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Abstract—Deep neural networks provide the canvas to create
models of millions of parameters to fit distributions involving an
equally large number of random variables. The contribution of
this study is twofold. First, we introduce a diffraction dataset
containing computer-based simulations of a Young’s interference
experiment. Then, we demonstrate the adeptness of variational
autoencoders to learn diffraction patterns and extract a latent
feature that correlates with the physical wavelength.
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I. INTRODUCTION

The pupil of the human eye is a circular aperture through
which light diffracts, giving us the ability to resolve objects at
large distances and to distinguish text characters. Due to the
diffraction of light you can enjoy reading this article as well
as the subtitles on your favorite movies.

Young’s double-slit experiment [1] is a classical demonstra-
tion of the physical wave nature of light revealed by diffraction
patterns. A diffraction pattern consists of dark regions of
destructive interference and bright regions of constructive
interference. Diffraction phenomena occur when the light
passes through a slit comparable in size with the wavelength λ,
resulting in a diffraction pattern that depends on the geometry
of the experimental setup.

In the realm of computer vision an image X(nh, nw, nc) is
described by a tensor of height nh, width nw and nc channels.
The normalized intensity of each pixel takes values in the
interval [0, 1] allowing a probabilistic interpretation. Since the
intensity of a pixel is a random variable, the image itself is
the manifestation of an stochastic event. Think of the set of
all images A and the subset of diffraction images B ⊂ A. The
chances of drawing an element X ∈ B are very low if we
sample from a uniform distribution. However, if we have an
idea of how diffraction images are distributed, the chances of
drawing X ∈ B are enhanced.

Using variational autoencoders [2], it is possible to shrink
the representation of an image from a tensor of nh×nw×nc
axes into a vector of lower dimension. This transformation is
accomplished by the encoding layer, yielding a representation
known as the latent space. Subsequently, a point in the
latent space is upscaled by the decoder into the original high
dimensional space, generating synthetic images with hopefully
the same patterns as the training set.

Generative adversarial networks [3] and variational autoen-
coders are two different strategies for learning latent spaces

of image representations, each with its own characteristics.
Autoencoders are appropriate for learning latent spaces that are
well structured, where specific directions encode a meaningful
axis of variation in the data. Adversarial networks generate
images that can be highly realistic [4], but the latent space
may not have as much structure and continuity.

Generative models have been applied successfully in com-
puter vision for the generation of handwritten digits [5] and
pose person images [6]. Applications in the domain of physical
sciences envision generative models to reduce the processing
time of particle physics simulations [7].

This study investigates the capability of a variational au-
toencoder to capture the distribution of the wavelength λ,
given a set of diffraction patterns generated by the simulation
of a Young’s interference experiment. In addition, we want
to encourage the usage of generative models in scientific
applications that rely on expensive computational simulations,
in order to speed up their analysis workflow.

The remainder of this article is organized as follows. Sec-
tion II explains briefly the autoencoders’s architecture and how
they work. In Section III, we give details of the experiment’s
geometry and the simulation of the diffraction patterns. In
Section IV-A, we describe the specific architecture of the deep
learning model and its training curve. Section IV-B displays
some examples of synthetic patterns produced by the trained
model. In Section V, we present performance benchmarks
using some of the latest Intel processors. Finally, Section VI
summarizes the conclusions and outlooks.

II. AUTOENCODERS

Deep neural networks provide the canvas to create models
of millions of parameters, which in principle could fit any
distribution defined over a random variable X .

Autoencoders [8] are unsupervised neural networks that aim
to generate an output as identical as possible to the input. Au-
toencoders are not intended to copy the full extent of the input
but they are designed to perform an incomplete copy. Such
a requirement is accomplished by introducing a bottleneck
between the input and the output. In fact, autoencoders can
be used for dimensionality reduction and data compressing.

The architecture of an autoencoder includes two modules,
the encoder and the decoder. The last layer of the encoder
is the bottleneck, also known as the latent space. The bot-
tleneck captures the most representative features in the data,
which is quite convenient for feature extraction [9]. Moreover,



Fig. 1. Diffraction pattern produced by a monochromatic light passing through
two circular apertures. The intensity profile displays peaks of constructive
interference and valleys of destructive interference.

autoencoders are differentiable feedforward networks that can
be trained via backpropagation [10].

A linear activation autoencoder can learn to copy the input
to the output provided a latent space with the dimension of
the input. To prevent this behaviour, the dimension of the
bottleneck should be lower than the input in order to select
effectively the most important features. The encoding is said
to be undercomplete if the bottleneck has lower dimension
than the input; conversely, the encoding is overcomplete if the
bottleneck has dimension equal or larger than the input. In
this study we use undercomplete encoding to learn the most
important feature contained in the diffraction dataset to be
described in Section III.

Variational autoencoders (VAE) are a kind of generative
model proposed by Kingma and Welling in 2013 [2], and by
Rezende, Mohamed, and Wierstra in 2014 [11]. Variational
autoencoders increase the chances of drawing images accord-
ing to the distribution learned from a training set, and they
can handle unsupervised problems since the objective function
does not require any additional label besides the input X .

In contrast to common autoencoders, which generate a fixed
compact representation of the input data, VAEs learn the
parameters for the probability distribution of the input data.
During the training phase, a point in the latent is drawn from a
distribution requiring two hyper-parameters: the mean and the
standard deviation. Therefore, the decoder component samples
from this distribution to generate synthetic images.

III. DIFFRACTION DATASET

Consider the setup of a double slit diffraction experiment
as shown in Figure 1. A plane light wave – such as the
one generated by a laser – with wavelength λ shines upon
an opaque screen S1. Two circular apertures of radius R =
0.15 mm have been opened, vertically separated by a distance
d = 1.2 mm. On the other side of S1, centered upon the
midpoint of the two apertures, a photosensitive screen S2 of
area 20×20 mm2 is excited by the light that goes through the

Fig. 2. Distribution of the wavelength in the diffraction dataset.

apertures; the distance between S1 and S2 is r0 = 50 cm.
S2 is divided into discrete elements (pixels) arranged in a
square grid of 256×256, producing grayscale images with
the pixel value proportional to the intensity of the incident
light. Notice that for the visible and near infrared sectors
of the electromagnetic spectrum, d2/Rλ ∼ 1, therefore the
experiment is in the so-called Fresnel diffraction regime.

The diffraction dataset was produced by running 3000
simulations [12] of the double slit experiment keeping all
the geometrical parameters fixed but letting the wavelength
λ to vary according to the distribution in Figure 2. Since the
diffraction pattern depends on λ, the images in the diffraction
dataset are not identical themselves. The resolution of the
grayscale images is 256 × 256 pixels, which accounts for
3000 × 256 × 256 ≈ 200 million random variables in the
whole dataset. We use the diffraction dataset to train the model
described in Section IV-A.

IV. ANALYSIS

In this section we present the architecture of the model (Sec-
tion IV-A), the synthetic patterns generated by the decoder
as well as the distribution of the latent coordinate represented
by the encoder (Section IV-B). Finally, we discuss the results
and further ideas for improvements (Section IV-C).

A. Model Description

The architecture of a variational autoencoder contains two
pieces. The first component is the encoder that reduces the
representation of the input images, followed by the decoder
that restores the output of the encoder into the shape of the
input images. The layers in the encoder with trainable param-
eters are 4 convolutions and 3 fully connected. In the decoder
the trainable layers are composed by one fully connected, one
transposed convolution and one regular convolution.

The detailed architecture of the model is shown in Tables
I and II, which in total contains about 36 million trainable
parameters. Let us recall that this deep learning model aims
to find the probability distribution that best fits the 200
million random variables in the diffraction dataset. In order to
accomplish the learning process, we trained the model on 2048
samples and validated it on 952 samples during 10 epochs.
The evolution of the learning curve is shown in Figure 3, and



Fig. 3. Minimization of the loss during the training phase of the model.

TABLE I
ARCHITECTURE OF THE ENCODER

Layer Output Shape Param #

InputLayer (None, 256, 256, 1) 0
Conv2D (None, 256, 256, 32) 320
Conv2D (None, 128, 128, 64) 18496
Conv2D (None, 128, 128, 64) 36928
Conv2D (None, 128, 128, 64) 36928
Flatten (None, 1048576) 0
Dense (None, 32) 33554464
Dense (None, 1) 33
Dense (None, 1) 33
Lambda (None, 1) 0

Total parameters: 33,647,202

TABLE II
ARCHITECTURE OF THE DECODER

Layer Output Shape Param #

InputLayer (None, 1) 0
Dense (None, 1048576) 2097152
Reshape (None, 128, 128, 64) 0
Conv2DTr (None, 256, 256, 32) 18464
Conv2D (None, 256, 256, 1) 289

Total parameters: 2,115,905

we can observe that the model succeeded on optimizing the
objective loss function.

B. Results

We generated synthetic patterns using the trained model to
evaluate its quality. This procedure requires only the decoder
part of the model, which is basically a function that receives a
single number and produces a matrix of shape 256× 256. We
denoted the input of the decoder as z and explored values
between 0 and 4 in steps of 0.5. The generated patterns
obtained for the different values of z are shown in Figure
4. As we increase the value of z the bright regions in the
generated pattern become more prominent. This behaviour is
the same observed in the diffraction dataset when examining
increasing values of λ.

Fig. 4. Synthetic patterns generated by the decoder for different values of
the latent coordinate.

Fig. 5. Distribution of the latent variable encoded by the model.

We also found the probability distribution of the latent
variable encoded by the model. We did so by passing the whole
diffraction dataset into the trained encoder. As shown in Figure
5, the latent variable follows an asymmetric distribution with
mean value around z = 1 in a range between −1.4 and 4.3.
We observed a clear correlation between the latent coordinate
z and the physical wavelength λ, as verified in Figure 6.

C. Discussion

We constrained the latent space to one dimension but the
generalization to spaces of higher dimensions is possible as
long as we keep it smaller than the input data, otherwise, the
autoencondar might learn to copy the input to the output as
discussed in Section II.

As explained in Section III, the diffraction dataset includes
images with a wavelength λ drawn from a gaussian distribu-
tion. Therefore, it is not surprising to observe a distribution
of z with a similar shape. The most remarkable result is the
correlation between λ and z, which displays a region of lower
correlation (z < 1) and a region of higher correlation (z > 1).



Fig. 6. Correlations between the latent coordinate and the wavelength.

The correlation between the latent space and a physical
property opens the possibility to analyze more complex scenar-
ios. For instance, the experimental resolution is an important
uncertainty that needs to be considered in a real life experi-
ment. Systematic uncertainties, which are always present due
to detector calibrations and light source imperfections, may
spoil the nice correlation we obtained with our simplified
setup. Therefore, further studies are needed to test the robust-
ness of a variational autoencoder against uncertainties.

V. PERFORMANCE EVALUATION

Deep learning applications are computationally intensive
tasks that rely on high performance computing. In this session,
we describe the software and hardware infrastructure used for
training the model, the aspects that influence performance and
the opportunities for improvement.

The code was written in Python enhanced with the deep
learning frameworks Keras [13] and TensorFlow [14]. In
addition, the Intel Math Kernel Library (MKL) [15] provides
support to both Keras and TensorFlow, allowing optimized
executions of mathematical operations on Intel hardware.

The Center for Scientific Computing1 at the São Paulo State
University (Unesp) hosts an heterogeneous cluster composed
by three different generations of Intel Xeon processors: Sandy
Bridge EP [16], Haswell [17] and Skylake [18]. The configu-
ration of each node is shown in Table III.

The parallelization of a task is performed by TensorFlow in
a multithreading level, splitting the execution of each epoch
in several threads. In this context, our current implementation
explores parallel execution in a single node only. In Table IV,
we show the average execution time per epoch and the average
execution time per task (10 epochs).

We profiled the application using Intel VTune2 in order
to investigate the vector instruction set, which is the metric
for arithmetic floating point computations and memory access
operations. In this regard, we highlight the following aspects
related to the performance results:

• The vector instruction set available on each node was
effectively used by TensorFlow and MKL.

1CoE in Machine Learning: https://coe-ml.ncc.unesp.br
2VTune: https://software.intel.com/en-us/intel-vtune-amplifier-xe

TABLE III
HETEROGENEOUS CLUSTER CONFIGURATION

Architecture Cores RAM

Sandy Bridge EP 16 62 GB
Haswell 36 126 GB
Skylake 48 192 GB

TABLE IV
TIME BENCHMARKS FOR INTEL XEON PROCESSORS

# of epochs Sandy Bridge EP Haswell Skylake

1 300 s 256 s 257 s
10 3027 s 2566 s 2576 s

• The Haswell architecture improved the performance of
training by at least 15% compared to Sandy Bridge
EP. This improvement occurred because the Haswell
architecture provides more processing units than Sandy
Bridge EP.

• The performance on Skylake was compatible with the
Haswell architecture.

• The Skylake has more cores and a better vector instruc-
tion set compared to Haswell, but the execution on these
nodes presents high thread imbalance.

• Thread imbalance harms performance improvements that
could be achieved by using more cores.

The following aspects could be improved to explore perfor-
mance optimization:

• Investigate thread affinity, which is the mapping of thread
to each core and the amount of threads to be used in order
to minimize thread imbalance.

• Implement multiprocess paralelization in order to use
several nodes to execute the inner work of each epoch
concurrently, and consequently take advantage of the
high performance network deployed in this cluster. These
process could be speeded-up by using a low-latency,
high-bandwidth interconnection, such as Intel Omni-Path
architecture (OPA) [19].

VI. CONCLUSIONS

Variational autoencoders are versatile models able to tackle
unsupervised learning problems. This study introduces the
diffraction dataset containing simulations of a Young’s inter-
ference experiments. We demonstrate the adeptness of varia-
tional autoencoders to learn diffraction patterns and extract a
latent feature that correlates with the physical wavelength.

After training (validating) the model over 2048 (952) images
during 10 epochs, the autoencoder started generating realistic
diffraction patterns. On top of that, the distribution of the
latent feature extracted by the encoder resembles the physical
wavelength distribution.

The expensive computational load demanded to train the
model was supported by a hardware infrastructure based on
the latest Intel Xeon processors. Performance benchmarks



were established for three generations of Intel processors and
guidelines to improve the configuration of an heterogeneous
cluster were discussed.

Outlooks

Concerning the future endeavors, we will investigate the
impact of systematic uncertainties on the quality of the images
generated. We will also perform a study on the size of the
latent space and try to assess the trade-off between the quality
of the generated samples and the dimension of the latent
space. We also intend to perform studies on the quality of
the generated data, by performing a more complete statistical
comparison with the real data. Moreover, we will investigate
alternatives to improve the training performance. We are
specially interested in leveraging from the high-bandwidth
low-latency Intel omni-path network interconnection between
the nodes of our heterogeneous cluster, in order to perform
distributed training.

In addition to the contributions mentioned above, this study
intends to motivate researchers to explore different deep neural
architectures on top of the diffraction dataset3, in order to
extend the scope of machine learning applications in the
domain of physical sciences.

Generative models are a good fit to deal with complex
simulation. One domain that might take advantage of these
models is High Energy Physics [20]. The experiments at
CERN’s Large Hadron Collider [21] are particle factories
producing enormous amounts of data that rely on complex
and computationally costly simulations. Such experiments
may find variational autoencoders and generative models very
useful alternatives to perform particle physics simulations in
a more affordable way.

Another usage of this kind of generative models is in
embedded hardware solutions, given the fact that Field Pro-
grammable Gate Arrays (FPGAs) have a processor much
more simpler than server CPUs. Using solutions that could
generate data by just applying matrix multiplications instead of
implementing operations that rely on advanced mathematical
functions, could save not just execution and development time
but also power consumption.
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