
Negotiation strategies in multi-agent systems for
meeting scheduling

Rodrigo Rodrigues Pires de Mello, Thiago Ângelo Gelaim, and Ricardo Azambuja Silveira

Abstract—An agent not always can single-handed finish a
certain task, sometimes he has to interact with others agents
to achieve the desired outcome. This interaction can be a time
request, in which the agent must spend with the other agent. To
address this task, this research focuses on using a multi-agent
system for automatic scheduling. During this task, agents may
not agree upon the date of a certain meeting or take too much
time to decide what action to execute. In order to solve these
conflicts, this study applies counterproposal technique and user
preferences to implement two different negotiation strategies in
a multi-agent system for an automatic meeting scheduler. The
scenarios of this work indicate that combining different strategies
at certain moments can increase the chance of success during
commitment definition, reduce the amount of information shared
among agents, avoid privacy issues, raise the expressiveness of
agents acceptance region and remove the necessity of a strategy
selector.

Index Terms—agent, negotiation, strategy, automatic schedul-
ing.

I. INTRODUCTION

In order to perform an autonomous task in a dynamic
environment, the usage of agents can be applied in domains
that require too much human intervention, like organizing a
trip, scheduling a meeting, and a manufacturing scenario of
a factory Stone and Veloso [12]. Sometimes an agent must
interact with other agents or humans to be able to achieve
their goals. Interacting to achieve some goal is not the only
requirement of a multi-agent system. As in other fields of
computer science, the amount of time and computational cost
to finish a task must be considered during a development of
agents Stone and Veloso [12].

The usage of multi-agent systems must consider that some-
times the resources available in a dynamic environment can
become limited or unavailable Zhu and Jiang [16]. This kind
of situation can create some disputes between agents because
they could have different beliefs and goals Kraus [7]. However,
agents can use negotiation to solve these differences and
achieve a certain state of world Parsons, Sierra, and Jennings
[10]. Negotiation can be considered as one of the most impor-
tant interactions between agents since it is a mechanism that
manages interdependencies during execution time Jennings
et al. [6]. An agent that negotiate must be able to create
proposals, make concessions to others agents, prepare options
to solve a problem, and make deals about what must be done
Wooldridge [14].

In a scenario where automatic meeting scheduling is per-
formed by agents, negotiation takes an important role during
the entire process. In this domain, which is the main focus
of this research, we have agents that allocate meetings for

a person taking into account their preferences about dates,
people, and subjects, in which their beliefs, desires, and
intentions are based on a way that they reflect the user’s
preferences and priorities Zunino and Campo [17].

During a meeting scheduling each agent may have the same
main goal, allocate meetings for the person that he represents.
Nevertheless, the agents can disagree about some details of
this event, like the time, place, and subjects. There are several
works that apply users priorities and preferences to be able
to solve these conflicts Hossain and Shakshuki [5], Zunino
and Campo [17], Lee and Pan [8], Shakshuki et al. [11], and
Megasari et al. [9]. Even though these works present their
solution for automatic meeting scheduling, most of them do
not concern about privacy loss Hossain and Shakshuki [5],
Lee and Pan [8], and Megasari et al. [9], where agents can
have access to other participants responses about the meeting
invitation or apply time or subject preference during meeting
allocation Shakshuki et al. [11] and Hossain and Shakshuki
[5].

The main contributions of this paper towards the prob-
lems of privacy loss and user preferences representation are
two negotiation strategies that can be combined to achieve
successful meeting allocation. The first one is based on a
counterproposal approach, where an agent replies an invite
with new possibilities for the meeting. The second strategy
is based on the auction, where each agent bids on a certain
resource Wurman, Wellman, and Walsh [15], it defines a
numeric value that represents the required effort to accept an
invite to some meeting. During the negotiation process, the
agent that receives a meeting invite will only interact with
the agent that proposes the meeting, therefore reducing the
information shared in a way that his responses do not contain
any information about the user schedule or preferences about
time, people, and subject. Another important contribution of
this paper is that the strategies presented consume a fixed
number of iteration and can be easily incorporated into others
scenarios, such as trip organization.

The remainder of this paper is organized as follows: In
the section II, we introduce the main approaches used by
agents for automatic meeting scheduling. The description of
our proposed model of this work is given in the section
III. The subsection III-A contains the main features and
the necessary information to apply the negotiation strategies
during agent’s interactions. The subsections III-B and III-C
show the approach of creating and responding to a meeting
request. When a conflict occurs during a meeting request, the
agents engage in a negotiation process and use the strategies

defined in subsection III-D, III-E and III-F. The subsection
IV presents an empirical study used for test the strategies
proposed in this work. The conclusions and future work are
given in section V.

II. RELATED WORK

Solving meeting schedule problems can be accomplished
through Distributed Constraint Optimization (DCOP) tech-
niques Bowring, Tambe, and Yokoo [2], or, as in this paper,
with negotiation strategies for multi-agent systems. Despite
DCOP consider privacy as a trade-off, privacy loss analysis
shows that these algorithms still have this problem Greenstadt,
Pearce, and Tambe [4].

Based on the privacy issue that DCOP presents, this section
describes the main features extracted from a set of works that
was essential to the development of the negotiation strategies
for the multi-agent system presented in this paper. Applying
user preferences as a factor to decide if a meeting should
be accepted plays an important role in automatic meeting
schedule Hossain and Shakshuki [5], Zunino and Campo
[17], Lee and Pan [8], and Megasari et al. [9]. Hossain and
Shakshuki [5], Megasari et al. [9], and Lee and Pan [8] seem
to agree that agents could access other agents responses or
use a group calendar database during commitment definition.
However, Zunino and Campo [17] defend that the agents
should release the minimum amount of data of their schedule
and preferences to the other participants. The last approach
was considered during the implementation of the strategies
of this research, where each participating agent interacts only
with the agent that proposes the meeting and do not release
any information about user schedule or preference.

Shakshuki et al. [11] approach is similar to our research, in
which each agent represents a different user or a group, and
multiple strategies were applied to meeting allocation. The
negotiation strategies are the following:

• First come, first served: when the proposed time was
available, the meeting request is accepted;

• Highest rank: this strategy is used when a conflict occurs,
the agents make his decision based on user preferences
to infer which meeting has a higher priority.

• Voting strategy: when the negotiation process reaches
the limit time, this strategy will be applied. Each agent
searches for groups of possible times for the meeting and
then each one vote for a specific time.

The main difference between Shakshuki et al. [11] and
our research is that they do not consider other participants
priorities or subject priorities in commitment definition. This
approach could lead to cases where a meeting request would
be denied if the agent that creates this request does not
have a high priority, however, the subject of this meeting or
other involved people could be important for the user that is
represented by this agent. Based on this approach, our work
takes into consideration the subject and other participants of
the meeting during the negotiation process.

III. PROPOSED MODEL

On automatic meeting scheduling, each agent represents a
specific person, or a group of people, and communicate with
others agents to define the schedule of the meeting Shakshuki
et al. [11]. This work assumes that a meeting is an activity
that needs at least two people and has a subject to be dealt.
Agents have to negotiate to reach an agreement about the time
for the meeting.

Definition 1: A meeting can be defined as M =<
Ah,Ai,S,D > where:

• Ah is the host agent, the one that will propose a meeting;
• Ai = {A0,A1, ...,An} is a set that contains the agents that

will receive a proposal and respond to it;
• S is the main subject of the meeting;
• D is the proposal date of the meeting.

This work assumes that each agent has their own belief base,
subsection III-A presents a representation of user preferences
and his priorities. To be able to create a meeting proposal and
respond to it, the agent has to retrieve the information stored on
their belief base, subsections III-B and III-C show the required
steps for these tasks, respectively. The counterproposal and
effort metric strategies that are used at different moments are
presented in subsection III-D and III-E. Another important
aspect of this works is the responses analysis that the host
agent has to do at the end of every negotiation iteration, the
subsection III-F contains this approach.

A. Belief base

In many situations, someone or something has higher prior-
ity over others things, some of them may be more important,
urgent, or even preferential. In automatic meeting scheduling,
every agent has their own belief base with a representation of
user preferences and priorities over people, subjects, and time.

Definition 2: A belief base is defined as B =<
P,S,Schedule,PS > where:

• P = {< P1, I >,< P2, I >,...,< Pn, I >} is a set that rep-
resents an association between a person and his priority
towards the user the agent represents, where Pi is a person
name and I is an integer varying between 1 and 10;

• S = {< S1, I >,< S2, I >,< Sn, I >} is a set that asso-
ciates subjects and priorities, where Si is a subject that
is discussed during a meeting and I is the priority of
this matter. When a subject is not known by the agent, a
default value is assumed;

• Schedule = { < Day1,Time1, I,Status >,
< Day2,Time2, I,Status >,...,
< Dayn,Timen, I,Status > }
is a set that represents the association between time slots,
availability, and priority.

• PS = {< P1,S1 >,< P1,S2 >,...,< Pn,Sn >} is a set that
contains the list of people the user usually has a meeting
with and their association with a subject. It is worth men-
tioning it that a person can be associated with different
subjects, such as P1.

Every priority is defined by an integer value that varies
between 1 and 10, in which 1 represents the maximum priority
and 10 the lowest. This is an attempt to recreate the user’s pref-
erences about the main features needed to allocate meetings,
such as time, involved people, and subject. For example, some
people prefer to attend meetings in the morning, therefore the
times scheduled in the morning have a low value for time
priority Crawford and Veloso [3].

B. Creating a meeting invite

When the agent perceives a subject that has not been marked
as solved in a meeting, he will try to allocate this subject at
the next meeting. The agent’s belief base has the necessary
information to link the subject with people that have some
interest to participate in this meeting.

The next step of meeting invite composition consists on to
choose a time to be proposed. As mentioned before, the agent’s
belief base contains the priority of subjects, times, and people.
After the participating members and subject are defined, the
agent has to retrieve the subject priority and search, on the
user schedule, which times have equal priority and then the
first time of this set will be the proposed time for the meeting.
The algorithm 1 shows the main steps for creating a meeting
invite.

Algorithm 1 Algorithm for creating a meeting proposal. This
algorithm returns a message with the host name, the main
subject that will be discussed, the proposed time and the
involved members.

1: function CREATE MEETING PROPOSAL
2: subject priority=get most urgent unsolved subject();

. This function returns the set of unsolved subject with
the associated priority.

3: slots=free slots prior(subject priority); . This
function returns the free slots of the most priority subject.

4: members=find persons by subject(subject priority);
. This function returns the set of people that are
associated with a subject.

5: return create message(host, subject priority, slots,
members);

6: end function

C. Responding to a meeting request

When an agent receives a meeting request, he will access
his belief base and find if this meeting request can be accepted.
If this time was already scheduled for any other appointment,
or the agent that sends a meeting request does not have a high
priority, then the agent will use another information before
making a decision.

If someone sends a meeting request and this person does
not have importance enough to make the agent accept the
meeting request, then some other aspects may weight on
the final decision. In some cases, the other involved people
may have a higher priority, so it is crucial to take this
into account before denying the invitation. Another important

aspect is that the subject could be an important factor of user
preference, therefore the subject can be used at this phase of
the negotiation.

Once a meeting request is received and the agent detects
the proposed time is not available, this agent will enter into a
negotiation process with another agent, which the main goal
is to allocate this meeting at another time. The host priority,
subject priority, and the people priority play an important role
in negotiation execution. In some cases, the agent must use
more than one strategy to be able to represent user preferences
during negotiation. The subsection III-D describes the first
negotiation strategy required to create an answer. Another
approach is presented in subsection III-E, in which is defined
a strategy that tries to stipulate the necessary effort to attend
the meeting. Each strategy presented at subsections III-D and
III-E are used in different iterations of the negotiation process.

D. Creating a counterproposal

The distance between the current offer and the acceptance
region of other agent defines the required time to end a
negotiation and make a deal Jennings et al. [6]. To reduce this
distance during a meeting schedule, the agent that receives an
invite for a meeting can create a counterproposal, when the
proposed time cannot be accepted, and presents other possible
times for this meeting.

This counterproposal strategy tries to use every information
that is inside of a common meeting invite, such as time,
participants, and subject. For example, after an agent received
an invitation, he will access his belief base and retrieve the
host priority of the meeting. If this host has the value 1
as the priority, every available time slot that contains the
value 1 as the priority will be chosen to be appended to the
counterproposal. To avoid searching through all the slots, this
strategy will only consider available slots of the week that
the meeting was originally proposed.The algorithm 2 presents
every required step to create a counterproposal.

E. Establishing the required effort to accept a meeting

Based on auctions protocol, where each participant bids on
a certain resource Wurman, Wellman, and Walsh [15] and
Bellantuono et al. [1], another strategy was developed to deal
with aspects the first strategy does not cover. This strategy is
an attempt to create a numeric representation of the required
effort to accept a meeting at a certain time.

Definition 3: The effort is defined as: e = ps+ pr+ pg+n
where:
• ps is the subject priority;
• pr is host priority;
• pg is the average of people priorities that have been

invited to the meeting;
• h is the proposed time;
• i is the current iteration of the negotiation;
• H = {h1,h2, ...,hn} is the set of available slots that

have the priorities pr and pr + i. The set D =
{|h1−h|, |h2−h|, ..., |hn−h|} represents the module of
difference between the available times and the proposed

Algorithm 2 Algorithm for the counterproposal strategy
1: function MEETING RESPONSE PRIORITY BASED(Message

proposal)
2: if (free slot(proposal.time()) then
3: return generate response(proposal, true);
4: end if
5: meeting priority=priority(proposal.host()); . This

function returns the host priority. . This condition assures
that a group priority will be taken into consideration if the
host priority does not represent a certain importance. The
MINIMUM PRIORITY is a value defined by the agent’s
beliefs.

6: if (meeting priority>MINIMUM PRIORITY) then
7: group priority = get group priority(proposal);
8: end if
9: slots=free slots prior(meeting priority);

10: if (slots.empty()) then
11: slots=free slots prior(priority(proposal.subject()));
12: end if
13: return generate response priority based(proposal,

slots);
14: end function

time. Where min(di) | di ∈ D and di < di′, therefore, di
is the lowest difference between the available time and
proposed time.

• n is a normalized value varying between 0 and 10 defined
by di.

For example, assuming that an agent receives a message
that proposes a meeting at 7:30 a.m on 09/05/2016. After
getting value 2 as the host priority and subject priority from his
belief base, the agent will access his belief base and search
for the slots that have the priority 1 and priority 2, where
the second value represents the sum of the host priority and
the current iteration of the negotiation. After reaching the end
of this search, the agent gets three possible times to allocate
the meeting, the retrieved times was on the same day at 7:00,
8:30 and 9:00 a.m. The difference between the times was 0:30,
1:00 and 1:30. Therefore, the time that represents the lowest
difference was at 7:00. The algorithm 3 shows the interaction
between agent and it’s belief base during the effort definition.

The following example shows the main limitation of the
strategy mentioned before:

• The host sends a proposal to n agents that he would like
to engage in a meeting with;

• Each person defines the required effort to accept the
proposal, where higher the value, higher the effort to
attend the meeting;

• After the host receives the n answers, there is only
information about the time that he proposed, therefore the
host agent will have to choose another time and restart
the negotiation process. Even if the host agent submits
another time of the list that was previously defined during
the proposal creation, this could take too much time.

Algorithm 3 Algorithm for effort strategy
1: function MEETING RESPONSE
2: EFFORT BASED(message)
3: if (!free slot(message.time()) then
4: return create response effort based(
5: message,MAX EFFORT); .

If the proposed time is not available, a response message
with a max effort value is defined. MAX EFFORT is an
integer value defined by the agent’s belief.

6: end if
7: subject priority=priority(message.subject());
8: priority=priority(message.host());
9: slots.push(free slots priority(priority));

10: slots.push(free slots priority(priority+i)); . The
free slots priority returns the available slots of a priority.
The i variable represents the current negotiation iteration.

11: distance=difference(slots,proposed time); .
The difference function returns the available time with the
lowest difference from the time proposed by the host of
the meeting.

12: effort=priority+subject priority+distance;
13: return create response effort based(message,effort);
14: end function

To be able to continue the negotiation process of the
previous example, the host could retrieve a set of times and
append on a message, however, this set could be very large
and demand a certain amount of time to be analyzed by the
agents that receive this proposal.

Even being simple and limited, this strategy has the purpose
of simulating an auction. Its simplicity would not affect others
tasks of the agent. It was noticed that this mechanism could
be used to decide between two or more times proposed by
others agents. After that, the host chooses the time with the
lowest effort.

F. Analyzing the meeting responses

When the first iteration of the negotiation ends, the host
agent receives the responses of others agents, then he will
try to find an intersection between all answers and stipulate a
common time for the meeting. If no intersection is detected,
a new iteration of negotiation begins and the host agent will
scan every response message to find the time that contemplates
the largest number of people and the time that maps to the
highest priority group. In each iteration, both of the times that
was found will be saved and sent again to the participating
agents.

At the beginning of the second iteration, each participant
will apply the effort strategy, described in subsection III-E,
over the two times sent by the host agent. After receiving all
the responses from others agents, the host agent will select
the time that represents the sum of the lowest effort. After
this step, another round of negotiation begins and another
message with the selected time is sent to participants agents.
This process continues until every agent accept the meeting

or the negotiation reach a maximum value of iterations. The
figure 1 presents an interaction diagram with every step of the
negotiation between agents and the strategies used by them.

host person_1 person_2

meeting request

meeting request

send response

send response

new meeting request

new meeting request

response

response

alt

confirmation message

confirmation message

final decision

final decision

negotiation

Begin new round of negotiation

[create meeting]

[create counter-proposal]

[create counter-proposal]

[intersection detected]

send confirmation message

[analyze counterproposals]

[effort definition]

[effort definition]

[analyze effort responses]

Begin new round of negotiation

send confirmation message

Fig. 1. Interaction diagram of an example of negotiation protocol.

IV. EMPIRICAL INVESTIGATIONS

In order to simulate the agent’s behavior during a meeting
schedule. A prototype was implemented to evaluate the pro-
posed negotiation strategies and the belief base that represents
the user preferences. The whole process was built as a protocol
that agents execute when they are negotiating, however, many
aspects were ignored during the development such as speech
act and communication languages.

The main tools used during this work was the programming
language C++, a Prolog implementation, SWI-Prolog, and
an interface between these two languages, that was created
by SWI-Prolog as well Wielemaker et al. [13]. The C++
programming language was used for developing the strategies.
The interface was used as an access mechanism to the belief

TABLE I
HOST AGENT SCHEDULE FROM SCENARIO 1

Time Priority Status
7:30 1 available
8:00 1 available
8:30 1 available
9:00 1 available
9:30 2 available

10:00 2 available
10:30 2 available

base. The agent’s belief base was developed using SWI-Prolog,
where the priorities and times were represented with facts and
data structures, respectively.

To make an initial evaluation of the negotiation strategies
that was described during this work, three scenarios are
presented. The scenario 1 and 2 present simple situations,
where the main goal is to explore the expressiveness of each
strategy when a conflict occurs. The first scenario focuses on
the counterproposal strategy, described in subsection III-D, and
exploits the main remarks. The second scenario explores some
limitations of the counterproposal strategy and the need for a
second strategy that increases the chance of success of the
negotiation and the decided time represents a better solution
for every participating agent. Scenarios 1 and 2 present a
comparison between every strategy, the counterproposal, the
effort metric, and our proposal approach that combines both
strategies. The third scenario presents important aspects of
meetings that occur on daily basis and was adapted from
Hossain and Shakshuki [5] work. The main goal of this
scenario is to show that group priority can play an essential
role to enhance meeting allocation and avoid privacy issues.

It is important to mention that even though the following
scenarios uses only three agents, it can be expanded to a
different number of agents and messages that will not affect
the negotiation process. This is possible because the interaction
occurs only with the agent that proposes a meeting and the
agent involved in the meeting, therefore other involved agents
do not interact with each other. In the following scenarios we
use a fixed time for the meeting duration, however it is possible
to allocate meeting with different duration.

A. Scenario 1

This first scenario shows the interaction between three
agents. Agent h1 is the host of the meeting, therefore he will
send a meeting request to agents r1 and r2. Both agents r1 and
r2 will only interact with h1 during the negotiation process,
avoiding the need of sharing private information with others
agents. The following tables I and II present the schedule of
each agent:

Assuming the proposed subject has the value 1 and it is
marked as unresolved by the host agent, the first time slot that
will be proposed is at 7:30 a.m. During the negotiation process
that uses only the effort strategy, the host agent will propose
on the next iteration the times at 8:00, 8:30 and 9:00 a.m
and each involved agent will apply the effort strategy for each

TABLE II
R1 AND R2 SCHEDULE FROM SCENARIO 1

Time Priority Status
7:30 1 unavailable
8:00 1 unavailable
8:30 1 unavailable
9:00 1 available
9:30 2 available

10:00 2 available
10:30 2 available

time. It is important to remember that the host agent could
send all the available times to r1 and r2, however, the effort
strategy becomes more flexible during iteration, as mentioned
in the subsection III-E.

When the strategy that uses the effort metric is applied in
this scenario, the meeting has only one possible time, at 9:00
a.m, to be accepted by r1 and r2. However, it is needed that
the times of 7:30, 8:00 and 8:30 be presented as an option,
demanding unnecessary interactions between agents. If r1 and
r2 create a counterproposal the negotiation can be reduced,
where the times with the same priority of the host agent will
be proposed, therefore the time at 9:00 will be used when a
counterproposal strategy is used. The table III shows the main
results of this scenario, highlighting the number of message
passing during negotiation:

B. Scenario 2

As mentioned in scenario 1, the counterproposal strategy
was superior when it refers to the number of iteration and
message passing between agents. Having in mind these char-
acteristics, the second scenario has the main goal to presents
the limitation of using only the first strategy. This scenario
has the same approach to scenario 1, where h1 interact with
r1 and r2 and create a meeting request. The agents schedules
is presented at tables IV, V and VI.

The times proposed during the negotiation will start at 8:30
and have 9:00 and 9:30 on the next iterations. Therefore,
the number of iteration until both agents accepts the meeting
request will be 3.

Using the counterproposal in this scenario has a specific
consequence during a meeting allocation. The agents r1 and
r2 will search at their belief base and detect a conflict between
their schedule and the host agent schedule. After this step, r1
will find that times at 7:30 and 9:00 could be proposed. As
agent r1, agent r2 responds to the meeting request with 7:30,
8:00 and 9:00 as alternative times. After agent h1 analyses the
messages of r1 and r2, he will found that the meeting could be
at 7:30 and 9:00. Then the host agent detects the time at 7:30
as the first intersection, the meeting request will be accepted
by others agents, however, the best possible time should be at
9:00 as mentioned on subsection III-E.

The limitation presented before could be avoided if both
strategies are applied in this scenario. The counterproposal
strategy will define 7:30 and 9:00 as candidates for the time
of the meeting. After that, the host agent sends this two times

for r1 and r2, and then they could use the effort metric for
each time. This approach enables the host agent to choose the
time that represents the lowest effort, therefore the time at
9:00. The results of this scenario are presented in table VII.

C. Scenario 3

This scenario was extracted from Hossain and Shakshuki [5]
and is used as a comparison with our work. The main focus
of this scenario is to show that in some cases it is important
to use other aspects of the meeting before rejecting a meeting
request. The table VIII shows an interesting case where is
possible to notice a well-defined hierarchy among students
and professors, and each member of this relation has a certain
level of importance.

Just like the previous scenarios, the negotiation process
begins when some agent creates a meeting proposal. In this
case, professor Darcy invites professor Elhady, and students
Mozamma, Wael, and Qianli to a meeting. Table VIII shows
that professor Darcy has a high priority towards professor
Elhady. However, the same does not occur with the students.

Table VIII shows that professor Darcy does not have a
high priority towards students Mozamma, Wael, and Qianli.
However, professor Darcy has high priority towards professor
Elhady. Hossain and Shakshuki [5] handle this situation in
a manner that the agents that represent students wait for
the agent of professor Elhady to respond and then follow
his decision. This approach handles properly this situation,
however, this can be a problem in some situations where users
are concerned about their schedule privacy Zunino and Campo
[17].

To fully adapt this scenario for our work, we create a
hypothetical schedule for professor Elhady and students at
tables IX and X. We stipulate that professor Darcy proposes
a meeting on 04/09/2017 at 7:30 a.m. As shown in table IX,
professor Elhady schedule has a time slot available with the
same priority that professor Darcy, therefore he is the only
one that will accept the meeting request. The others students
schedules do have an available time, however, the priority of
this time slot is higher than the priority assigned to professor
Darcy. Based on what was presented in subsection III-D,
our approach uses the group priority, where the students will
analyze which people are involved in this meeting. The group
priority will be the average of every participating member, in
this case, the value is 2. Table X shows that the group priority
2 can be linked with the time slot proposed by professor Darcy,
therefore the agents that represent the students will accept the
meeting invitation without using any information about the
decision made by professor Elhady’s agent.

Even though this scenario seems simple, it represents a
normal situation that occurs on a daily basis. Our work defends
that the agents should not release any information about user
preference or schedule. It is important to mention that our
approach does not need any interaction between agents, only
the host agent has access to responses, and yet these responses
do not contain any confidential information.

TABLE III
RESULTS OF SCENARIO 1.

Strategy Iteration Proposed
mes-
sages

response
mes-
sages

Total
mes-
sages

effort 5 8 8 20
counterproposal 2 2 2 8

effort and counterproposal 2 2 2 8

TABLE IV
HOST AGENT SCHEDULE FROM SCENARIO 2

Time Priority Status
7:30 2 available
8:00 2 available
8:30 1 available
9:00 1 available
9:30 1 available

10:00 1 available
10:30 2 available

TABLE V
R1 SCHEDULE FROM SCENARIO 2

Time Priority Status
7:30 1 unavailable
8:00 1 unavailable
8:30 1 unavailable
9:00 1 available
9:30 2 available

10:00 2 available
10:30 2 available

Through scenario 1 and 2, it is possible to notice the
main limitations of using only one negotiation strategy during
automatic meeting scheduling, even though these scenarios
were simple. However, the combination of multiple strategies
at certain iterations of negotiation could indicate a better ap-
proach for representation of agent’s acceptance region, which
indicates an improvement in meeting allocation.

Scenario 3 shows the importance that each agent has their
user schedule and do not need to interact with other partici-
pants, other than the host agent, or share their preferences to be
able to allocate meetings. In an indirect way, these interaction
reduces the amount of data sent over the network, therefore
reducing the required time to process and reason about these
messages during negotiation.

V. CONCLUSION AND FUTURE WORK

In automatic meeting scheduling, it is common that each
agent represents a different person, therefore they may have
different goals, since some people have distinct preferences
about the characteristics of the meeting, such as time, for
example. To be able to find an intersection between people
preferences, agents have to perform a negotiation protocol.
In this paper, it was presented two negotiation strategies for
automatic meeting scheduling for a multi-agent system.

These negotiation strategies aim to increase the quality of
meeting allocation when conflicts occur. The first strategy is
based on a counterproposal approach, where each agent uses

TABLE VI
R2 SCHEDULE FROM SCENARIO 2

Time Priority Status
7:30 1 available
8:00 1 available
8:30 1 unavailable
9:00 1 available
9:30 2 available

10:00 2 available
10:30 2 available

people, time, and subject priority to propose new times for the
meeting. The second strategy tries to define the required effort
to attend the meeting that will be held at some specific time.

To be able to test these strategies it was developed a
prototype that simulates agent’s interaction during the ne-
gotiation process. The prototype was developed using C++
and Prolog. The strategies described at subsection III-D, III-E
were implemented using C++. The Prolog usage was focused
on creating agent’s belief base where user preferences are
represented. It was used an interface between C++ and Prolog
that provides a query mechanism needed by the negotiation
strategies.

The empirical investigation presented in subsection IV
shows that applying only one negotiation strategy could affect
meeting allocation, in which the negotiation could take more
iterations or the scheduled time for the meeting is not ideal.
Another important result of these scenarios is the agent that
receives a meeting request does not need to interact with
others involved agents, where the only necessary interaction
occurs between the host agent, the one that sends a meeting
request, and the agent who will receive a meeting request.
This paper shows that an agent does not have to expose
the user preferences or priorities to be able to respond to
a meeting, where Distributed Constraint Optimization seem
to have privacy loss Greenstadt, Pearce, and Tambe [4] and
Zunino and Campo [17].

This research defends that negotiation strategies should be
combined and this approach could increase the expressiveness
of agent’s acceptance region representation. Even being an
empirical study, the scenarios described in this work could be
an indication that using more than one strategy at automatic
meeting scheduling increases the quality of user preferences
representation during negotiation as mentioned in subsection
III-E. Another important feature noticed is the host priority is
not the only priority that should weight on the final decision
of an agent that received a meeting request, where the subject

TABLE VII
RESULTS OF SCENARIO 2.

Strategy Iterations Proposed
mes-
sages

Response
mes-
sages

Total messages

effort 4 3 6 13
counterproposal 2 2 2 8

effort and counterproposal 3 4 4 12

TABLE VIII
PRIORITY RELATION OF PROFESSORS AND STUDENTS. ADAPTED FROM HOSSAIN AND SHAKSHUKI [5]. EACH NUMBER REPRESENTS A PRIORITY,

WHERE LOWER VALUES REPRESENT HIGH PRIORITIES.

Person Darcy Elhady Mozamma Wael Qianli
Darcy - 1 2 2 3
Elhady 1 - 2 2 3

Mozamma 3 1 - 2 3
Wael 3 1 2 - 2
Qianli 3 1 2 2 -

TABLE IX
PROFESSOR ELHADY SCHEDULE

date weekday time slot priority status
04/09/2017 Monday 7:30 1 available
04/09/2017 Monday 8:00 1 available
04/09/2017 Monday 8:30 1 available

TABLE X
STUDENTS SCHEDULE

date weekday time slot priority status
04/09/2017 Monday 7:30 2 available
04/09/2017 Monday 8:00 2 available
04/09/2017 Monday 8:30 2 available
04/09/2017 Monday 9:00 1 available
04/09/2017 Monday 9:30 1 available

or other involved people could be relevant during meeting
allocation.

As future work, the presented prototype has to be exposed to
more realistic scenarios, in which multiple meetings allocation
occurs at the same time and other kinds of commitment or
event should be considered. Another important aspect that
must be studied is the user preferences and priority update
and their role in meeting reallocation.

REFERENCES

[1] Nicola Bellantuono et al. “Multi-attribute auction and
negotiation for e-procurement of logistics”. In: Group
Decision and Negotiation 23.3 (2014), pp. 421–441.

[2] Emma Bowring, Milind Tambe, and Makoto Yokoo.
“Multiply-constrained distributed constraint optimiza-
tion”. In: Proceedings of the fifth international joint
conference on Autonomous agents and multiagent sys-
tems. ACM. 2006, pp. 1413–1420.

[3] Elisabeth Crawford and Manuela Veloso. “Mechanism
design for multi-agent meeting scheduling”. In: Web In-
telligence and Agent Systems: An International Journal
4.2 (2006), pp. 209–220.

[4] Rachel Greenstadt, Jonathan P Pearce, and Milind
Tambe. “Analysis of privacy loss in distributed con-
straint optimization”. In: AAAI. Vol. 6. 2006, pp. 647–
653.

[5] SM Mozammal Hossain and Elhadi Shakshuki. “A
Negotiation Protocol for Meeting Scheduling Agent”.
In: Procedia Computer Science 21 (2013), pp. 164–173.

[6] Nicholas R Jennings et al. “Automated negotiation:
prospects, methods and challenges”. In: Group Decision
and Negotiation 10.2 (2001), pp. 199–215.

[7] Sarit Kraus. “Negotiation and cooperation in multi-
agent environments”. In: Artificial intelligence 94.1
(1997), pp. 79–97.

[8] Chang-Shing Lee and Chen-Yu Pan. “An intelligent
fuzzy agent for meeting scheduling decision support
system”. In: Fuzzy Sets and Systems 142.3 (2004),
pp. 467–488.

[9] Rani Megasari et al. “Towards host-to-host meeting
scheduling negotiation”. In: International Journal of
Advances in Intelligent Informatics 1.1 (2015), pp. 23–
29.

[10] Simon Parsons, Carles Sierra, and Nick Jennings.
“Agents that reason and negotiate by arguing”. In: Jour-
nal of Logic and computation 8.3 (1998), pp. 261–292.

[11] Elhadi Shakshuki et al. “A distributed multi-agent meet-
ing scheduler”. In: Journal of Computer and System
Sciences 74.2 (2008), pp. 279–296.

[12] Peter Stone and Manuela Veloso. “Multiagent systems:
A survey from a machine learning perspective”. In:
Autonomous Robots 8.3 (2000), pp. 345–383.

[13] Jan Wielemaker et al. “Swi-prolog”. In: Theory and
Practice of Logic Programming 12.1-2 (2012), pp. 67–
96.

[14] Michael Wooldridge. An introduction to multiagent sys-
tems. John Wiley & Sons, 2009.

[15] Peter R Wurman, Michael P Wellman, and William E
Walsh. “The Michigan Internet AuctionBot: A config-
urable auction server for human and software agents”.
In: Proceedings of the second international conference
on Autonomous agents. ACM. 1998, pp. 301–308.

[16] Wei Zhu and Zhong-Ping Jiang. “Event-based leader-
following consensus of multi-agent systems with input
time delay”. In: IEEE Transactions on Automatic Con-
trol 60.5 (2015), pp. 1362–1367.

[17] Alejandro Zunino and Marcelo Campo. “Chronos: A
multi-agent system for distributed automatic meeting
scheduling”. In: Expert Systems with Applications 36.3
(2009), pp. 7011–7018.

