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Abstract—In the fair cost facility location game, players control
terminals and must open and connect each terminal to a facility,
while paying connection costs and equally sharing the opening
costs associated with the facilities it connects to. In most of
the literature, it is assumed that each player control a single
terminal. We explore a more general version of the game where
each player may control multiple terminals. We prove that
this game does not always possess pure Nash equilibria, and
deciding whether an instance has equilibria is NP-Hard, even in
metric instances. Furthermore, we present results regarding the
efficiency of equilibria, showing that the price of stability of this
game is equal to the price of anarchy, in both uncapacitated and
capacitated settings.

Index Terms—price of stability, facility location, algorithmic
game theory

I. INTRODUCTION

Facility location problems covers a broad range of optimiza-
tion problems, with practical applications in many different ar-
eas such as public policy, urban planning, telecommunications
and computer networking. In the general sense, the facility
location problem can be stated as follows. Let F be a set
of facilities, T a set of terminals, with opening costs cf for
each facility f ∈ F and connection costs dtf for connecting
terminal t ∈ T to facility f ∈ F . The problem is to find
a subset of facilities to open and establish connections from
terminals to this subset such that the sum of all costs are
minimized.

Consider a scenario where multiple supermarket or stores
share big warehouses that stockpile supplies for them. Each
store is located some distance away from a warehouse and they
pay the costs associated with maintaining its products in the
warehouse and the transportation costs to its specific location.
Such scenario can be seen as a facility location problem, where
each store is a terminal and each warehouse location is a
possible facility. In the classical optimization version, the view
point of the warehouse company is given priority, and each
terminal can be seen as being controlled by a central authority
in order to minimize opening and connection costs globally.
When we consider the fact that each supermarket is competing
with each other, this approach of global optimization is not
possible to be adopted anymore. In order to analyze such
scenarios, we can use game theory.
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A non–cooperative game is a decision scenario where
an agent or player selfishly and without coordination other
players, chooses a strategy in order to maximize its own utility
(or minimize its own cost), which in turn depends on the
strategies chosen by the other players. We say that a game is in
a pure Nash equilibrium (PNE) if no player has any incentive
to unilaterally change its own strategy. In order to compare
the social cost of pure equilibria and the social optimum, we
use the standard measures found in the literature: the price of
anarchy (PoA) and the price of stability (PoS). The PoA of
a game is defined as the ratio between the PNE with worst
social cost and the social optimal cost, while the PoS is the
ratio between the PNE with the best social cost and the social
optimum.

In our example scenario, each store is traditionally viewed
as a player choosing a facility (warehouses) to connect, such
that its own cost is minimized. Each store would then share
equally the costs associated with storing the goods in the ware-
house they are connected to, as well as individually paying for
the connection to such warehouse. This scenario exemplifies
the singleton fair cost facility location game, where each store
is controlled by a single player. This scenario however fails
to accommodate the common case when multiple supermarket
or stores are part of the same chain.

When stores are part of the same larger group, each store
behaviour cannot be said to be independent and uncoordinated,
however one whole group does not coordinate with other
competitor stores or chains and therefore it makes sense to
analyze this scenario by allowing players to control multiple
stores or terminals.

In the fair cost facility location games we analyze, each
player controls multiple terminals, and can move them simul-
taneously to minimize their own costs. For singleton games,
terminals sharing opening costs evenly means the same as
players sharing these costs evenly, since players and terminals
are effectively the same in these scenarios. However when
players control multiple terminals, the same is not true. In our
paper we use the term fair cost to mean that in any strategy
profile each facility has its opening cost shared evenly among
all terminals that connect to it, i.e. if in a certain strategy
profile a player a has two terminals connected to a facility
f and a different player b has a single terminal connected to



it, player a will pay for two thirds of the opening cost of f ,
while player b pays only a third of the opening cost.

In this work we study how hard it is to find pure Nash
equilibria in these fair cost facility location games, as well as
how efficient these equilibria can be when compared with the
social optimal cost. Finally, we extend our results to weighted
and capacitated versions of these games.

II. RELATED WORK AND ORGANIZATION

There have been multiple works examining facility location
problems from the outlook of game theory. The class of valid
utility games [1]–[3] can be viewed as facility games when
both facilities and players are controlled by singleton players.
There is a whole area in game theory focused in cooperative
games, and Goemans and Skutella [4] studied cooperative
facility location games.

Facility location has also been extensively studied from the
mechanism design perspective, with multiple relevant work
in strategy-proof mechanisms for variants of facility location
problems [5]–[7].

We study in this paper the non-cooperative facility location
game where players control terminals, and each terminal
t share the opening cost of its chosen facility f equally
among all terminals connected to f . These games share great
similarities to connection and network design games, and thus
multiple results from these games are valid for fair cost facility
location games.

For the singleton fair cost facility location game, the results
from network design [8] extend to facility location, with a
bound of k for the PoA and Hk = Θ(log k) for the PoS [9].
For the metric version, where each connection obeys the
triangle inequality, Hansen and Telelis [10] proved constant
bounds both for the PoS and the strong PoA. Furthermore,
when there are weights associated with terminals determining
how much of the opening cost is paid by each terminal, they
show that there is always an e-approximate equilibrium and
that the PoS can be in Θ(logW ), where W is the sum of
all terminal weights. In [11], Chen and Roughgarden prove
that there are instances of the weighted network design game
where there are no possible PNE, however it is still an open
question whether the same applies to weighted fair cost facility
location games, even for the non-singleton version.

For facility location games where players do not posses any
limitations on how to share opening costs, the price of anarchy
and the price of stability have been proven to be in Θ(k) by
Cardinal and Hoefer [12], [13], where k is the number of
players in the game. Furthermore, for non-singleton games it
is NP-hard to decide whether an instance has a PNE [12].

The capacitated version of the game was considered by
Rodrigues and Xavier [14]. They show that for the metric
singleton fair cost facility location game, the PoA can be
unbounded, while the PoS is Hk, where k is the number of
players. Furthermore, they show that it is NP-hard to decide
whether there is PNE in singleton capacitated facility location
games with arbitrary opening cost sharing. For a sequential

version of facility location, they show that the metric version
has bounded PoA and PoS.

In this paper we extend the results from Cardinal and
Hoefer [12] to fair cost facility location, proving that it is NP-
hard to decide whether there is a PNE in this game, even in the
metric case, as long as players are allowed to control multiple
terminals. For this, we prove that there are fair cost facility
location game instances with no PNE. We base this proof in
the instances without PNE in weighted network design games
used by Chen and Roughgarden in [11]. Finally, we prove that
the PoS of this game can be as inefficient as the PoA for both
the uncapacitated metric case and the general capacitated case.

In Section III, we present the formal definitions needed to
understand our paper and define our game. In Section IV, we
provide instances with no PNE and prove the NP-hardness of
PNE existence, as well as link these instances to weighted
games. In Section V, we prove that the price of stability is
as poor as the price of anarchy in both the uncapacitated
and capacitated versions of fair cost facility location games.
Finally, in Section VI we present our final remarks and discuss
future work.

III. PRELIMINARIES

First we define a few key concepts from non–cooperative
game theory.

In game theory, a non–cooperative game is a scenario
where players choose strategies independently trying to either
minimize their costs or maximize their utility. For each player
i, there is a set Ai of actions that it can choose to play. A
pure strategy Si consists of one action from Ai, while a mixed
strategy corresponds to a probability distribution over Ai. In
a pure game each player choses one action to play, while in
a mixed game each player randomizes its action according
to the probability distribution. In this paper we assume pure
strategies games unless mentioned otherwise.

A set of strategies S = (S1, S2, . . . , Sn) consisting of one
strategy for each player, is denominated a strategy profile. Let
S = A1 × A2 × . . . × An be the set of all possible strategy
profiles and let c : S → Rn be a cost function that attributes
a cost ci(S) for each player i given a strategy profile S.
Define S−i = (S1, . . . , Si−1, Si+1, . . . , Sn) a strategy profile
S without i’s strategy, so that we can write S = (Si, S−i). If
all players other than i decide to play S−i, then player i is
faced with the problem of determining a best response to S−i.
A strategy S∗i from a player i is a best response to S−i, if
there is no other strategy which could yield a better outcome
for the player, i.e.

ci(S
∗
i , S−i) ≤ ci(Si, S−i) ,∀Si ∈ Ai.

A strategy profile is in a pure Nash equilibrium (PNE) if no
player can reduce its cost by choosing a different strategy, i.e.
for each player, its strategy in the strategy profile is a best
response.

The social welfare or social cost is a function mapping a
strategy profile to a real number, indicating a measure of the
total cost or payoff of a game. Two of the most important



concepts for efficiency analysis are the Price of Anarchy (PoA)
and the Price of Stability (PoS). The PoA is the ratio between
a Nash equilibrium with worst possible social cost and the
strategy profile with optimal social cost, while the PoS is the
ratio between the best possible Nash equilibrium to the social
optimum.

With these ideas formalized, we define the Facility Location
Game with Fair Cost Sharing (FLG-FC).

Definition 1. Let G = (T ∪ F, T × F ) be a bipartite graph,
with vertex sets F of n facilities and T of m terminals. Each
facility f ∈ F has an opening cost cf , and connection costs
dtf for each terminal t ∈ T . Let K = {1, . . . , k} be the set
of players.

Each player i controls a subset of terminals Ti ⊆ T (also
forming a partition of T ), and each terminal must be connected
to exactly one opened facility. When a player controls only a
single terminal, it is denominated a singleton player. A player
i chooses a strategy Si ⊆ Ti × F .

Let S = (S1, . . . , Sk) be a strategy profile. We abuse
notation and use the expression f ∈ S to represent any facility
f connected to a terminal in a strategy profile S and (t, f) ∈ S
to represent any pair of terminal and facility that are connected
in S, while f ∈ Si represents any facility f player i uses to
connect one of its terminals in strategy Si. Each player tries
to minimize its own payment

pi(S) =
∑

(t,f)∈Si

cf
xf (S)

+
∑

(t,f)∈Si

dtf ,

where xf (S) = |{(tj , f) ∈ Si | 1 ≤ i ≤ k ∧ 1 ≤ j ≤ m}|
is the number of terminals connected to facility f in strategy
profile S.

The social welfare cost for a strategy S is defined as the
sum of all player payments, i.e.,

C(S) =
∑
i∈K

pi(S) =
∑
f∈S

cf +
∑

(t,f)∈S
dtf .

In games with general connection costs, some connections
(t, f) should be avoided in any solution, because they do
not exist for example. In this case we assume they have a
prohibitively large constant cost Ud. For general costs, if a con-
nection is not shown, it is assumed that it has a cost equal to
Ud, unless mentioned otherwise. For metric connection costs,
where connection costs must obey the triangle inequality, it is
assumed that any connection (t, f) not shown has a cost equal
to the shortest cost path from t to f in the undirected graph
formed from the explicitly shown connections.

When dealing with capacitated FLG-FC, we extend this
definition to include a capacity for each facility, as well as
ways to enforce players to propose valid solutions.

Definition 2. Let G = (T ∪ F, T × F ) be a bipartite graph,
with vertex sets F of n facilities and T of m terminals. Each
facility f ∈ F has an opening cost cf and a capacity uf
indicating how many terminals can be connected to f at any
given time. Furthermore, there are connection costs dtf for
each pair (t, f) where t ∈ T and f ∈ F .

Given a strategy profile S, for Capacitated Facility Location
Games with Fair Cost Sharing (CFLG-FC), the definitions of
players i payment, pi(S), and social cost, C(S), are the same
as before for the uncapacitated game. However, to ensure that
capacity restrictions are respected, if a player i in the solution
S has one of its terminals connected to f where xf (S) > uf ,
then a prohibitively large constant cost Uc is added to the
payment of player i, i.e., it pays pi(S) + Uc.

IV. ON THE EXISTENCE OF PURE EQUILIBRIA

Pure Nash equilibria is one of the most well known solution
concepts in game theory. While it is not guaranteed to exist in
all games, in several practical scenarios it reflects to a greater
degree the behaviour of players. The singleton version of FLG-
FC is a potential game, and therefore there always exists a
PNE [9]. We show that this does not extend to every fair
cost facility location game, by showing instances with no PNE
when players control multiple terminals and the opening cost
sharing happens in relation to terminals. We construct these
instances loosely based on an example used to prove the non-
existence of PNE in weighted network design games [11]. We
first prove this result for weighted fair cost facility location
games and then extend this result for unweighted metric
games.

A. Equilibria Existence in Weighted Games

In the classic facility location game, each terminal is as-
sumed to demand or require the same amount of goods from a
facility, and therefore the “fair” way to share costs is to evenly
divide opening costs of an opened facility between terminals
that connect to it. However this is not always the case. In
several practical scenarios some terminals might require more
from a facility, and an egalitarian sharing might not reflect
fairness.

In the weighted fair cost facility location game, each ter-
minal t has an associated positive integer weight wt ≥ 1, and
each player i pays in a strategy profile S,

pi(S) =
∑

(t,f)∈Si

dtf +
∑

(t,f)∈Si

wtcf
Wf,S

,

where Wf,S is the sum of the weights of all terminals
connected to f in the strategy profile S.

Here we provide a partial answer to an open question re-
garding whether there are instances with no PNE for weighted
FLG-FC. We provide an instance with no PNE when players
are allowed to control more than a single terminal. It remains
open whether there are singleton weighted instances with no
equilibria.

Theorem 1. There exists a 3-player metric instance for the
weighted FLG-FC game with only six terminals where there
is no PNE.

Proof. Consider the instance in Figure 1, denominated here
as I . Let w > 1 be a parameter of this instance, and ε be a
constant much smaller than 1

w3 . Let player A control terminals
t2 and t5, player B control terminals t1 and t3, and player C



control terminals t4 and t6. Allow every terminal controlled by
player A to have the same weight wA = w2, every terminal
that B controls to have unitary weight wB = 1 and every
terminal that player C controls to have weight wC = w.

cf5 = 1

cf1 = w3

w2+w+1 − ε

t5

t2

t3

t4

f5 t6

f3 f4

t1 f2

Pa
Pc

Pb

dt1,f1 = 1 + 3ε
f1

dt1,f2 = 1

cf2 = w3

w2+w+1 + ε

cf3 = w3+w2

w2+w+1−
cf4 = w3+w

w2+w+1+

ε(2w+1
2w+2 )

ε(2w
2+1

2w2+2 )

Fig. 1. Game instance of the weighted FLG-FC without PNE. All edges
except dt1,f1 have cost equal to zero.

For player Pa, there are only two feasible strategies: either
all terminals connect to f3, or t2 connects to f1 and t5 connects
to f5. The same happens for player Pc: either all terminals
connect to f4, or t4 connects to f2 and t6 connects to f5.
For player Pb terminal t1 has to choose between f1 and f2,
while terminal t3 will always connect to f5 in any PNE. The
proof is based on players Pa and Pc having different facility
preferences when presented with mirrored choices from player
Pb. To achieve this, we use the fact that player Pa has squared
times the weight than Pc does, as well as carefully constructed
opening costs.

Note that all direct connection costs are equal for Pa and for
Pc, and thus do not interfere in their choices. They only ensure
that it is not beneficial for neither Pa nor Pc to connect their
terminals to facilities without a direct connection available.
For Pb, the only influence that connection costs have is in
choosing whether to connect to f1 or f2.

Since the terminals from player Pa have weight w2, player
A will always pay for the majority of the cost of any facility
it helps open. With this in mind, we can sort the five possible
scenarios for player Pa by the cost incurred from each in
increasing order: (i) player Pa shares f1 with Pb and f5 with
all players, (ii) it connects to f1 alone and shares f5 with all
players, (iii) it connects to f3 alone, (iv) it shares f1 with Pb

and shares f5 with Pb only and (v) it connects to f1 alone and
shares f5 with Pb only. The following inequalities show why
this is the case:

w2

w2 + 1
cf1 +

w2

w2 + w + 1
cf5 ≤ (1)

cf1 +
w2

w2 + w + 1
cf5 ≤ (2)

w3 + w2

w2 + w + 1
− ε

(
2w2 + 1

2w2 + 2

)
= cf3 ≤ (3)

w2

w2 + 1

(
w3

w2 + w + 1
− ε
)

+
w2

w2 + 1
= (4)

w2

w2 + 1
cf1 +

w2

w2 + 1
cf5 ≤ cf1 +

w2

w2 + 1
cf5 . (5)

From this we gather that, for player Pa, the preferred
scenario is where player Pc connects to f5, even if player
Pb does not connect to f1. For player Pc, we do the same,
observing that now the facility which dictates its strategy is
f2, as even if player Pa does not connect to f5, if player Pb

does connect to f2, the cheapest for Pc is to connect to f2
and f5. Player Pc can, going from least to most expensive, (i)
share f2 with Pb and f5 with all players, (ii) share f2 and f5
with Pb only, (iii) connect to f4 alone, (iv) connect to f2 alone
and share f5 with all players and finally (v) connect alone to
f2 and share f5 with Pb only. The inequalities that show this
is the case for player Pc are:

w

w + 1
cf2 +

w

w2 + w + 1
cf5 ≤ (6)

w

w + 1
cf2 +

w

w + 1
cf5 =

w3 + w

w2 + w + 1
+ ε

w

w + 1
≤ (7)

w3 + w

w2 + w + 1
+ ε

(
2w + 1

2w + 2

)
= cf4 ≤ (8)

w3

w2 + w + 1
+ ε+

w

w2 + w + 1
= (9)

cf2 +
w

w2 + w + 1
cf5 ≤ (10)

cf2 +
w

w + 1
cf5 . (11)

Now we prove the theorem by contradiction. Suppose that
there exists a PNE for this instance. Terminal t1 can be
connected to either f1 or f2. First assume t1 is connected
to f1. Then, player Pc has no incentive to connect to either f2
or f5, as shown by (8) and (10), and connects all its terminals
to f4. Since player Pc does not connect to f5, player Pa also
does not have enough incentive to connect to f1 and f5, as
shown by (3) and (5), and connects all its terminals to f3. With
this, player Pb is paying alone for f1, and since f2 is cheaper
to connect, it is not in a PNE, and thus t1 cannot connect to
f1 in any PNE.

Now assume t1 is connected to f2. Player Pc now will
connect to f2 with t4, with t6 connecting to f5, as the
inequalities in (7) and (8) show. Since player Pc connects to
f5, now player Pa will also opt to connect to f5 and therefore
will also open f1, as shown by (2) and (3). Since f1 has player
Pa connected to it, player Pb now has enough incentive to
connect t1 to f1 instead of f2, and therefore our assumption
is not true.

Since connecting t1 to neither f1 nor f2 results in a PNE,
there is a contradiction with our claim that there exists a PNE
for this instance, and thus we have proven that there is no pure
equilibrium.



cf5 = 1

cf1 =
w3

w2+w+1 − ε

tw
2

5

tw
2

2

t3

t14

f5 t16

f3 f4

t1 f2

Pb

dt1,f1 = 1 + 3ε

f1

dt1,f2 = 1

cf2 =
w3

w2+w+1 + ε

cf3 =
w3+w2

w2+w+1 − ε(2w
2+1

2w2+2)
cf4 =

w3+w
w2+w+1 + ε(2w+1

2w+2)

tw6b b b{

tw4

w

t15 b b b{
w2

b b bt12
Pa b b b Pc

Fig. 2. Game instance of the FLG-FC without a PNE. All edges except dt1,f1 have cost equal to one. Any edge (t, f) not drawn has cost equal to the
shortest path cost from t to f .

B. Equilibria Existence in FLG-FC
Now we extend the results from Theorem 1 for the un-

weighted case. To accomplish this we first make the key
observation that for any weighted fair cost facility location
game instance G with m terminals, there is a fair cost facility
location game instance G′ with W terminals with equivalent
PNE, where W is the total sum of weights w1+· · ·+wm. This
is the case since for each terminal t controlled by a player
i with weight wt > 1, we can add in G′ terminals tj , for
j ∈ [2, wt], all controlled by i with the same connections
and costs as t. Since they are equal in every way in regards to
cost calculation, player i has no reason to split strategies when
choosing which facility to connect t and the added terminals
tj .

Theorem 2. There exists a metric 3-player instance for the
FLG-FC game where there is no PNE.

Proof. Consider the instance I depicted in Figure 2. Let w > 1
be a parameter on this graph, and ε be a constant much smaller
than 1

w3 , such that player Pa controls terminals t12, . . . , t
w2

2 and
t15, . . . , t

w2

5 , for a total of 2w2 terminals. Player Pb controls
two terminals, t1 and t3, while player Pc controls terminals
t14, . . . , t

w
4 and t16, . . . , t

w
6 , for a total of 2w terminals. All

connection costs are unitary, with the exception of dt1,f1 ,
which has cost 1 + 3ε. All opening costs are as shown in
Figure 2.

We prove the theorem by showing that the instance seen
in Theorem 1, here denominated I0, can be transformed to
instance I , seen in Figure 2 without changes to the players
overall strategies, and thus the proof for Theorem 1 applies
for instance I . Start by changing I0 to I ′ so that we add
terminals t′2 and t′5 connected to the same facilities (and the
corresponding connection costs) as t2 and t5, respectively,
while changing the weight wA of all terminals of player A
to w2

2 . In any pure equilibria for this instance, if we connect
any terminal to facility f3, all terminals from A will connect
to it, since A will pay the full cost of f3. Thus, if t2 connects
to f3, terminal t′2 will also connect to f3, and if t2 connects to

f1, t′2 will do the same. The same is true for t′5 in relation to t5.
Since this is the case, if player A connects to f1 or f5, it will
still pay exactly the same share w2

W (f,S) of the opening cost
of facility f as in I , where W (f, S) is the sum of weights of
all terminals connected to f in the strategy profile S. Instance
I ′ thus incurs the same decisions from players as instance I0.
The same can be done to player C and its terminals t4 and
t6.

Therefore, in order to transform I0 into instance I while
preserving the same possible equilibria, it suffices to incre-
mentally add terminals with the same connections for players
A and C, while dividing the weight of these players by the
number of added terminals until the number of terminals A
controls is 2w2 (w2 of “t2” terminals and w2 of “t5”) and
they all have weight wA = 1, while player C will control 2w
terminals (w of “t4” terminals and w of “t6”), all with weight
wC = 1. Thus, Theorem 1 applies to the unweighted metric
instance I , and there exists a 3-player weighted instance I
without any equilibria.

Using a version of this instance where w = 2 as a gadget,
we can prove that deciding whether an instance of FLG-FC
has a PNE is NP-Hard.

Theorem 3. It is NP-hard to determine if an instance of the
Metric FLG-FC has a PNE or not.

Proof. First notice that it is NP-hard to verify whether a given
solution S to an instance of the FLG-FC is a PNE or not
when players control multiple facilities, since for each player
we need to solve an optimization facility location problem on
the instance restricted to this player alone. To verify that a
strategy of a player is a best response, we have to fix all other
players strategies, and check if the solution restricted to this
player is minimum, which is an NP-hard problem.

In order to prove NP-hardness for the existence of a PNE,
we make a reduction from the 3-SAT problem to the problem
of deciding whether an instance of the metric FLG-FC game
has a PNE or not.



Let I be an instance from 3-SAT, with clauses C1, . . . , Cq ,
where each clause Cj consists of a triple of literals from the
set of decision variables x1, . . . , xp in clausal normal form,
so that each literal in a clause can assume form xi or xi for
a decision variable xi. Then, we form the fair cost facility
location instance G as follows: for each decision variable xi,
we create a terminal ti, controlled by a single player, and
facilities fxi and fxi and link ti to them, as Figure 3 shows.
The opening cost of each facility fxi and fxi is equal to the
number of terminals that can directly connect to them times
1 + ε. We use the term directly here to discern from the
connections not shown, which are assumed to cost the shortest
path from a terminal to the facility.

ti

fxi

cfxi
= 3(1 + ε)cfxi

= 4(1 + ε)

fxi

Clause gadgets
containing xi

Clause gadgets
containing xi

Fig. 3. A decision gadget for xi in an instance with three clauses containing
xi and two containing xi. All edges have cost equal to one.

We create for each clause Cj two gadgets: one with no
equilibria unless stabilized by the second gadget, which in turn
links to the decision gadget, as exemplified in Figure 4. For the
bottom gadget, note that it is exactly the same example as the
one used in Theorem 2, with parameter w = 2. We have three
players in this gadget for each clause Cj , where player P j

a

controls terminals tj2,1, . . . , t
j
2,4 and tj5,1, . . . , t

j
5,4, player P j

b

controls terminals tj1 and tj3 and player P j
c control terminals

tj4,1, t
j
4,2, t

j
6,1, t

j
6,2. The opening and connection costs of this

gadget follow the same costs presented in Theorem 2, when
parameter w equals to two.

For the link gadget, each player controls a single terminal,
and for each literal xi or xi in Cj there is a terminal tjai with
possible direct connection to both the facility in the decision
gadget for xi (either fxi

or fxi
), with connection cost one, and

central facility f jai, with connection cost ε and opening cost 2.
Furthermore, we create another terminal tbi which can connect
directly to either the central facility f jai, with connection cost
one, or to facility f j2 with connection cost 2. Now we add
connections from every terminal t to every facility f obeying
the triangle inequality by setting cost dtf to the shortest cost
path from t to f in the undirected network formed by the
connections between terminals and facilities.

Suppose there is a truth assignment for I . Then we can
build the following PNE for instance G: if decision variable
xi = 1, assign ti to fxi

, and otherwise assign ti to fxi . Now
for each clause gadget Cj where literal xi appears connect tjai
to fxi if xi = 1, or to f jai if xi = 0. Furthermore, connect tjbi
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Fig. 4. Clause gadget for Cj = (x1∨x2∨x3). Drawn edges without explicit
costs have connection cost one, any edge (t, f) not drawn has cost equal to
the shortest path cost from t to f .

to f j2 if xi = 1, or to f jai if xi = 0. Do the same for clauses
where literal xi appears.

Finally, connect the rest of the terminals in Cj as follows:
player P j

a connects its terminals to f j1 and f j5 , player P j
b

connects to f j2 and f j5 and player P j
c connects to f j2 and f j5 .

First, note that if xi = 1, then fxi
is open and connected

with all terminals that can directly connect to it, meaning that
each terminal pays 1 + ε opening cost. At the same time, in
each clause where xi appears, f jai is not opened, and thus
the cheapest alternative for terminal tjai costs 2 + ε, the same
amount it pays for connecting to fxi

. Alternatively, if xi = 0,
facility fxi

is not open and tjai is connected to its cheapest
possible facility.

Since I has an satisfying assignment, at least one terminal
tjbi will be connected to f j2 , paying at most 2 + 2

7 + ε
4

and stabilizing the game induced by players P j
a , P

j
b and P j

c .
Furthermore, when xi = 1, terminal tjbi is in equilibrium
connected to f j2 , since the alternative facility f jai would require
tjbi to pay 3 in opening and connection costs. Alternatively, if
xi = 0, terminal tjbi is also in equilibrium by connecting to f jai,
since in this case it shares the opening cost with tjai, paying a
total of 2. Therefore, we have a PNE for G given a satisfying
assignment for I .

Now suppose there exists a PNE in G. For any clause Cj , at
least one terminal tjbi must be connected to f j2 , since otherwise
players P j

a , P
j
b and P j

c would not be in equilibrium. Then, for



each terminal tjbi connected to f j2 , terminal tjai must connect to
fxi (or fxi , if representing literal xi). This is the case because
if tjai were to connect to f jai, terminal tjbi would not be in
equilibrium connecting to f j2 .

Note that for terminal tjai in clause Cj connected to facility
fxi , even when all terminals with a direct possible connection
apart from ti are connected to it, terminal tjai still is not
in equilibrium, since it would be cheaper for it to open f jai
paying ε connection cost and 2 opening cost than paying 1 as
connection cost and l

l−1 (1 + ε) opening cost, where l is the
number of terminals that can connect directly to fxi

. Terminal
ti in any PNE therefore must connect to either fxi or fxi .

This shows that in any PNE in G, at least one literal of
each clause is set to true in the corresponding assignment in
I . Furthermore, it also shows that there can be no decision
variable xi with xi = 1 and xi = 1. If a decision variable xi is
set as both xi = 0 and xi = 0, then it must be irrelevant to the
truth assignment of I , since G is in equilibrium, and therefore
we can assign either xi or xi to 1. Thus, any PNE in G is
consistent and can be used to build a satisfying assignment
for I .

Note that while we use several players in our proof, it is
possible to reduce the total number of players to only six.

Corollary 1. It is NP-hard to determine if a metric FLG-FC
has a PNE, even for games with 6 players.

Proof. First note that in the instance G in Theorem 3, there
are three players which control multiple terminals for each
clause Cj , as well as six singleton players. Furthermore, for
each decision gadget there is one additional player. We form
a new instance G′ with the same terminals, facilities and costs
as G, but only six players.

We remark that each clause gadget is “de facto” isolated
from each other in G, since the connection cost necessary for a
terminal in a clause gadget Cj to connect to a facility in either
a different clause gadget Cj+1 or in a decision gadget not
directly connected to Cj is greater than opening any possible
facility it can directly connect. Thus, we can form players Pa,
Pb and Pc in instance G′ that control terminals controlled by
players P j

a , P
j
b and P j

c in any clause Cj . Furthermore, we can
make players Pa1, Pa2, Pa3 and Pb1, Pb2, Pb3 in G′ to control
every terminal tja1, t

j
a2, t

j
a3 and tjb1, t

j
b2, t

j
b3 in any clause gadget

Cj .
Similarly, we can join all players from the decision gadgets

into a single player Px in G′, which controls any terminal ti
in any decision gadget xi. Now the total number of players in
this instance is reduced to ten. To achieve the number of six
players, we remark that player Pa1 has no direct connection
to facilities that Pb2 can directly connect, and thus can be
safely merged into a single player Pa1b2. Similarly, player
Pa2 can be safely merged with Pb3 and Pa3 can be merged
with Pb1, resulting in players Pa2b3 and Pa3b1 in G′. Finally,
note that player Pa has no direct connection to f j2 in any
clause gadget Cj , and therefore can safely merge with either
Pa1b2, Pa2b3 or Pa3b1. Thus, we have one player controlling

all decision gadgets and five players controlling the clause
gadgets, resulting in a total of six players in instance G′ while
maintaining the same features and possible PNE as instance
G.

V. EFFICIENCY OF EQUILIBRIA IN NON-SINGLETON FAIR
COST FACILITY LOCATION GAMES

In this section we turn our analysis towards loss of efficiency
due to player behaviour. The most well known measures of
efficiency for non-cooperative games are the PoA and the
PoS. The price of anarchy in several games can be high
and sometimes unrealistic, due to comparing only the worst
possible equilibrium in terms of social cost or welfare to the
optimal social welfare or cost. For facility location games, we
can show that the price of anarchy is at least k, where k is the
number of players of the game. To see that this is the case,
see Figure 5. In this example, the strategy where all players
are connected to the facility to the right is a PNE, and has
social cost k, while in the optimal social solution all players
are connected to the facility to the left, with total cost equal
to 1 (connection costs are zero).

t1

f2

f1cf1 = 1

bbbt2 t3 tk

cf1 = k

Fig. 5. A game instance of the FLG-FC with PoA equal to k.

In [8], Anshelevich et al. argue that the concept of PoS,
formalized in the same paper, better captures the efficiency
loss in network design games and consequently singleton fair
cost facility location games. They show a bound for the PoS
of Hk = 1 + 1

2 + · · · + 1
k = Θ(log k) for these network

design games, where k is the number of players in the game,
which can be extended for singleton fair cost facility location
games [9].

In this paper we show that the same is not true for fair
cost facility location games where players can control multi-
ple terminals, even when connection costs obey the triangle
inequality. We prove that there are instances where the PoS is
Θ(k), where k is the number of players, the same as the PoA.

Theorem 4. There are instances of the metric FLG-FC which
admit PNE but have price of stability in Θ(k), where k is the
number of players.

Proof. Consider the instance shown in Figure 6. Let ε be a
constant number much smaller than 1

8 . Each player Pi, for
i ∈ [1, k], controls terminal t′i . Player Pa controls terminals



t12 to t42 and t15 to t45, player Pb controls terminals t1 and t3,
while player Pc controls terminals t14, t

2
4, t

1
6 and t26. The full

black lines have connection cost one, while the dashed lines
have connection cost ε, with the exception of dt1b ,f1

b
with cost

3ε2 + ε.
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Fig. 6. An instance of metric FLG-FC with PoS in Θ(k). Dashed lines have
connection cost ε (except for dt1,f1 , which has cost 3ε2 + ε), full black
lines have cost 1. Labels next to terminals indicate which player controls the
terminal.

Notice that the subgame composed only by the players P2

to Pk and their connections, on the left side of Figure 6, has
two pure equilibria: either everyone connects to the central
facility fs or each player Pi connects its terminal to facility
f ′i . The subgame composed by players Pa, Pb and Pc and
their connections, on the other hand, is equal to the instance
used in Theorem 2 when w = 2 with the costs scaled by ε,
and therefore it has no equilibria unless the game is altered to
allow some other player to stabilize it.

Player P1 is the one in this instance that can stabilize these
two subgames. Recall from Theorem 2 that, as long as some
terminal is connected to f2, player Pc will connect to f2 and
f5. Since there are multiple terminals in f5, player Pa will
want to connect to f1 and f5 as well. This then means that
player Pb will want to connect to f2 and f5. Therefore in any
PNE, P1 must connect to f2. For this to be the best possible
move for P1, no player can open the central facility fs, and
therefore the only possible PNE is the one where each Pi

connects to f ′i , while Pa, Pb and Pc play as seen above. Note
that players Pa, Pb and Pc can be merged with any players
Pi, Pj and Pr, for all i 6= j 6= r ∈ [2, k], since they have
disjoint strategy sets. Therefore, we can assume that there are
k players in this instance.

The cost of the optimal strategy is the following. In the left

side, players P1 to Pk connect to the central facility fs, for a
cost of 1 + kε. In the right side, players Pb and Pc connect
to f2 and f5, while player Pa connects to f1 and f5, paying
also a connection cost of ε for each terminal, for a total cost
of

1 + kε+ ε

(
8

7
− ε+ 1 +

8

7
+ ε+ 14

)
=

= 1 + kε+
16

7
ε+ 15ε = 1 + ε

(
k + 15 +

16

7

)
.

In the unique PNE, players P2 to Pk connect to their single
facilities f ′2 to f ′k and player P1 connects to f2, while players
Pa, Pb and Pc connect to facilities f2, f5 and f1 (with Pb

using connection dt1,f1 which costs 3ε2 + ε). Thus, the total
cost for the PNE is

k + (k − 1)ε+ ε

(
8

7
− ε+ 1 +

8

7
+ ε+ 3ε+ 14

)
=

= k+kε−ε+16

7
ε+15ε+3ε2 = k+ε

(
k + 14 +

16

7
+ 3ε

)
.

The PoS of this instance is therefore

k + ε(k + 14 + 16
7 + 3ε)

1 + ε(k + 15 + 16
7 )

= Θ(k) .

Since the PoA of FLG-FC is Θ(k) (and therefore the PoS
is O(k)), this instance makes the bound for PoS for FLG-FC
asymptotically tight, and thus the PoS for metric FLG-FC is
Θ(k).

A. Price of Stability in Capacitated Facility Location Games

Until now we have only considered scenarios where there
are no limits on the number of terminals that a facility can
supply. However this is not always the case in practice.
In [14], Rodrigues and Xavier show that even metric facility
location games have unbounded PoA, unless sequentiality
is considered. Furthermore, they show that metric singleton
capacitated fair cost facility location games have a PoS of at
least Θ(log k), in comparison to the constant bounds of the
uncapacitated metric version [10].

In this section we prove that for capacitated games where
players are allowed to control more than a single terminal,
there are instances with unbounded PoS. Note that, contrary
to most results in this paper, we consider for this result that
connection costs do not obey the triangle inequality, and
thus any connections not shown in our construction have
prohibitively large (and unbounded) cost Ud.

Theorem 5. There are 3-player instances of the capacitated
FLG-FC that admit a PNE but have PoS that is unbounded.

Proof. Assume that we are restricted to instances where there
is a PNE and players are allowed to control multiple terminals.
We combine the instance described in Theorem 2 into an
instance with unbounded PoA [14] to force that the only
possible PNE in the game opens facilities with unbounded
opening costs.
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Consider the game in Figure 7. Note that the subgraph
induced by the terminals that players Pa, Pb, Pc control is the
same as in Theorem 2 when parameter w = 2. Thus, the only
way for them to be in a PNE is if terminal ta connects to
f2. For this to happen in an equilibrium, terminal tb must
not connect to fa. If this was the case, then it would be
cheaper for ta to also connect to fa, as it would pay only
1/4 which is less than the amount it pays to connect to f2.
Since f2 must be occupied by ta in a PNE, terminal tc in any
equilibrium will connect to fc, paying the connection cost of
U which can be arbitrarily large, and thus the only possible
equilibrium in this game is unbounded. Consequently, the PoS
is also unbounded.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have studied a general version of the
fair cost facility location game. In this model, the opened
facilities have their opening costs shared evenly among all
terminals that connect to them, and players are allowed to
control multiple terminals. We prove that there are instances
for these games with no pure Nash equilibrium, and that
deciding whether an instance of the game has a PNE or not is
NP-hard, even when connection costs are metric. Furthermore,
we provide a negative partial answer to an open question
whether weighted fair cost facility location games always
posses PNE, by showing the connections of these weighted
games to scenarios where players control multiple terminals.
Finally, we prove negative efficiency bounds related to the
price of stability in both uncapacitated and capacitated games,
showing that the price of stability is as inefficient as the price
of anarchy in this generalized version of fair cost facility
location game.

There are several possible directions on future work that
relates to our paper. For weighted games, it remains an open
problem to find whether there is an instance with no PNE for
the singleton case. While our instance with no PNE has only
a few terminals, the effect that cooperation between terminals
can have on the PNE is crucial for there to be no PNE in this

instance. It is not clear whether there is a possible way to adapt
this instance for the singleton case. When we consider strong
equilibria [15] for the singleton case, where terminals might
cooperate to choose a better strategy when it is beneficial to
every player in a coalition, a few similarities appear with this
general version of fair cost facility location game. It might
be possible to extend some results from strong equilibria for
singleton fair cost facility location games to our setting, such
as the existence of e-approximate strong equilibria in singleton
fair cost facility location games [16]. Alternatively, it might as
well be possible to adapt some of our results to strong PNE
in more restricted settings.

In [12], Cardinal and Hoefer prove a two parameter (α, β)
constant approximation to facility location games with arbi-
trary cost sharing rules, where each player can reduce its cost
by unilateral deviation by at most a factor of α, while the social
cost of this α-approximated PNE is at most β times from the
optimal social cost. An interesting question is whether it is
possible to find a similar two parameter approximation for
our setting, or if the limited fair cost aspect of our scenario
causes one of the parameters to be too large.

Finally, in many practical scenarios there is a central au-
thority with some capacity for interference in the game which
has a goal of minimizing the social cost globally. Thus it is
important to model in what circumstances this intervention
can improve efficiency. The use of stackelberg strategies [17],
where a central authority control a few terminals that can play
before the other players, might guarantee that a PNE is always
possible to find, as well as using tolls [18] in either connections
or facilities to ensure only “good” equilibria are chosen by
players.
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