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Abstract—The field of astronomical data analysis has expe-
rienced an important paradigm shift in the recent years. The
automation of certain analysis procedures is no longer a desirable
feature for reducing the human effort, but a must have asset for
coping with the extremely large datasets that new instrumenta-
tion technologies are producing. In particular, the detection of
transit planets — bodies that move across the face of another
body — is an ideal setup for intelligent automation. Knowing
if the variation within a light curve is evidence of a planet,
requires applying advanced pattern recognition methods to a very
large number of candidate stars. Here we present a supervised
learning approach to refine the results produced by a case-
by-case analysis of light-curves, harnessing the generalization
power of machine learning techniques to predict the currently
unclassified light-curves. The method uses feature engineering
to find a suitable representation for classification, and different
performance criteria to evaluate them and decide. Our results
show that this automatic technique can help to speed up the
very time-consuming manual process that is currently done by
scientific experts.

Keywords—Machine Learning, Exoplanet Detection, Feature
Engineering.

I. INTRODUCTION

Planets orbiting stars outside our solar systems are called
extra-solar planets or exoplanets. Detecting these planets is
a challenging problem, because they only emit or reflect very
dim magnitudes compared to their host stars, and they are very
near to them compared to the observation distance. Several
approaches have been proposed by astronomers for detecting
them, being the fine-grained analysis of periodicities in star
light-curves the most successful so far. However, the large vol-
ume of data that is being generated by modern observatories,
including large surveys of astronomical objects, requires the
use of automatized methods that can reproduce the analysis
performed by astronomers to decide if the data supports the
existence of an exoplanet. Fortunately, the advances in nu-
merical methods, machine learning and data science in general
allow us to apply algorithms and computational techniques that
learn and predict from complex patterns in a reasonable frame
of time. This paper presents how to use machine learning
techniques to refine the detection of exoplanets using real data
from the Kepler Space Telescope. Concretely, we explored
different feature extraction and selection techniques applied
to the light-curves to improve the training and prediction
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performance of supervised classification methods. To compare
them, we used a few standard statistical learning criteria, yet
the results motivated an hybrid selection of techniques that
reduces the number of unconfirmed light curves.

The results of this work show that using only standard
statistics to summarize the entire light curve has only a
moderate performance compared to combining them with
other manually extracted features by experts on astronomy
related to the planet and its hosting star. We reached an
88.3% of average precision and recall (f/ score), meaning
that approximately the 88% of the times the prediction
was correct. For this configuration the best learned model
was Random Forest. We combined the identification of
Confirmed objects (exoplanets) using Random Forest and the
identification of False Positive objects (not exoplanet) using
a SVM RBF model to produce our classification.

Thus, the present work gives the classification of the Kepler
Objects of Interest that have been studied by NexSclI scientific
staff to September of the last year 2017 (Candidates).

The paper is organized as follows. Section 2 presents
a brief introduction to the methods of exoplanet detection
which inspired this work. Section 3 discusses the datasets
of Kepler Objects of Interest and the manual classification
performed over this data. Section 4 introduces some machine
learning methods and its corresponding metrics to use. Section
5 proposes an experimental study with empirical results on
exoplanets classification and, in Section 6, we present our
conclusions.

II. BACKGROUND

The study of exoplanets is a relatively new field of astron-
omy which started with the first confirmed detection of a very
fast-orbiting giant planet [1], named 51 Pegasi b. Since then,
the advances in instrumentation and data analysis techniques
have allowed the discovery of thousands of exoplanets. For
example, NASA reports that more than 3500 exoplanet has
been detected! using different techniques. Sadly, in mostly all
the cases the currently observatories, grounder or spatial, have
to applied indirect methods due to the difficult detection.

Thttp://exoplanets.nasa.gov



TABLE I
NUMBER OF CONFIRMED EXOPLANETS ACCORDING TO THE DETECTION

METHOD.3

Astrometry 1

Direct visual detection 44

Radial velocity 676

Transit 2951

Gravitational micro lenses 64

Radio pulses of a pulsar 6

A. Why is difficult to detect exoplanets?

A planet is an object that orbits around a star and is massive
enough to clear of dust and other debris the protoplanetary disk
from which it was born. The theory of extrasolar planets is
under development since mid-nineteenth century and although
there were some unsubstantiated claims regarding their discov-
ery, it was not until recently that we have confirmed detections.
Now, we can start to answer question such as how common
they are and how similar they are to the Solar system planets.

Protoplanetary disks are regions of gas and dust orbiting
around young stars. Current theories suggest that the dust
particles begin to collapse by gravity forming larger grains.
If these discs survive to stellar radiation and comets or
meteorites, the matter continues compacting giving way to
a planetoid. Unfortunately, most of the discovered planets
are large compared to the dimensions of the Earth, due to
limitations in detection methods based on the precision of
current observatories.

Planets are very dim sources of reflected light compared to
their host stars. Therefore, it is extremely difficult to detect this
type of light. To date, only a couple of dozen exoplanets have
been photographed while the majority of known exoplanets
have been detected through indirect methods. As indicated in
the Table I, the most successful detection mechanisms are:

e Radial velocity, which studies the speed variations of a
star product of its orbiting planets, analyzing the spectral
lines of this one through the Doppler effect to measure the
red-shift or blue-shift. This method has been successful,
but it is only effective on giant planets near its star.

o Transit photometry, photometric observation of the star
and detection of variations in the intensity of its light
when an orbiting planet passes in front of it, blocking
a fraction of the starlight. This method efficiently detect
high-volume planets independently of the proximity of
the planet to its star.

Fortunately, technological advances in photometry have
allowed experiments like the space observatory Kepler to
have sufficient sensitivity for detecting a greater range of
exoplanets. To achieve this, feature extraction, classification
and regression methods and models are needed.

Previous work

A typical source for these detections are RR Lyrae Stars,
because their intensity varies through time depending on the

planets. For example, Richards et al. [2] presents a catalog of
variable stars and manually extracted light curve specialized
features from simple statistics and other features based on the
period and frequency analysis of a LombScargle fitted model
[3]. Donalek et al. [4] also worked on classifying variable stars
from the Catalina Real-Time Transient Survey (CRTS) and the
Kepler mission, extracting similar features from the light curve
to Richards et al. [2]. A different methodology was presented
by Mahabal et al. [5] in which light curves are transformed
into an image (grid) that represent the variations of magnitude
through the variations of time intervals. They also used the
data from CRTS and the task was to classify the variability of
the star. The recent work of Hinners et al. [6] presents different
machine learning techniques and models with the objective of
classifying and predicting features over the same data that this
paper uses. Similarly to what we propose here, they extract
some statistical features from the light curve, but they were not
interested on detecting if the light curve variations were indeed
generated by an exoplanet or by another phenomena. They
also tried a recurrent neural network from automatic feature
extraction and prediction but with inconclusive results.

In this work we tackle the exoplanet detection problem,
with ad-hoc feature extraction over the sequence in addition of
automatic techniques using Fourier transform and component
analysis. Then, combining the best learned model on each
class, we complete the proposed task.

III. DATA

The Kepler Mission is a space observatory launched by
NASA in 2009 with the goal of searching for planets similar
to the size of Earth within our galaxy neighborhood. Kepler
measures the variation of light from thousands of distant stars,
in search of planetary transits?. Currently, NASA Exoplanet
Science Institute has shown? that around 65% of exoplanet
discoveries (2344) have been detected thanks to the Kepler
Mission. Considering that most of the discovered exoplanets
have been detected through the transit method, and taking
advantage of the photometric improvements of Kepler, we
propose to work with the Kepler Objects of Interest (KOI*)
dataset. This dataset, provided by MAST (Mikulski Archive
for Space Telescopes), is composed by 9564 records with 44
features each, including metadata and links to the actual light
curves [7].

We collected 8054 FITS files from the archive, where some
of them contain more then one light curve because different
KOIs were detected for the same star. Moreover, each file
contains the error associated to each measure, the time (in
Julian date) when the measure was made, the raw light curve,
the filtered light curve and a Mandel-Agol fit of the light curve
[8].

Zhttps://exoplanetarchive.ipac.caltech.edu/docs/KeplerMission.html
3https://exoplanetarchive.ipac.caltech.edu/docs/counts_detail.html
“http://archive.stsci.edu/search_fields.php?mission=kepler_koi
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Fig. 1. Process to obtain light curves and create the data to experiment.

Every record is associated to a Kepler Object of Interest
labeled as Confirmed, False Positive or Candidate, according
to Nasa Exoplanet Science Institute’.

o 2281 CONFIRMED: those that through extensive analy-

sis have been confirmed as exoplanet.

e 3976 FALSE POSITIVE: those that were initially se-
lected as candidate exoplanets but there is additional
evidence that shows they are not.

o 1797 CANDIDATE: those that are still under study.

Between the reasons to catalog a candidate as a False
Positive, according to MAST, are observation that did not
match with the star position on study, showing that the transit
was on another object in the background. Another possibility
is that the deep of the even transit was statistically different
to the deep of the odd transits, showing a binary system, i.e
two stars orbiting among them.

Even though each stored light curve (Figure 2) was about
70000 measurements, every point in the series is not generated
independently [9]. As the dispersion varies through time, the
series is governed by a trend and could have cycles. This
fact is important because the Kepler measurements are not
recorded uniformly, getting light curves with missing data. On
average, the missing data is about 22.98% of the size of the
fully sampled light curve, as it shown in the Appendix. This
means that every light curve has approximately about 55000
effective measurements. We used two simple techniques to
tackle missing values: (1) fill with zeros and (2) fill the gaps
with linear interpolation.
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Fig. 2. Sample of a light curve as a raw format, with whitened filter applied.

From all the metadata that was available, we have selected
only 10 features that we found relevant to train the models.
e Period: the average of the interval time between transits,
based on a linear fit among all the observed transits.
e Transit Depth: the fraction of the stellar intensity lost on
the minimum planetary transit.

Shttp://nexsci.caltech.edu/

e Planet Radius: the inferred radius of the Object of
Interest.

o Planet Teq: the expected temperature of equilibrium on
the surface of the candidate planet.

o Stellar Teff: is the effective stellar temperature (photo-
sphere) in Kelvins.

o Stellar log(g): the logarithm of the stellar surface gravity.

o Stellar Metallicity: is the logarithm of the relationship
between F'e and H on the surface of the star, normalized
by the solar relationship between F'e and H.

e Stellar Radius: the stellar radius with respect to the sun
(Solar = 1).

o Stellar Mass: the computed mass of the star.

e KOI count: the numbers of identified candidates on that
system, which varies between 1 and 7

Following the standard dataset separation for machine learn-
ing, we used the 64% of the labeled data for training, 18% for
validation and another 18% for evaluating and compare the
models trained as test set. This last one represents the actual
target unlabeled data that is unknown (Candidates).

Whitened filtering

The data used in this paper was the light curve on its
raw format with a whitened filtered applied, this is because
the objective of this filter is to obtain a light curve with a
constant white noise where the higher signal (high to noise) get
amplified and give a more uniform signal. Whitened filtering is
a linear transformation that take a sequence of random variable
(with know covariance matrix) into a new sequence of new
random variables where the covariance matrix is the identity,
no correlation between variables and variance normalized. The
transformation is called whitened because change the input
data into a new data with white noise. The white noise is
a random signal that have the same intensity on different
frequencies, which gives a spectral density of constant power.
The operation realized over the light curve it is divided the
signal by his own spectral power density function.

Mandel-Agol model

Within the FITS files there is also the Mandel-Agol model
fitted to the light curve, which model the transit of a strato-
spheric planet around a stratospheric star, like an eclipse,
assuming a uniform source. It requires to know the distance
from the center of the planet to the center of the parent star
as well as the radius of each one of the bodies. Mandel-Agol



models the opacity observed on the light intensity according
to the planet position. When the planet eclipse the star the
opacity is maximum, when the planet orbits without eclipse
the star the opacity is minimum and uniform (zero or null),
yet, when the planet is close to eclipse the star the intensity
is modeled as a quadratic polynomial according to [8].

IV. MODELS AND METHODS

The used models aim to catalog correctly the objects that are
currently investigated by NexScl (Candidate) labeling them
as Confirmed or False Positive according to what the model
learns.

A. Feature extraction

In this work we use two different methods for feature extrac-
tion. The first one focuses on the use of manual techniques
for feature extraction and construction, and the second one
focuses on automatic techniques for the same propose: feature
generation. Both methods are applied to the processed light
curve mentioned in the above section.

1) Manual feature extraction: We used extraction tech-
niques specialized on time series, which in this case corre-
sponds to measurements of intensity of the light along time,
inspired on the library Feature Analysis for Time Series (FATS)
for Python [10]. This library was created with the purpose
of extracting features over astronomical data (light curves
specially) and was used before over the same data [6]. Besides
this, features have been used on other tasks over light curves
[2], [4]. Due to performance issues of the library®, we have
developed our own implementation for some of the features
present in the package.

o Amplitude, defined as the difference between the maxi-
mum value and the minimum value divided by 2.

e Slope, defined as the the slope of a linear fit to the light
curve.

e Max, the maximum value of the sequence.

e Mean, the average of the sequence.

e Median, the median magnitude of the sequence.

o Median Abs Dev, defined as the median of the difference
between every point to the median of the sequence.

e Min, the minimum value of the sequence.

e (I, the first quartile of the data in the sequence.

e 02, the second quartile of the data in the sequence.

e 031, the difference between the third and first quartiles.

o Residual bright faint ratio, is the rate between the residual
of the fainter intensities over the brighter intensities, with
the mean of the sequence as threshold.

e Skew, defined as a measure of the asymmetric of the
sequence (third standardized moment).

o Kurtosis, defined as the fourth standardized moment of
the sequence.

o Std, standard deviation of the sequence.

Due the few features generated over the sequence that
can summarize the light-curve (from a total of 55 thousand

Shttps://github.com/isadoranun/FATS

effective measurements of intensity of light approximately),
we decided to consider some of the metadata presented in
the above sections, which can can contribute with additional
information of every one of the observation of the objects of
interest and their light curves.

2) Automatic feature extraction: Alternatively for the au-
tomatic feature extraction techniques we use unsupervised
learning methods, where the objective is to find intrinsic
patterns among all the data independently from task, in this
case the exoplanet detection. The first method is the well-
know Principal Component Analysis (PCA) [11], [12]. This
algorithm is a linear method that projects the data into a
lower dimensional space, i.e. transforms the data space from
the original dimensions (the length of the sequence) into a
new space of lower dimensionality defined by the vector of
higher variances. PCA is know as one of the best algorithm
for dimensionality reduction and has been applied to several
applications, obtaining particularly good results on time series
[13]-[15]. Besides its great efficiency when dealing with high
dimensional data, PCA can benefit from specific optimiza-
tions over linear algebra methods that are present on several
libraries.

A second method is FastICA (Fast algorithm for Inde-
pendent Component Analysis) [16], [17], an efficient iterative
algorithm that finds statistically independent components of
the data, in contrast to the uncorrelated ones used by PCA.
The algorithm is focused on the signal abstraction, since it
tries to detect the independently sources that, mixed, produce
the observed data.

These two automatic methods were tested using also the
Discrete Fourier transform [18], [19] applied to the light curve:
it transforms the data from the time domain in which the
measurements where obtained, to the frequency domain where
the signal was generated. This method is designed to analyze
periodic signals, which is exactly the case of transit light
curves.

B. Learning Models

The K-nearest neighbors model (k-NN) is a popular yet
simple approach based on memory (i.e., non-parametric). It
remembers all the training data and uses a k number of nearest
samples of the data to predict a class [20]. This algorithm
classifies based on the voted majority among his k£ nearest
neighbors based on a distance metric, in our case Minkowski’s
7. Despite its simplicity, it shows a very good performance in
several problems [21].

The second model is the regularized logistic regression: a
variant of the logistic regression proposed in [22] that classify
based on a probabilistic (logistic) binary model in which a
linear boundary is defined among the classes based on the
probability of belonging to each class. The regularization is
used to penalize the parameters/weights to avoid overfitting,
i.e., learning more complex patterns than the ones present
original phenomenon for the sake of reducing the error.

7http://scikit-learn.org/stable/modules/generated/sklearn.neighbors. DistanceMetric



Another linear algorithm, namely the Support Vector Ma-
chine (SVM) [23] is a margin-based model which also defines
a linear boundary among the classes and tries to find the
best separation hyperplane that divide them. SVM uses a
subset of the data to fit the model: only those that are closely
enough to the boundary are remembered and they are called
support vectors. We use the regularized version of SVM, c-
SVM, that penalizes the error on the training data, similarly
to what was used for logistic regression, producing better
generalization results. For both the /5 norm was selected (ridge
regression). For the c-SVM we use a Gaussian kernel as the
Radial Basis Function (RBF) [15] because it produce a more
flexible decision boundary. Indeed, it computes the operations
in a higher dimensional space, translating the problem to a
non linear decision space. This technique brings improvements
when the data is not linear separable.

As last, we use a Random Forest classifier [24], [25], an
ensemble in which many models (in this case decision trees)
are trained over different samples of the data (bootstrap).
Every model is trained by selecting some features randomly
and dividing the samples according to this features. The
predictions of the ensemble corresponds to the majority class
among all the models.

As an alternative to these linear models and feature ex-
traction techniques, we use state-of-the-art recurrent neural
network models, specifically the LSTM (Long Short Term
Memory) [26] and GRU (Gated Recurrent Unit) [27], which
are specifically designed for time series. The models considers
that a sequence has a local dependency that affects the output,
so it take the dependency into account. These models are
designed to cope with very large sequences, because these
gates can detect pattern while forgetting samples that are
useless and keep those that are not. Given the difficult of
training this network with the length of the sequence that
we used, the light curve was transformed into a sequence of
statistics by windows. We used: maximum, minimum, mean,
standard deviation and the third moment.

C. Metrics

The exoplanet problem is an instance of unbalanced binary
classification. Therefore we need to select quality measures
beyond the classical accuracy, namely precision, recall (by
class) and fI score, where the last one summaries precision
and recall metrics in just one over all the data (both classes).

 Precision
Rate between the objects correctly labeled as one class
over the sum of all the objects labeled as that class. In
other words, is the ability of the model to label one class
A only when the object effectively was from that class.
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P =
o Recall
Rate between the objects correctly labeled as one class

over the sum of all the objects effectively from that class.

In other words, is the ability of the model to include all
the object that effectively are from one class A.
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e Fl-score
This is defined as the harmonic mean between the two
measures previously mentioned, being high when both
are high. Note that the relative contribution of precision
and recall to the F1 score are equal. Therefore, this is a
good quality measure of a model:

P-R
P+R
With T}, as the true positive, F), as the false positive and F),

as the false negative. All this metrics reach their best values
at 1 and worst at 0.
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V. EXPERIMENTS AND RESULTS

Due to the large amount of data that was processed, it was
necessary to use a cluster provided by ChiVO?® (Chilean Virtual
Observatory) in which 6257 labeled data, corresponding to 121
GB, and 1797 not labeled data (candidates), corresponding to
another 33 GB, were downloaded. Thus, approximately 4000,
1000 and 1000 registers were grouped as training, validation
and testing sets respectively. The validation set was used to
tune structural hyper-parameters of the different algorithms
while testing set was used to compare the best models to
simulate how these will behave on future data.

Regarding the hyper-parameters of the trained algorithms,
it was necessary to define:

¢ k-NN: Number of neighbors k.

o Logistic Regression: C, Inverse of regularization strength.
Smaller values specify stronger regularization.

e SVM: C, Inverse of regularization strength. Smaller val-
ues specify stronger regularization.

o Random Forest: The maximum depth of all the trees.

Note that the selection of such hyper-parameters was not

expensive in computational terms because it was performed on
the representations of features extracted from the techniques
already discussed, which are much smaller than the amount
of data (d < n, where n indicates the data size and d the
dimensionality of these).
For automatic feature extraction techniques, fixed dimensions
were experimented (5, 10, 15, 20, 25, 50 for ICA and §, 10, 25,
55, 100 for PCA), where Table II shows how the performance
of the best model varies according to the dimensionality. It is
evident that as the dimensionality increases (characteristics),
the error increases.

The use of a discrete Fourier transform seems to be a crucial
procedure when extracting features automatically. If we apply
the learning models to the raw data representation (sequence
of intensity of light), the error turned out equally to a random

8http://www.chivo.cl



TABLE II
F1 SCORE OF THE BEST CLASSIFIER, RANDOM FOREST, IN FUNCTION OF
DIMENSIONALITY.

5 10 15 20 25 50
[ ICA [ 0.711 [ 0.709 [ 0.709 | 0.686 [ 0.679 | 0.675

5 10 25 55 100 255
[ PCA [ 0.713 [ 0.701 [ 0.701 [ 0.699 [ 0.702 | 0.689

labeling (i.e., all the examples as false positive class 0.486,
while 0.200 for confirmed class in terms of fI score).

Surprisingly enough, completing missing data with zeros
produces a consistent improvement of ~ 0.1 in the fl-
score, while linear interpolation produced worse results. We
tried another missing-value treatment technique consisting in
performing a sampling of the sequence by taking the maximum
value each 3 points (considering the missing data as zeros)
completing the data following the trend line. Unfortunately,
this resulted in a greater error.

In addition to extracting features of the light curve manually,
we worked directly with the MAST metadata, results that can
are shown in Table III. First, the metadata corresponding to
the potential exoplanet under study (KOI - kepler object of
interest) was used. This contains the orbit period, the transit
depth, the planet radius, the equilibrium temperature of the
planet and the number of KOI under study in such system. This
approach proved to be better than the techniques that faced the
raw data. Also, we included the metadata of the hosting star
such as the effective temperature, the metallicity, the gravity,
the radius and its mass. When we used these features, it was
possible to notice an important improvement, because we fed
the classification algorithms with more relevant information
than using only features extracted from the light curve. As
an alternative result, these manual processes were mixed, i.e
metadata was used in conjunction with the manually extracted
features from the light curve.

With the purpose of handling the unbalance data, we
experimented with the undersampling technique [28], in
which the majority class was subsampled, getting two
sampled sets of similar sizes as a training set. Nevertheless,
we also used the unbalanced data directly when we trained
the Logistic Regression, SVM and Random Forest models,
because they admit weighting different classes into the
objective functions in a way that the minority have more
impact on the objective function [29]. Over this last
experiment we improved the results by ~ 0.1 on fl score
metric.

The results are shown by Table III, which presents FI score
metric for the best representations of each technique, with 5
components for PCA and ICA, filling with zeros the missing
data and assigning balanced weights to the classes (without
subsampling the major class).

After testing all the wvariants in the experimentation
process (Table III), the best result was obtained using
manual techniques, in which statistics and fixed light-curve

TABLE III
F1 SCORE ON THE CLASSIFICATION OF DIFFERENT MODELS (LEARNERS)
OVER THE TEST SET ON THE DIFFERENT REPRESENTATIONS GENERATED.

Learners
NN Logzst{c SVM RBF Random
Regression Forest

Fourier +
PCA 0.679 0.493 0.486 0.713
Fourier +
ICA 0.679 0.493 0.486 0.711
OwnFATS 0.666 0.583 0.575 0.658
Planet metadata  0.825 0.848 0.848 0.870
Stellar metadata  0.766 0.718 0.751 0.766
OwnFATS +
stellar & planet  0.844 0.864 0.876 0.883
metadata

features were extracted in addition to other features based on
metadata (both for the planet and the star). We obtained a
performance of 88.3% for future classification, as FI score
metric indicated, meaning that probably 88.3% of the time
the predictions will be correct. The best trained model was
Random Forest, where the Figure 3 presents the feature
importance/relevance that this ensemble has on his process
of selection in the prediction. In the figure, it can be seen
that the most relevant features belong to the object in study
(object of interest). Particularly, the radius of the object is
the one generate most impact on the prediction together with
the period and the number of object in studies in that system.
The features with less importance happens to be the ones
extracted from the light curve, where the slope and second
quartile are the ones with less impact.

The experimentation with recurrent neural network was
very complete but without success: we tested with different
representation on the input data, we varied the size of the
window from 300 to 500, we varied the architecture of the
network modifying the depth, changed the number of units,
tried different optimizer (RMSprop and Adam), used different
number of epochs as well as modified the batch size during the
training. Unfortunately, no good results were achieved for any
the networks, being a little network with GRU the one with
the best performance, 0.567 according to fI score. Knowing
the good performances of these models in other areas, we
suspect that the sequence was too long and by that, the statistic
by window was not the best technique to summarize all
the needed information for the proper learning of the network.

The details of the precision and recall metrics on the
classification over both classes on the test set can be found in
the appendix. In Table VI we report the classification on the
false positive class. It can be seen that the best model that
can identify correctly this class based on this two metrics, i.e.
the model that cover the most examples of that class and do
this in a meticulous way (without including examples from
other class), is the SVM RBF. This can be explained due to
the RBF kernel, because it can fit boundaries on a flexibly
way and very tight to the data of that class. Similarly, in this
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Fig. 3. Feature importance of Random Forest model over the representation
with the best performance (OwnFATS with metadata). The names of the
indexes features are in Table IV.

TABLE IV

INDEXES FEATURES OF FIG. 3. THE MOST IMPORTANT ARE IN BOLD.

1 | minimum 9 Q2 17 teq
2 | maximum | 10 slope 18 koi count
3 mean 11 amplitude 19 | planet radius
4 std 12 | median absolute deviation | 20 teff
5 IQR 13 | residual bright-faint ratio | 21 log(g)
6 | skewness 14 median 22 metallicity
7 kurtosis 15 period 23 stellar radius
8 Ql 16 transit depth 24 stellar mass

table it can be seen that the ICA transformation applied over
the frequency domain achieve the higher precision among all
the techniques of features extraction, even the metadata, but
with the trade-off of a small recall. This mean that it can only
cover a small portion of the data of that class. In the same
way, we can analyze the Table VII, i.e., the classification
on the Confirmed class, showing lower scores that the other
class, suggesting the difficulty on the exoplanet prediction
problem. This could be because all of them do not have very
similar features on the light curve, making it difficult to detect
and group all the samples of this class. However, the best
model in the task of only detecting exoplanets (Confirmed)
on the different representation of the data was Random Forest.

Final results: After having performed all the corresponding
test and identified the best model on each label over the
future data based on the metrics precision and recall, we
show the predictions on the representation OwnFATS +
stellar & planet metadata with the Random Forest model
for those Confirmed, with maximum depth 15 and the SVM
RBF model with regularization parameter 100 for those False
Positive. Therefore, we show the classification over the Kepler
Object of Interest that are still being studied by the staff of
NexScl on September of 2017, i.e. those object labeled as
Candidate. On the Table VIII (in the appendix) we show
a sample of the labels predicted by the models mentioned,
being these Confirmed or False Positive as appropriate. Also,
we report when the models disagree on assigning labels
for the same object, labeling them as Unclassified, because
the models cannot reach a consensus. This table shows, for

example that the system of the star Kepler 279, sheltering
two confirmed exoplanet by NexScl (Kepler 279 b and
Kepler 279 c), our models show that the third object in study
K01236.04 happens to be a valid exoplanet as the others
orbiting the parent star. An opposite case is the system of the
star Kepler 619, which also shelters two exoplanets (Kepler
619 b y Kepler 619 c): our models assign that the third object
in study K00601.02 as a false positive. Also our models
classify an entire system on study (K01358.01, K01358.02,
K01358.03 and K01358.04), tagging every object there as a
valid exoplanet. This also can be seen when it tagged objects
of interest on star with confirmed exoplanets, such as Kepler
763 b orbiting Kepler 763, where it assigned two new brother
exoplanets orbiting the same star yet the fourth object on
study K01082.02 is a false positive.

Finally we present a summary table on the assign-
ment/labeling of the models in our work:

TABLE V
SUBTOTAL OF CANDIDATE EXOPLANETS BY CORRESPONDING METHOD.
Total CANDIDATE Learner 1791
Subtotal CONFIRMED Random Forest 975
Subtotal FALSE POSITIVE | SVM RBF 434
Unclassified 382

VI. CONCLUSIONS

We introduced a new refining method to decide whether

or not an object on study (KOI) is really an exoplanet using
supervised automatic learning. By using different techniques
focused on handling raw data (sequence of intensity of light)
on machine learning and combining them properly, we re-
produce the arduous and extensive work that experts perform
when detecting or disconfirming an exoplanet on study. Based
on the results of the feature engineering proces we indicate
that the automatic techniques used to extract information from
the light curve wasn’t good enough compared to the metadata,
which outperforms it respect to the score. The reason we find
to that is the not suitable methods for the feature extraction,
or well, too simple for the complex problem that we faced,
because the light curves were very diverse in their morphology.
Also the problem was complex regarding the execution time,
because the computational cost of compute all the operations
over the very long sequence and the features of the problem.
The varies about which metadata used could have great impact
on the informed results of the work, because the choice
was made only by looking at the description of the features
informed by MAST. This election could be modified achieved
even better results having the right supported by an expert in
that area.
About the future work, firstly is to use the fit Mandel-Agol
light curve because of his smoothness. Also is the modification
of the fill in techniques on the missing values or some
techniques that can handle this properly. In the same way,
used new and different techniques on the task of the feature
extraction on the light curve.
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TABLE VI
SCORES OF PRECISION (P) AND RECALL (R) ON THE False Positive
CLASS OF LEARNED MODELS ON THE TEST SET OVER THE
DIFFERENT REPRESENTATION ON THE DATA. IN BOLD IS THE BEST
MODEL ON EACH REPRESENTATION.

APPENDIX

Learners
NN L()ngll'C SVM RBF Random
Regression Forest

Fourier + P: 0726 P: 0902  P: 0620  P: 0.789

PCA R:0.809 R:0.283  R:1.000 R: 0.736

Fourier + P:0.752  P: 0899  P: 0.933 P: 0./88

ICA R: 0728 R:0285 R:0332 R:0.730

P: 0.743  P: 0.821 P: 0.800  P: 0.827

OwnFATS R: 0695 R: 0441  R: 0395 R:0.569

Planct motadata P2 0863 P:0917  P: 0927  P: 0914

anet metadata  p.0.857 R:0.830 R:0.817 R:0.871

Sell daa P:O78L  P:0806  P:08I8  P: 0819

cllar mefadata — p. 0886  R:0.714  R:0.768  R: 0.803

gzl’lr‘;g S Fo POSGD  P0919  P:0934  P:0924

p R:0.899 R:0.857 R:0.861 R:0.884
metadata

TABLE VII

SCORES PRECISION (P) AND RECALL (R) TO THE Confirmed CLASS
OF LEARNED MODELS ON THE TEST SET OVER THE DIFFERENT
REPRESENTATION ON THE DATA. IN BOLD IS THE BEST MODEL ON
EACH REPRESENTATION

Learners
NN Logistz:c SVM RBF Random
Regression Forest

Fourior & 50597  P:. 0438 P 0000  P: 0597
PCA R: 0481  R: 0948  R:0000 R: 0.666
Fourier + P: 0.562 P: 0.438 P: 0.458 P: 0.592
ICA R: 0592 R:0945  R:0960 R: 0.665
P: 0533 P 0468 P 0471 P: 0522

OwnFATS R: 0592 R:0.836  R: 0917 R:0.798
oot metadara P 0763 L0755 P 0745 P: 0801
R: 0773 R: 0874  R:0893 R: 0.864

el moadua PP 0735 0G0 PL0GI9 P OG8I
R: 0585 R: 0713 R: 0716 R:0.703

g:l’l‘;fA; Spl’; o POBIS  P:0785  P:0795  P:0820
R: 0756 R: 0874  R:0898 R: 0.879

metadata

TABLE VIII
THIS TABLE SHOW SOME OF THE PREDICTIONS ASSIGNED AS MUCH
BY OWNFATS + STELLAR & PLANET METADATA WITH RANDOM
FOREST CLASSIFIER FOR THE TASK OF EXOPLANET DETECTION
(Confirmed), AS BY OWNFATS + STELLAR & PLANET METADATA
WITH SVM RBF FOR THE TASK OF NON-EXOPLANET DETECTION
(False Positive). IT SHOULD BE MENTIONED THAT THE COLUMN
CONFIRMED ON THAT SYSTEM COUNT THE AMMOUNT OF
CONFIRMED EXOPLANETS ON THE DATE OF THE STUDY
(SEPTEMBER 2017), AS LONG AS STAR IS THE NAME OF THE
PARENT STAR IN THE SYSTEM; THE ONES WITH NO INFORMATION
DOESN’T SHOW THIS VALUE. MORE CAN BE FOUND ON
HTTPS://GITHUB.COM/FMENA14/EXOPLANETDETECTION

KOI name Disposition onCt(l):;ftirsr;lset(i m Star
K00601.02 | FALSE POSITIVE 2/3 Kepler 619
K00750.02 UNCLASSIFIED 1/3 Kepler 662
K01082.01 CONFIRMED

K01082.02 FALSE POSITIVE 1/4 Kepler 763
K01082.04 CONFIRMED

K01236.04 CONFIRMED 2/3 Kepler 279
K01358.01 CONFIRMED

K01358.02 CONFIRMED 0/4 )
K01358.03 CONFIRMED

K01358.04 CONFIRMED

K01750.02 CONFIRMED 12 Kepler 948
K02064.01 UNCLASSIFIED 0/1 -
K02420.02 CONFIRMED 12 Kepler 1231
K02578.01 FALSE POSITIVE 0/1 -
K02828.02 | FALSE POSITIVE 12 Kepler 1259
K03444.03 UNCLASSIFIED 0/4 -
K03451.01 UNCLASSIFIED 0/1 -
K04591.01 FALSE POSITIVE 0/1 -
K05353.01 | FALSE POSITIVEE 0/1 -
K06267.01 CONFIRMED 0/1 -
K06983.01 CONFIRMED 0/1 -
K07279.01 CONFIRMED 0/1 -
K07378.01 CONFIRMED o ]
K07378.02 CONFIRMED

K07434.01 FALSE POSITIVE 0/1 -
K08082.01 CONFIRMED 0/1 -




Samples of the input data

Light curve in raw data
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