE Xplore (IEEE) and Elsevier Scopus
(Scopus).

Their update dates may vary, as specified in Table V. The
initial search sessions were executed on May 30th, 2014 by
collecting studies from all reported search engines and then
updated systematically until January 1st, 2018, effectively
reaching 4859 studies. It is important to point that due to
the broad nature of this search, this is a continuous work of
literature review that would never be finished.

Despite not updating all engines completely, these searches
returned more studies from past years that were not collected
during the searches done on 2014, effectively exceeding the
number of studies found during initial searches, since they did

8http://link.springer.com
9http://scholar.google.com

http://dl.acm.org
http://ieeexplore.ieee.org/
http://engineeringvillage.com
http://onlinelibrary.wiley.com
http://wokinfo.com/
http://sciencedirect.com
http://scopus.com
http://link.springer.com
http://scholar.google.com

TABLE IV
MODELS AT RUNTIME SEARCH STRING DEFINITION

Identifier Keyword Synonyms and Related Terms
F Models At Runtime

• models at runtime;
• models at run-time;
• models at run.time;
• models at run time;
• model at runtime;
• model at run-time;
• model at run.time;
• model at run time;
• models @ runtime;
• models @ run-time;
• models @ run.time;
• models @ run time;
• model @ runtime;
• model @ run-time;
• model @ run.time;
• model @ run time;
• models@runtime;
• models@run-time;
• models@run.time;
• models@run time;
• model@runtime;
• model@run-time;
• model@run.time;
• model@run time;

TABLE V
SEARCH SESSIONS AND UPDATES

Search Category Search Engine Last Update Returned
Study Count

MDSE

ACM DL May 30th,
2014

26

IEEExplore September 6th,
2017

405

EV May 30th,
2014

655

Scopus September 8th,
2017

2805

MO
IEEExplore January 1st,

2018
18

EV January 1st,
2018

37

Scopus January 1st,
2018

42

MRT
IEEExplore December 9th,

2017
65

EV December 9th,
2017

389

Scopus December 9th,
2017

417

All

ACM DL 26
IEEExplore 488

EV 1081
Scopus 3264
Total 4859

not include other categories besides MDSE. Nevertheless, all
studies returned by engines were thoroughly evaluated accord-
ing to the processes established previously in this section.

F. Study Selection

After ensuring that there were no duplicated studies, the
review was conducted by analyzing studies returned by each
search engine. The search engine priority was set by reviewing

first the engine that returned the higher number of previously
known studies.

The data extraction form used for all studies contains fields
that must be filled during the extraction phase. The planned
form contains three fields:

1) Identified Success Case Domain;
2) Identified Failure Case Domain;
3) Identified MDSE problem or challenge.
The valid values for each of the enumerated fields are

presented on Table VI. These valid values are defined as
nominal sets, i.e., groupings of enumerated and named items
that represent categories important to our study.

TABLE VI
VALID VALUES FOR DATA EXTRACTION FIELDS

Field Number Field Name Field Type Cardinality Nominal
Set

1 Identified
Success
Case
Domain

Subset of
Nominals

zero to
many

Domain
Set

2 Identified
Failure
Case
Domain

Subset of
Nominals

zero to
many

Domain
Set

3 Identified
MDSE
Problem or
Challenge

Subset of
Nominals

zero to
many

Problem
Set

4 Identified
Validation
Type

Subset of
Nominals

zero to
many

Validation
Set

5 Presents
Solution
for an
MDSE
challenge

One Nomi-
nal item

one Boolean
Set

The first nominal set is named as Domain Set, which con-
tains 57 nominals, including domains related to Web, Embed-
ded Systems, Business Information Systems, Telecommunica-
tions and Networking, Industrial Control Systems, Military,
Parallelism, Simulation, Computer Aided Design, Education
and Computer Games. A complete list of these nominals is
shown on Table VII.

It is important to point that these nominals were defined to
allow hierarchical analysis. For example, every nominal which
starts with “Embedded System” is considered as a child of the
first “Embedded System” nominal, then, upon counting the
numbers of studies that are related to this domain, the studies
marked with any child nominal are also counted along with
their parents. The domains were distributed into application
and technological domains during results analysis.

The second nominal set is the Problem Set, which contains
the nominals “Methodology Problem”, “Maintenance Prob-
lem”, “Testing or Validation Problem” and “Tools Problem”.
It is important to point that throughout the study the focus on
“Tools Problem” was diminished since it is unclear to define
whether the study exposes MDSE problems or the authors
were simply encouraged to create new tools. Moreover, this
issue was already covered in the literature [12].

TABLE VII
DOMAIN SET NOMINALS

Application Technological
Tourism Autonomous Mobile Robotics
Telecom SoS (System-of-Systems)
E-commerce System Virtualization
Farming Ubiqua/Pervasive
Automotive Cloud/Data Warehouse
Government Robotics
CAD (Computer-Aided Design) Tool Large Scale
CPS (Cyber-Physical System) Middleware
Game User-Interface
Academic Mobile
BioInformatics Service-Oriented/Web Service
Multimedia Parallelism
Math/Theoretical Scientific Web - Cloud Computing
Military/Defense/Aerospace Hardware
Control System Fault Tolerance / Adaptative
Health Software Architecture
Human Interaction Embedded System
Industrial Web
Simulation Network
Education
Communication
Business Information Systems

The third nominal set is the Validation Set, which con-
tains the nominals “Case Study”, “Experimental or Empirical
Study”, “Experience Report”, “Feasibility Study”, and “Proof
or Demonstration”. The Boolean set contains two nominals,
true and false. This set is used to indicate whether the study
presents a solution to the challenges or problems identified in
MDSE.

G. Study Quality Criteria

The quality criteria were divided into two groups. The first
group is used to select the studies related to domain successes
and failures. In this case, we have defined that these studies
must not present the domain simply as a case study, that is,
to avoid papers that use a domain as a validation without
providing a practical success or failure report.

Considering the second group, it is related to the studies
that present challenges or problems related to MDSE. We have
planned strategies for defining if these studies are relevant for
our secondary study. Therefore, we have defined that only the
studies that either have a solution for the challenges or contain
a validation should be carried into the discussion activity.

H. Employed Tools

A custom set of tools was developed by the author to be
employed during the conduction phase. Their requirements
involved supporting the hierarchical nominals and allowing
the researchers to cooperate on the same review and to provide
real-time reports about the review evolution and preliminary
summarization via a web-page that features graphics and
descriptive statistics. More details of these tools are also
available within the packing documents.

IV. SECONDARY STUDY RESULTS

This section contains the summarization of results, which
was carried out after conducting the extraction phase. Qual-

itative and quantitative data that were used to respond the
research questions are provided.

A. Search Results

The aim of this subsection is to provide information regard-
ing the results returned by the search engines. The searches
returned 4859 studies, in which, 3727 were not duplicated.
The extraction phase was split into two, one for each research
question: 2628 studies were selected for domain extraction
while 106 were selected for MDSE challenges extraction.

Figure 1 contains a plot that was created to allow a general
visualization of the distribution of collected studies. The graph
was designed as a stacked bar plot, which allows the viewer to
compare the portion of duplicated and unique results returned
from each search engine.

Fig. 1. Source Distribution

The columns of Figure 1 are named as “ACM”, “IEEE”,
“Scopus” and “EV” since they represent, respectively, the
search engines ACM Digital Library, IEEE Xplore, Elsevier
Scopus and Elsevier/Engineering Village Compendex. In order
to improve the visualization of the plots here shown, it was
established that they would start from one year before the year
that got the oldest results. In every bar plot, the vertical axis
contains the number of studies, whereas the horizontal axis
may represent categories, process phases or years.

In this review, studies were not filtered by their publication
year. The oldest study that passed the selection phase was
published in 1985 and written by Hoffnagle and Beregi
[13]. Their study is related to automated software generation,
however, since there is no explicit model as input, it was not
categorized as MDSE.

Alkadi and Carver [14] wrote the oldest study that was
considered as related to MDSE by this review process. It was
published in 1998. They created an approach which employs
models for test case generation.

B. Domain Categorization: Results

The aim of categorizing the studies was to identify software
solution domains in which MDSE is successful. These cate-
gories are divided into application domains and technological
domains.

Fig. 2. Evolution of Most Common Application Domains

The application domains are visible in the plot of Figure 2.
This plot contains the years spanning from 1985 to 2017 while
showing the study count per application domain (presented on
Table VII). These domains are ordered by maximum count.
The first item shows the total count per year. Therefore, the
graph shows that the top five application domains are Business
Information Systems, Communication, Education, Simulation
and Industrial.

In the same sense, technological domains are shown in a
similar plot in Figure 3. This plot also includes the years and
study count per domain from Table VII. The first element
shown is the total per year. The top five domains that have been
identified are: Networks, Web, Embedded Systems, Software
Architecture (design and generation), and Adaptive Systems.

Although not planned prior to execution, it has been iden-
tified that the use of MDSE in Embedded Systems Domain is
very scattered among different subdomains. To avoid concerns
related to how broad is the categorization of this domain,
we have identified Embedded Systems subdomains which
employ MDSE. These subdomains are presented in Figure 4,
which contains a plot showing the evolution of number of
studies in these domains. The subdomains “Avionics and Avi-
ation”, “Robotics”, “Agriculture”, “Cruise Control”, “Home
Automation”, “Sensors and Actuators” and “Road Vehicle” are
distributed per year. It is important to point that the “Total”
bar is also the total count of all studies related to Embedded

Fig. 3. Evolution of Most Common Technological Domains

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

2
0

1
5

2
0

1
6

2
0

1
7

Year

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

80

85

90

95

100

S
tu

d
ie

s

Agriculture
Avionics and Aviation
Cruise Control
Home Automation
Sensors and Actuators
Road Vehicle
Unspecified
Total

Fig. 4. Evolution of Embedded Systems Application Domains

Systems with or without a specific subdomain.

C. MDSE Challenges: Results

The goal of this subsection is to provide quantitative results
regarding the number of studies that present challenges on
applying MDSE into general purpose projects.

After the review process, eight studies that contain refer-
ences to maintenance challenges were identified. In the same

manner, nine studies that discuss methodology challenges
were identified. Considering these studies, there is the total
number of seventeen unique studies, since there are two studies
which are common in both listed categories. Further discussion
regarding this data is presented in Section V.

V. RESULTS DISCUSSION

This section presents a discussion about the SM results,
along with further qualitative data. It includes discussion on
the identified software domains, MDSE remaining challenges
and limitations of the study.

A. Domain Distribution

The results helped to confirm our previous expectations
about MDSE tools intended for Business Information Systems,
Web and Embedded Systems. By reading the related studies,
we believe that a constant concern among these approaches
is to accelerate the implementation of data entities and their
manipulation.

However, we did not expect that the network domain would
achieve high frequency in the identified distribution. Most of
the MDSE studies in the network domain are related to the
development of parallel distribution of software execution.

B. MDSE Remaining Challenges

The General Purpose Challenge is related to the secondary
question of this SM. This question was planned because our
research team is investigating the application of MDSE in non-
conventional domains and in general purpose projects.

Another result of this SM is that the number of primary
and secondary studies related to challenges in unconventional
domains and in general purpose methodologies of MDSE
application is far below the expected, i.e., 2 in 4859 studies.
The search results were carried out exhaustively, which means
that all studies were checked for challenge discussion.

During the conduction we have identified nine works that
point methodology problems in MDSE besides the proposal
of MDA [15]–[23]. We have also found eight studies that
contain information on maintenance problems that occur in
projects that employ MDSE [23]–[30]. It is important to note
that there are 2 studies which are common to both categories.
Consequently, there are seventeen studies presented in this
subsection.

The summarization of these studies is presented on Ta-
ble VIII. This table is ordered chronologically and contains the
reference number of each study, authors, title, problem type
and study type. The problem types are split into two columns:
methodology and maintenance, which represent, respectively,
methodology problems and maintenance problems. Therefore,
the study lines that deal with specific problem types have
their respective cells shaded to indicate that they relate to the
problem type.

Chitforoush et al. [17] are among the researchers who iden-
tified that MDSE lacks methodology, processes and guidelines
to instruct when developers should use each model in a MDA-
based project. In their attempt to provide a solution to this

TABLE VIII
MDSE CHALLENGES SUMMARIZATION

Ref. Title Method Maint. Study Type
[24] Engineering long-lived applications using

MDA
Experience

Report
[17] Methodology support for the model driven

architecture
Method
Proposal

[16] An MDA-based system development lifecycle Method
Proposal

[26] MDA Tool Components: A proposal for
packaging know-how in model driven
development

Model
Manage-

ment
Model

[18] Adapting Software Development Process
towards the Model Driven Architecture

Method
for Process

[20] Integration of domain-specific models into a
MDA framework for time-critical embedded
systems

Method
for Process

[19] Integration of MDA framework into the model
of traditional software development

Method
for Process

[23] Challenges in Deployment of Model Driven
Development

Experience
Report

[15] An outline of conceptual framework for
certification of MDA tools

Method
Proposal

[30] From aspect-oriented models to
aspect-oriented code? The maintenance
perspective

Experi-
mental
Assess-

ment
[25] MoDSEL: Model-driven software evolution

language
Language
Proposal

[27] Merging of EMF models: Formal foundations Algorithm
for Main-
tenance

[28] From model-driven software development
processes to problem diagnoses at runtime

Generator
Dev.

Method
[22] Using software categories for the development

of generative software
Generator

Dev.
Method

[29] Co-evolving meta-models and their instance
models: A formal approach based on graph
transformation

Algorithm
for Main-
tenance

[21] A model-based workflow from specification
until validation of timing requirements in
embedded software systems

Method
Proposal

[31] Model-Oriented Web Services Method
Proposal

problem, they have defined a general methodology framework
based on MDA. These authors claim that their framework is
flexible enough to be adapted to various processes and needs.
They also compared their framework to similar approaches.
However, they do not provide validation on the efficiency of
their approach. They have suggested this validation as future
work but we could not find it published.

Asadi et al. [16] are from the same research department
and created another solution to the problem identified by
Chitforoush et al. [17]. They have defined a MDSE develop-
ment life-cycle, which has as main advantage to propose more
specific process definitions to guide developers using MDA.
However, the stricter definition could also affect flexibility. The
authors compared their approach to related approaches and we
could not find a validation study. It is worth mentioning that
their work was published after a survey on MDA problems by
the same author [6].

Both of these studies have identified problems in the
methodology of previous works. Despite this identification,
it was not possible to find any validation in these studies
pointing whether the problem was completely solved. It is
also worth citing the analytic survey by the same authors [6],
which provides the theoretical foundation used to create their
new approach.

Nikulsins and Nikiforova [18] have described the need
for customized processes. They have studied how to adapt
Rational Unified Process and Microsoft solutions framework
to support MDA. This need for customized process is further
described in a more recent work [19], in which the authors
point that MDA provides no guidelines for activities, roles,
phases and responsibilities.

While facing a similar issue, Sanchez et al. [20] and Noyer
et al. [21] have noticed the lack of a model-based process for
embedded systems development.

Cernickins et al. [15] also have described a methodological
problem, however, their focus is on tool certification. Thus,
their certification framework contains guidelines that can be
employed to identify if a tool set or a project is lacking an
important activity or feature which they claim to be necessary.

Besides these studies, Nazari and Rumpe [22] have devised
instructions specifically for developing software generators,
which is a specific activity related to MDSE projects.

Seifert et al. [24] have written an experience report where
they point that the use of MDSE increases dependency of the
tool chain. They argue that this problem is not only limited to
custom made tool chains, because tools may be updated and
become incompatible to the older model instances. This is
caused by changes on the language definition. For instance,
new UML definition versions are made available and tool
developers may follow the new definitions and break backward
compatibility [24].

Bendraou et al. [26] have discussed the need for packaging
metadata about the artifacts used within projects that employ
MDA principles. This packaging would then support the
maintenance activities.

Hovsepyan et al. [30] have studied the impact of code-
generation on software maintenance. The most important
contribution of this study, when compared to others presented
herein, is the in depth statistical analysis of the maintenance
impact using metrics to compare the results in a quantitative
manner. However, it focuses on specific models for a program-
ming paradigm [30].

Er and Tekinerdogan [25] describe a language named
“MoDSEL” (Model-Driven Software Evolution Language).
They claim that this language can be used to compare mod-
els, track their changes and identify maintenance impacts.
Therefore, this is a solution that deals with the maintenance
problems that may be found in software projects employing
MDSE [25].

Westfechtel [27] and Mantz et al. [29] have discussed the
need for formal foundations to merge models. These founda-
tions are employed to implement tools to handle maintenance
issues faced by developers when dealing with version conflicts
that may arise during development and maintenance.

Yu el al. [28] have discussed the problem that arises when it
is required to provide maintenance to code generators. In their
study, they have devised a tool to help debugging software
produced by model-driven development.

The studies shown on Table VIII span eleven years of
publications. Roughly in the middle of these years would be

2009. Prior to 2009, 5 out of 7 studies were focused on the
methodology problem. After 2009, 6 out of 8 studies were
focused on the maintenance problem, which could indicate a
trend on the research efforts.

The first study that covers both categories was published
in 2009. It was written by Teppola et al. [23]. It contains
an experience report created by applying surveys on software
development companies. These authors have described that
software developers using MDSE perceive both maintenance
and lack of methodology issues. They claim that despite the
advantages that have been experienced by the developers while
using MDSE, there are still several issues to be treated. The
authors conclude that the developers are optimistic hoping that
these issues are solved because they approve the use of MDSE
regardless of its current limitations [23].

Similarly to Asadi and Ramsin [6], Gottardi and Braga
have also published a secondary study [7] and then devised
a method proposal. In their proposal, they have suggested
to evolve MDSE into a new development method, including
a development method with maintenance flexibility. While
this suggestion could be interesting outcome for the method,
their evolution attempt can be tracked back to Model-Oriented
Programming. In this paradigm, a programming language has
been defined to tighten the gap between design and code [32].
This allows the developers to derive code from design and
design from code in a round-trip engineering method that
avoids losing semantics from either kind of artifact throughout
the development phases. According to this paradigm, a set of
studies in this context have been reviewed, however, they have
not added further discussion to the identified challenges.

Models at Run-time can also be argued as a paradigm
derived from MDSE. Aßmann et al. have discussed that this
paradigm puts a step forward on reflective programming,
allowing software to reach higher adaptability levels [5].

As we discuss the span of studies on MDSE and related
paradigms, it is clear that MDSE has reached a productivity
level for specific domains in which it achieved successes. It
is suggested that the legacy of MDSE research could be em-
ployed into new advanced paradigms to increase productivity,
software quality and adaptability.

It is not part of this study to discuss other secondary
studies, although it is important to list related studies. A
related systematic mapping has been performed [7], but it lacks
updates after 2015 and only reviewed 1651 studies compared
to 4859 of this study, which also includes paradigms derived
from MDSE.

An analytic survey, which is part of the work described by
Asadi and Ramsin [6], should be cited as an initial discussion
of limitations of MDA and MDSE. It is worth mentioning
that there are other two works by Whittle et al. [8], [12] that
were collected as control for this secondary study, and were
not added to Table VIII. These studies also indicate that the
evolution of MDSE tools should focus more on the human
aspects of developers, who still face difficulties when trying
to use them. Further details on related works are presented
within Section II.

VI. STUDY LIMITATIONS AND THREATS TO VALIDITY

The aim of this subsection is to provide details on the
identified limitations and what we have done to mitigate them.
The limitations were categorized by their origin, which include
“Search Strategy”, “Study Selection”, “Data Extraction”, and
“Researcher Bias”.

Search Limitations: There are a few limitations related to
our search strategy. The first of them is regarding to the search
string. After calibrating the string in order to achieve most
relevant results, it is possible that the string lost part of the
original intended semantics and may fail to return some of the
intended studies. To mitigate this problem, we have identified
which search engines indexed the preliminary known primary
study defined as “control” in the protocol. Then we confirmed
that the search string was enough to cause the search engine
to return the indexed known studies.

The number of search engines is less than the initially
planned. It was originally intended to include the databases
by ISI Web of Knowledge, Science Direct, Wiley InterScience
and Google Scholar. The decision to cancel conduction of
results carried by Springer Link was late in our process.
This was decided because this search engine provided a small
relative number of relevant studies and the high number of
results was affecting the review time. After these issues, we
believe that it is important to plan the execution phases by
reviewing the studies from each database sequentially in a
“shortest job first” strategy instead of our adopted sequence.

Study Selection: The guidelines by Kitchenham and Char-
ters [11] have been defined considering that the selection activ-
ity should only be used to define which studies should proceed
to the extraction activity. However, the authors preferred to
categorize every study since the selection phase.

The impact of this approach is unknown. In our strategy,
the selection phase became longer, however, we believe that
it was positive to avoid another limitation of this phase: it
was not possible to reject studies during the selection phase
without providing general categories to the study, which is
an evidence that no studies could have been rejected without
proper reading of its abstract.

Data Extraction: The main item analyzed during data
extraction was identifying the set of categories in which each
study should be linked to. This also includes the application
domains.

A constant concern during the execution was to provide
an exhaustive categorization of every returned study. Several
categories were planned before the conduction. After discov-
ering more specific studies, the authors then decided to create
an hierarchical category definition interactively in order to
provide an in depth report.

Since it was not possible to define if the interactively defined
categories should be applied to studies reviewed prior to their
definition, only a few categories were selected, and the review
was restarted considering the new category set.

Considering that only the studies that provided information
related to problems to apply MDSE were selected for discus-
sion, the rate of discussed studies has became much inferior

than the expected numbers. However, as the primary question
dealt in this study was to provide a systematic mapping related
to the most common domains, this issue should not affect its
credibility.

Researcher Bias: Since this work was carried out by two
researchers, the risk of researcher bias affecting the results is
considerably high.

In order to mitigate this threat, we have defined keywords
for each category and established systematic approaches to
carry the review as impartially as possible.

All the studies that present information regarding MDSE
challenges were reviewed extensively. However, the studies
unrelated to the challenges topic were not fully read during
the process.

VII. CONCLUSION

A secondary study has been presented in this paper. This
study is a comprehensive systematic mapping with the intent of
identifying the successes and failure cases of MDSE. Another
objective was to identify the challenges of MDSE while
discussing whether they have been solved.

After reviewing a total of 4859 studies, the most common
domains have been identified as well as discussions related to
challenges developers face while attempting to apply MDSE
to projects dealing with uncommon or too specific domains.

As part of results summarizing, we have identified that the
MDSE success domains are clustered into application and
technological domains. This data was presented quantitatively
considering the success cases that were not only used as case
studies. The success cases indicate that MDSE has reached
production levels for specific domains. In this manner, it is
suggested that MDSE is recommended for specific domains,
involving both academia and software industry.

During our searches, we could not find a report on a
failure case, still, we identified challenges and presented these
qualitatively in a discussion section.

There are 17 identified studies which are related to chal-
lenges in employing MDSE. This discussion involved chal-
lenges related to software maintenance and methodology is-
sues. The studies have also been categorized and summarized.

The studies with challenge discussion encourage new ap-
proaches to cope with the existing issues related to MDSE.
In the context of methods and maintenance, it is possible that
new processes, techniques, tools and developer training could
mitigate both of these issues. As the recent development of
new tools has taken place, in this thesis, we discuss how other
approaches could be employed besides creating new tools.

This systematic mapping presented the review of studies
from 1985 to 2018, however, studies related to MDSE chal-
lenges are a scarce. Therefore, it is difficult to point whether
a challenge has been dealt with in the recent years.

Moreover, we could find no evidences that the proposed
solutions were in fact used. Considering the maintenance
problems, we argue that these issues could rise in any project
and they should be mitigated since its beginning.

After discussing the successes and challenges, we also point
how paradigms derived from MDSE suggest that the MDSE
research legacy could lead to new methods and techniques to
improve software quality and adaptability in ways beyond the
original proposal of code generation.

ACKNOWLEDGMENT

Many thanks to Fundação de Amparo à Pesquisa do Estado
de São Paulo (FAPESP – process number 2016/05129-0)
and Coordenação de Aperfeiçoamento de Pessoal de Nı́vel
Superior (CAPES – process numbers DS-8428398/D and BEX
3482-15-4) for funding received during the development of this
work.

REFERENCES

[1] M. Brambilla, J. Cabot, and M. Wimmer, Model-driven Software
Engineering in Practice, ser. G - Reference, Information and
Interdisciplinary Subjects Series. Morgan & Claypool, 2012. [Online].
Available: http://books.google.com.br/books?id=2tVu-wC4XkAC

[2] R. France and B. Rumpe, “Model-driven development of complex
software: A research roadmap,” in 2007 Future of Software Engineering,
ser. FOSE ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 37–54. [Online]. Available: http://dx.doi.org/10.1109/FOSE.2007.14

[3] OMG, Overview and guide to OMG’s Model Driven Architecture,
http://www.omg.org/cgi-bin/doc?omg/03-06-01, Object Management
Group Std., Rev. 2.3, May 2010. [Online]. Available:
http://www.omg.org/cgi-bin/doc?omg/03-06-01

[4] O. Badreddin, A. Forward, and T. Lethbridge, “Exploring a
model-oriented and executable syntax for uml attributes,” Studies
in Computational Intelligence, vol. 496, pp. 33–53, 2014, cited
By 6. [Online]. Available: https://www.scopus.com/inward/record.
uri?eid=2-s2.0-84958544467&doi=10.1007%2f978-3-319-00948-3 3&
partnerID=40&md5=04f8343e3081a1567898e8875b3aebe3

[5] U. Amann, S. Götz, J.-M. Jézéquel, B. Morin, and M. Trapp, A
Reference Architecture and Roadmap for Models@run.time Systems.
Cham: Springer International Publishing, 2014, pp. 1–18. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-08915-7 1

[6] M. Asadi and R. Ramsin, “Mda-based methodologies: An analytical
survey,” Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol.
5095 LNCS, pp. 419–431, 2008.

[7] T. Gottardi and R. T. V. Braga, “Model driven development success
cases for domain-specific and general purpose approaches: A systematic
mapping,” in XVIII CIbSE, URP,SPC,UCSP. Lima-Peru: UCSP, April
2015, pp. 432–445.

[8] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“Industrial adoption of model-driven engineering: Are the tools really
the problem?” in Model-Driven Engineering Languages and Systems,
ser. Lecture Notes in Computer Science, A. Moreira, B. Schätz, J. Gray,
A. Vallecillo, and P. Clarke, Eds. Springer Berlin Heidelberg, 2013,
vol. 8107, pp. 1–17.

[9] O. Pastor and J. C. Molina, Model-Driven Architecture in Practice:
A Software Production Environment Based on Conceptual Modeling.
Secaucus, NJ, USA: Springer-Verlag New York, 2007.

[10] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson, “Systematic map-
ping studies in software engineering,” in 12th International Conference
on Evaluation and Assessment in Software Engineering, vol. 17, 2008,
p. 1.

[11] B. Kitchenham and S. Charters, “Guidelines for performing systematic
literature reviews in software engineering,” Keele University and
Durham University Joint Report, UK, Tech. Rep. EBSE 2007-
001, 2007. [Online]. Available: http://www.dur.ac.uk/ebse/resources/
guidelines/Systematic-reviews-5-8.pdf

[12] J. Whittle, J. Hutchinson, M. Rouncefield, H. Burden, and R. Heldal,
“Industrial adoption of model-driven engineering: Are the tools really
the problem?” in MoDELS, ser. Lecture Notes in Computer Science,
A. Moreira, B. Schätz, J. Gray, A. Vallecillo, and P. J. Clarke, Eds., vol.
8107. Springer, 2013, pp. 1–17.

[13] G. F. Hoffnagle and W. E. Beregi, “Automating the software develop-
ment process,” IBM Systems Journal, vol. 24, no. 2, pp. 102–120, 1985.

[14] I. Alkadi and D. Carver, “A testing assistant for object-oriented pro-
grams,” in Aerospace Conference, 1998 IEEE, vol. 4, Mar 1998, pp.
149–158 vol.4.

[15] A. Cernickins, O. Nikiforova, K. Ozols, and J. Sejans, “An outline of
conceptual framework for certification of mda tools,” in Proceedings
of the 2nd International Workshop on Model-Driven Architecture and
Modelling Theory-Driven Development, MDA and MTDD 2010, in
Conjunction with ENASE 2010, Athens, 2010, pp. 60–69.

[16] M. Asadi, M. Ravakhah, and R. Ramsin, “An mda-based system devel-
opment lifecycle,” in Proceedings - 2nd Asia International Conference
on Modelling and Simulation, AMS 2008, Kuala Lumpur, 2008, pp. 836–
842.

[17] F. Chitforoush, M. Yazdandoost, and R. Ramsin, “Methodology support
for the model driven architecture,” in Software Engineering Conference,
2007. APSEC 2007. 14th Asia-Pacific, Dec 2007, pp. 454–461.

[18] V. Nikulsins and O. Nikiforova, “Adapting software development process
towards the model driven architecture,” in 2008 The Third International
Conference on Software Engineering Advances, Oct 2008, pp. 394–399.

[19] O. Nikiforova, V. Nikulsins, and U. Sukovskis, “Integration of mda
framework into the model of traditional software development,”
Frontiers in Artificial Intelligence and Applications, vol. 187, no. 1,
pp. 229–239, 2009. [Online]. Available: http://dx.doi.org/10.3233/
978-1-58603-939-4-229

[20] P. Sanchez, J. Barreda, and J. Ocon, “Integration of domain-specific
models into a mda framework for time-critical embedded systems,”
in 2008 International Workshop on Intelligent Solutions in Embedded
Systems, July 2008, pp. 1–15.

[21] A. Noyer, P. Iyenghar, E. Pulvermueller, J. Engelhardt, F. Pramme, and
G. Bikker, “A model-based workflow from specification until validation
of timing requirements in embedded software systems.” Institute of
Electrical and Electronics Engineers Inc., 2015, pp. 166–169. [Online].
Available: http://dx.doi.org/10.1109/SIES.2015.7185056

[22] P. M. S. Nazari and B. Rumpe, “Using software categories for the
development of generative software,” in 2015 3rd International Confer-
ence on Model-Driven Engineering and Software Development (MOD-
ELSWARD), Feb 2015, pp. 498–503.

[23] S. Teppola, P. Parviainen, and J. Takalo, “Challenges in deployment of
model driven development,” in Software Engineering Advances, 2009.
ICSEA ’09. Fourth International Conference on, Sept 2009, pp. 15–20.

[24] T. Seifert, G. Beneken, and N. Baehr, “Engineering long-lived applica-
tions using mda,” in Proceedings of the Eighth IASTED International
Conference on Software Engineering and Applications, 2004, pp. 241–
246.

[25] E. Er and B. Tekinerdogan, “Modsel: Model-driven software evolution
language,” in Formal and Practical Aspects of Domain-Specific Lan-
guages: Recent Developments, M. Mernik, Ed., 2012, pp. 572–594.

[26] R. Bendraou, P. Desfray, M.-P. c. Gervais, and A. Muller, “Mda tool
components: A proposal for packaging know-how in model driven
development,” Software and Systems Modeling, vol. 7, no. 3, pp. 329–
343, 2008.

[27] B. Westfechtel, “Merging of emf models: Formal foundations,” Software
and Systems Modeling, vol. 13, no. 2, pp. 757–788, 2014. [Online].
Available: http://dx.doi.org/10.1007/s10270-012-0279-3

[28] Y. Yu, T. T. Tun, A. K. Bandara, T. Zhang, and B. Nuseibeh, “From
model-driven software development processes to problem diagnoses at
runtime,” vol. 8378 LNCS, 2014, pp. 188 – 207. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-08915-7 7

[29] F. Mantz, G. Taentzer, Y. Lamo, and U. Wolter, “Co-evolving
meta-models and their instance models: A formal approach based on
graph transformation,” Science of Computer Programming, vol. 104,
no. 1, pp. 2–43, 2015. [Online]. Available: http://dx.doi.org/10.1016/j.
scico.2015.01.002

[30] A. Hovsepyan, R. Scandariato, S. Van Baelen, Y. Berbers, and
W. Joosen, “From aspect-oriented models to aspect-oriented code? the
maintenance perspective,” in AOSD.10 - 9th International Conference on
Aspect-Oriented Software Development, Rennes and Saint-Malo, France,
2010, pp. 85 – 96.

[31] T. Gottardi and R. T. V. Braga, “Model-oriented web services,” in
2016 IEEE Symposium on Service-Oriented System Engineering (SOSE),
March 2016, pp. 14–23.

[32] A. Forward, O. Badreddin, and T. C. Lethbridge, “Umple: Towards
combining model driven with prototype driven system development,”
Fairfax, VA, United states, 2010. [Online]. Available: http://dx.doi.org/
10.1109/RSP.2010.5656338

http://books.google.com.br/books?id=2tVu-wC4XkAC
http://dx.doi.org/10.1109/FOSE.2007.14
http://www.omg.org/cgi-bin/doc?omg/03-06-01
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958544467&doi=10.1007%2f978-3-319-00948-3_3&partnerID=40&md5=04f8343e3081a1567898e8875b3aebe3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958544467&doi=10.1007%2f978-3-319-00948-3_3&partnerID=40&md5=04f8343e3081a1567898e8875b3aebe3
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84958544467&doi=10.1007%2f978-3-319-00948-3_3&partnerID=40&md5=04f8343e3081a1567898e8875b3aebe3
http://dx.doi.org/10.1007/978-3-319-08915-7_1
http://www.dur.ac.uk/ebse/resources/guidelines/Systematic-reviews-5-8.pdf
http://www.dur.ac.uk/ebse/resources/guidelines/Systematic-reviews-5-8.pdf
http://dx.doi.org/10.3233/978-1-58603-939-4-229
http://dx.doi.org/10.3233/978-1-58603-939-4-229
http://dx.doi.org/10.1109/SIES.2015.7185056
http://dx.doi.org/10.1007/s10270-012-0279-3
http://dx.doi.org/10.1007/978-3-319-08915-7_7
http://dx.doi.org/10.1016/j.scico.2015.01.002
http://dx.doi.org/10.1016/j.scico.2015.01.002
http://dx.doi.org/10.1109/RSP.2010.5656338
http://dx.doi.org/10.1109/RSP.2010.5656338

