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Abstract—The Flexible Job Shop Scheduling Problem (FJSP)
is an extension of Job Shop Scheduling (JSP), which is closer
to reality, allowing an operation of a given job to be processed
by alternative machines. Considering that for some industries it
is relevant to consider for more than one objective, the FJSP is
treated in this study in a multiobjective way whit the following
criteria: the last processing time of the last operation, called
makespan, and the total tardiness. Therefore, it is proposed an
algorithm based on the Clustering Search (CS) metaheuristic
to generate solutions, and thus produce a set of non-dominated
solutions in order to obtain the Pareto frontier, providing to
decision maker a set of quality solutions. To evaluate the CS,
we proposed a set of instances considering due dates for the
jobs, to enable analysis of the bi-objective FJSP (BOFJSP). The
CS results were competitive when compared to the literature,
generating several non-dominated solutions.

Index Terms—flexible job shop scheduling, multiobjective op-
timization, metaheuristic, clustering search, Pareto frontier.

I. INTRODUCTION

In the current competitive environment, for an industry
to keep up with market growth, it becomes necessary to
efficiently schedule production. Industries must meet deadlines
and minimize costs. So, organizations must plan their activities
in such a way that resources are used efficiently [1].

The scheduling of activities in an industry consists of
determining the sequence of tasks (jobs) in each machine in
order to optimize some objective. In this category of problems
we have a set of tasks, each one formed by a sequence
of operations, and each operation is performed by a single
specific machine. For a job to be processed, it must move
through all machines in the pre-determined sequence. The
purpose of this problem, called Job Shop Scheduling (JSP),
comes down to designate the order of the operations for
each job in the previously defined machines to optimize some
criterion [2].

Considering the limitation of the JSP that each operation
is processed by a specific machine, Brucker and Schlie [3]
proposed the Flexible Job Shop Scheduling (FJSP). In this
perspective, it is possible that some jobs can be processed by
alternative machines, that is, the same job may have variations
in the sequencing of their production [4].

The FJSP can have several different criteria as an objective
function, the processing time of the last operation, called
makespan, being the most studied. However other objectives

can be evaluated, such as those related to the date of deliv-
ery, the sum of the delay in the delivery of products (total
tardiness), among others [5], [6].

With the continuous need for quality improvement in the
decision-making process, and the goal of making the model
closer to the real operational context of the industries, comes
the need to address the problem considering more than one
objective. Such problems are called multiobjective problems
[1], [7].

In multiobjective optimization problems, it is expected to
satisfy all objectives. However, find this solution is not trivial,
because the objectives tend to conflict with each other, that is,
by improving one objective, it can lead to the worsening of
the other (trade-off). Multiobjective problems approaches can
be classified as follows [8]:

• Single objective: one objective is selected and the others
are applied in the constraints of the problem;

• Linearization: the objective function is linearized, and
for each objective is given a multiplier value, which is
classified according to the importance of the objective.
This approach uses strategic level knowledge to weight
the objective function as needed;

• Pareto frontier: considers that the objectives of a mul-
tiobjective problem are usually conflicting, that is, by
improving one objective, it can affect and / or worsen the
other. There is no single solution that is optimal for all
goals. In this situation, we seek for a set of non-dominated
solutions that satisfy the problem constraints.

To better understand the Pareto frontier approach, Joze-
fowiez et al. [8] define the dominance concept as follows.
A solution y = (y1, y2, ...yn) dominates a solution z =
(z1, z2, ...zn) if and only if ∀i ∈ {1...n}, yi ≤ zi and
∃i ∈ {1...n}, yi < zi.

These classes of problems can be solved through exact
methods and / or from mathematical programming models.
However, such methods tend to be ineffective with instances
that have a larger dimension, that is, they can not obtain an
optimal solution, or even a feasible solution in reasonable
computational time, which is common if we consider real FJSP
applications [9]. Thus, it arises the motivation to use heuristic
methods that are able to generate good quality solutions to
these problems.



In order to extend the approaches made by Moreira et al.
[10] and Lei [9], which addressed the JSP in a multiobjective
way, minimizing simultaneously the objectives makespan and
the total tardiness of jobs, in this paper a bi-objective version
of the FJSP (BOFJSP) is treated, considering these same
criteria.

Whereas BOFJSP is a problem that inherits the character-
istics of the JSP, it is defined as NP-Hard [11]. Thus, as a
solution method, we implemented the Clustering Search (CS)
metaheuristic [12], considering that it has been showing good
results for other combinatorial optimization problems, and that
no application of CS to the FJSP has been found in literature
so far [6], [13].

This paper is divided as follows: Section II presents some
works related to the BOFJSP. The Section III details the
methodology developed in this study. Computational exper-
iments are described in Section IV. Section V presents the
conclusions and then the references used in this work are
listed.

II. RELATED LITERATURE

For the classical FJSP, more recently, Cruz-Chávez et al.
[14] presented an algorithm based on the Simmulated Anneal-
ing (SA) metaheuristic with a mechanism of partial scheduling
and a cooling mechanism, which is function of the standard
deviation. It was found that SA with the proposed mechanism,
called SA-Partial Controlled (SAPC), converges faster to good
solutions than without the proposed mechanism. Another
metaheuristic that combines the methods Scatter Search and
Path-Relinking with Tabu Search (SSPR) was developed by
González et al. [15] for the FJSP. The authors sought to
combine the diversification characteristic provided by Scatter
Search and Path-Relinking, with the intensifying nature of TS.
Both studies presented efficient results, providing new best
known values for classic instances.

There are a large number of works in the literature that
propose methods to solve different versions of the FJSP
[6], [16]. However, with the aim to approximate the FJSP
to the real cases of the industries, some authors conducted
approaches focused on adding new objectives to the classic
problem, that is, making it a multiobjective problem in order to
provide an improvement in the quality of the decision-making
process [9], [10], [17]–[19].

Shao et al. [20] have developed a hybrid algorithm com-
bining the Particle Swarm Optimization (PSO) algorithm with
the Simulated Annealing (SA) metaheuristic to solve the multi-
objective FJSP. SA is used for local search in the proposed al-
gorithm. The best solutions obtained by the SA are stored, and
then submitted to a mechanism to search for non-dominated
solutions.

Yuan and Xu [21] conducted an extensive literature review
about multiobjective FJSP, which addresses the following
objectives: makespan and related criteria to workload. As a
method of solution for multi-objective FJSP, they proposed
a Memetic Algorithm that is developed incorporating a new

local search algorithm to the NSGA-II [22]. The NSGA-
II is one of the well-known algorithms that aim to solve
multiobjective problems [23].

Moreira et al. [10] proposed three versions of Genetic
Algorithms to minimize the JSP considering the objectives:
makespan and the total tardiness of the tasks. The results
were compared with the literature. It was found that the
proposed Genetic Algorithm with Path-Relinking obtained a
greater number of non-dominated solutions in 80% of the
tested problems.

To solve the JSP considering the objectives makespan and
the total tardiness of the jobs, a method called Pareto Archive
Particle Swarm Optmization (PAPSO) was developed by Lei
[9]. The results were superior when compared with the SPEA2
method from [24].

Considering the multiobjective version for the JSP, which
addresses the objectives makespan and the total tardiness of
the jobs, as treated in [10] and [9], we did not find some
application to the FJSP. So, it becomes interesting to study
this approach.

III. METODOLOGY

A. Problem Modeling

In order to approximate the FJSP to real-world cases, it
is considered the model proposed by Özgüven et al. [25],
with an adaptation in the respective model performed by Melo
and Ronconi [5], to propose a new adaptation in the mixed
integer linear programming model for the FJSP considering as
objective function to simultaneously minimize the makespan
and total tardiness of jobs, thus defining the bi-objective FJSP
(BOFJSP):

Indices and sets
J : set of jobs;
M : set of machines;
O: set of operations;
i: jobs (i, i

′ ∈ J);
j: operations (j, j

′ ∈ O);
k: machines (k ∈M );
Oi: ordered set of operations of job i (Oi ⊆ O);
Oij : operation j of the job i (Oij ∈ Oi);
Mj : the set of alternative machines on which operation
j can be processed, (Mj ⊆M);
Mj∩Mj′ : the set of machines on which operations j and
j
′

can be processed.
Pij : set of operations that must precede the operation Oij
in job.

Parameters
tijk: the processing time of operation Oij on machine k;
di: due date of the job i;
L: a large number.

Decision variables
Xijk: 1, if machine k is selected for operation Oij ; 0,
otherwise;



Sijk: the starting time of operation Oij on machine k;
Cijk: the completion time of operation Oij on machine
k;
Yiji′ j′k: 1, if operation Oij immediatly precedes opera-
tion Oi′ j′ on machine k; 0, otherwise
Ci: the completion time of job i;
Ti: tardiness of job i;
Cmax: maximum completion time over all jobs
(makespan).

min
∑
i∈J

Ti (1)

min Cmax (2)

s.t.
∑
k∈Mj

Xijk = 1,∀i ∈ J, ∀j ∈ Oi (3)

Sijk ≤ Xijk × L,∀i ∈ J,∀j ∈ Oi,∀k ∈Mj (4)
Cijk ≤ Xijk × L,∀i ∈ J, ∀j ∈ Oi,∀k ∈Mj (5)
Cijk ≥ Sijk + tijk − (1−Xijk)× L,
∀i ∈ J,∀j ∈ Oi,∀k ∈Mj (6)

Sijk ≥ Ci′ j′k − (Yiji′ j′k)× L,∀i < i
′
,

∀j ∈ Oi,∀j
′
∈ Oi′ ,∀k ∈Mj ∩Mj′ (7)

Si′ j′k ≥ Cijk − (1− Yiji′ j′k)× L,∀i < i
′
,

∀j ∈ Oi,∀j
′
∈ Oi′ ,∀k ∈Mj ∩Mj′ (8)∑

k∈Mj

Sijk ≥
∑

k′∈M
j
′

Cij′k′ ,∀i ∈ J, ∀j ∈ Oi,

∀Oij′ ∈ Pij (9)

Ci ≥
∑
k∈Mj

Cijk,∀i ∈ J,∀j ∈ Oi (10)

Ti ≥ Ci − di,∀i ∈ J (11)
Xijk ∈ {0, 1},∀i ∈ J,∀j ∈ Oi,∀k ∈Mj (12)
Sijk ≥ 0,∀i ∈ J, ∀j ∈ Oi,∀k ∈Mj (13)
Cijk ≥ 0,∀i ∈ J,∀j ∈ Oi,∀k ∈Mj (14)

Yiji′ j′k ∈ {0, 1},∀i < i
′
,

∀j ∈ Oi,∀j
′
∈ Oi′ ,∀k ∈Mj ∩Mj′ (15)

Ci ≥ 0,∀i ∈ J (16)
Ti ≥ 0,∀i ∈ J (17)

The objective function (1) aims to minimize the total
tardiness and objective function (2) minimizes the makespan.
The constraint (3) ensures that each operation will have only
one machine to process it, while the constraints (4) and (5)
certify that if an operation is not allocated to a machine, the
start and end times of processing for that machine are equal to
zero. The constraint (6) ensures that the processing end time
of an operation assigned to a machine will be greater than
or equal to the sum of its start time plus the processing time
of this machine. Constraints (7) and (8) limit a machine from
processing more than one operation simultaneously. Constraint
(9) guarantees the precedence of operations, and the constraint
(10) certifies that the completion time of the job is greater

than or equal to the time of completion of the operations.
The constraint (11) certifies that the job will not be completed
before having completed all operations, and the constraints
(12) to (17) define the domain of the variables. Finally, the
constraints (12) to (15) treat the integrity of the variables.

Based on the mathematical model presented, the complexity
of the problem is highlighted because it is a problem with
more than one objective and, considering the conflicting
characteristics of the objectives to with each other, a single
solution tends to prioritize one objective over the other. Thus,
obtaining the Pareto frontier becomes an interesting alternative
to solve the problem, since it is possible for the decision maker
to evaluate a set of quality solutions and thus to define which
objective to prioritize, according to your convenience.

B. Proposed instances

Considering the characteristic of the proposed model, which
considers the criterion of minimize the total tardiness besides
the makespan, we not find in the literature a set of instances
that allow perform computational experiments. Consequently,
there is a need to propose new instances, considering due
dates, to evaluate the method proposed in this work. Thus,
the proposed instances are described in this section.

We adapted the instances proposed by Brandimarte [26],
because he did not define due dates. The instances were
adapted in a similar way to the dates generated by Armentano
and Scrich [27] and Moreira et al. [10], as shown in Equations
(18), (19) and (20).

di =

⌊
(β ×

M∑
i=1

tij)

⌋
(18)

β1 = ((J ×M)/1000) + 0, 5 (19)
β2 = β1 + 1 (20)

The parameters β1 and β2 are used to determine the due
date of jobs, being β2 a more relaxed way to generate the
due dates. The due date of the job i is referenced in di, being
tij the average processing time of operations of the job i.
To avoid rounding or difference problems when considering
decimal places, we have set truncate the due date values.

C. Clustering Search metaheuristic

The Clustering Search metaheuristic (CS) is a generic
definition of Evolutionary Clustering Search (ECS) [28]. The
main difference between the methods is that ECS uses an
evolutionary algorithm to generate solutions, while CS can
use any metaheuristic [12], [13].

In CS, a cluster is defined by a set of three elements
C = {c, v, r}: the best solution of the cluster is its center c;
the number of solutions associated with each cluster defines
the volume v; and the parameter r indicates the number of
attempts without improvement after applying a local search
[29].

When the volume v reaches the parameter λ, it becomes
promising and then local search is applied. The parameter r



is incremented when better solutions are not obtained. If the
inefficiency index r reaches the value rmax, a perturbation
occurs in the center of the cluster c, in order to diversify the
search.

As a solution-generating metaheuristic for CS, we used Sim-
ulated Annealing (SA) [30]. The SA is based on an analogy
with thermodynamic to optimize solutions to combinatorial
optimization problems.

SA performs perturbations in the current solution in an
iterative way, seeking better neighbor solutions. An important
feature of SA is the fact that it allows worse solutions as a
form of diversification of the search. In doing this, SA tends
to escape from local optimum, seeking a global optimum in
later iterations. The probability of accepting solutions that are
worse than the current one is decreased by the temperature.

Algorithm 1 shows the pseudocode of the proposed CS,
using SA as the solution generator. SA runs until the timeout
Timemax expires. At each temperature, SAmax iterations are
done and then the current SA solution is sent to the CS (lines
4-21).

The method is initialized by creating the number γ of
clusters, with their respective characteristics of maximum
volume λ and index of inefficacy rmax. Then a initial solution
is created and defined as the best solution. Next, the SA
is started, where at each iteration a neighborhood is chosen
randomly between N1 or N2 to generate a neighbor solution
of the current solution (lines 9-10). A neighbor solution is
accepted if it is better than the current solution (lines 11-16)
or with a given probability (lines 17-19), otherwise.

The SA temperature is decreased (line 21) and if the
maximum number of clusters is not reached, the current SA
solution is assigned to the center of a new cluster (lines 22-
24). After all γ clusters have been initialized, the new solutions
generated by the SA are now included in existing clusters (line
25 ahead).

Next, the assimilation process begins, which is defined
based on the similarity between the current SA solution and
the center of all clusters. The current SA solution is inserted in
the cluster whose center is most similar to it. The algorithm
then verifies if the cluster has become promising and if the
local search or a perturbation will be applied or if a new best
solution has been found (lines 26-45).

In order to perform the bi-objective analysis, initially the
CS generates solutions considering the objective functions in
a separated way. Thus, first the CS is applied to the BOFJSP
considering the makespan criterion, and then, the CS is applied
considering the criterion total tardiness. In both cases, in the
search process, when a new best solution is found, it is stored
in a list of solutions (listSol). After the CS is finished, the
process of removing the dominated solutions from the list
of solutions (listSol) is started, resulting on the set of non-
dominated solutions.

The parameters used in the proposed CS algorithm are:
• γ: Maximum number of clusters;
• λ: Maximum volume of clusters;
• rmax: Limit to the index of ineffectiveness of clusters;

• T0: Initial temperature of the SA;
• α: SA cooling rate;
• Tf : Final temperature of the SA;
• SAmax: Maximum number of iterations per temperature

of the SA; and
• Timemax: SA execution time limit.

1) Neighborhood Structures: In order to search for better
solutions, SA has the characteristic of exploring the neighbor-
hood in an iterative way, making exchanges between neigh-
bors. In the FJSP context, moves are performed by changing
the assignment (e.g. by moving an operation from one machine
to another), or by changing a sequence (e.g. by shifting an
operation or swapping two operations) [31], [32]. Thus, two
ways of exploring the neighborhood were used: N1 and N2,
which are described below.

a) Neighborhood Structure N1: The strategy used in the
neighborhood structure N1 is based on exchanging positions
between operations on a machine. For this, we randomly select
a machine and then randomly select an operation among the
ones allocated in the machine. Only the first operation on the
selected machine does not enter the raffle. This is due to how
the exchange is performed: when selecting an operation, the
exchange move is always performed with its nearest neighbor
on the left.

In the Figure 1 an N1 exchange move is shown. Initially,
Machine 2 (M2) was randomly selected. M2 processes, in the
following order, the operations O1,1, O2,1, O3,1 and O4,1.
Then, a new raffle is carried out, and the operation O2,1 is
selected. Then the exchange is made with the operation located
to its left. Therefore, the updated sequence of operations
processed in M2 is as follows: O2,1, O1,1, O3,1 and O4,1.

OM2 1,1 O2,1 O3,1 O4,1(a)

(b) OM2 2,1 O1,1 O3,1 O4,1

Fig. 1. Exchange move: N1.

b) Neighborhood Structure N2: The strategy used in
the neighborhood structure N2 is based on exploiting the
flexibility. The method seeks to exchange an operation that
has flexibility from one machine to another. For this, a raffle
is initially realized to select an operation among those with
flexibility. The machine on which the operation is allocated
is identified. Then, randomly select another machine that can
process it and then, exchange the operation from the current
machine to the selected machine. The solution is repaired in
order to maintain its viability.

Figure 2 presents an N2 exchange move. Initially the
operation O2,2 was randomly selected among those that have
flexibility. It was identified that the O2,2 operation is allocated
on the M1 machine. It was found that the O2,2 operation can
be processed alternately in several machines, among which
the machine M2 was randomly selected. In this way the O2,2

operation was exchanged from machine M1 to machine M2.



Algorithm 1: CS Pseudocode for BOFJSP.
input : γ, λ, rmax, T0, Tf , α, SAmax,Timemax, s

1 cluster ← 0; ri ← 0; vi ← 0; ∀i = 1...γ; qtd← 1;
2 listSol[qtd]← s∗ ← s;SAmaxIni ← SAmax;
3 while Time < Timemax do
4 T ← T0;
5 while T > Tf do
6 iter ← 0 ;
7 while iter < SAmax do
8 iter ← iter + 1 ;
9 k ← random[1, 2] ;

10 s
′ ← Nk(s);

11 if f(s
′
) < f(s) then

12 s← s′;
13 if f(s

′
) < f(s∗) then

14 s∗ ← s
′
; listSol[qtd]← s∗; qtd++;

15 end
16 end
17 else

18 s← s
′
, with probability e

−(f(s
′
)−f(s))
T ;

19 end
20 end
21 T ← T × α;
22 if cluster < γ then
23 cluster ++; vcluster ++; ccluster ← s;
24 end
25 else
26 i← armin{i∈{1...γ}}{Di};
27 vi ++; ci ← best(ci, s);
28 if vi = λ then
29 vi ← 1;
30 if ri = rmax then
31 ri ← 0;
32 ci ← N (random[1,2])(ci);
33 end
34 else
35 LocalSearch(ci);
36 if ci improved then
37 ri ← 0;
38 end
39 else
40 ri ++;
41 end
42 end
43 s∗ ← best(s∗, ci);
44 listSol[qtd]← s∗; qtd++;
45 end
46 end
47 end
48 end
49 return listSol

OM2 1,1 O2,1 O3,1 O4,1(a)

(b) OM2 2,1 O1,1 O3,1 O4,1

OM1 2,1 O1,2 O2,2
(a)

OM2 1,1

OM1 2,1 O1,2 O2,2

OM2 1,1 O2,2
(b)

O1,1 O2,1 O2,2
(a)

1Machines

(b)

Operation O1,2

2 1 2

O2,1 O1,1 O2,2

2Machines

Operation O1,2

1 1 2

O1,1 O1,2 O2,1

1Machines

Operation O2,2

2 1 2

Machines

Operation O1,1 O1,2 O2,1 O2,2

1 2 1 1

s1

s2

Fig. 2. Exchange move: N2.

2) Similarity: The objective of this step is to identify which
cluster has its center most similar to the current solution
(line 27 of the Algorithm 1). This similarity is obtained
by calculating the Hamming Distance (Di) [33] to count
the number of positions that the corresponding entries are
different. At the end of the comparison, the solution is assigned
to the cluster that is the least distant and, then, the cluster
volume vi is increased. Next, the solution of the cluster center
is compared with the solution generated by the SA and if the
solution generated by the SA is better, it becomes the center
of the cluster.

Figure 3 presents two distinct solutions s1 and s2. This
structure refers to the order of processing of jobs on the
machines. The solutions differ in the machine that processes
the last job (O2,2). The Hamming distance between the two
solutions is calculated and its value equals one.

O1,1 O1,2 O2,1

1Machine

Operation O2,2

2 1 2

Machine

Operation O1,1 O1,2 O2,1 O2,2

1 2 1 1

s1

s2

Fig. 3. Representation of the Hamming distance calculation between two
solutions s1 and s2: Di(s1, s2) = 1.

3) Local Search: Soon after the CS identifies the promising
areas, a local search (LS) is carried out, in order to refine
the solution. This LS helps in quickly conversion to a local
optimum. As LS was implemented an algorithm based on the
best improvement method [34]. The pseudocode of the LS
is presented in the Algorithm 2. The LS is divided into two
stages. First takes place an intensification in the neighborhood
of the current solution s by changing the sequence of the op-
erations (lines 3-13). Then the flexibility is explored, changing
the assignment of the operations in the current solution s (lines
14-34). At the end of the search, it returns the best solution
found.

4) Selection of non-dominated solutions: After completion
of the CS algorithm, begins the process of selecting the non-
dominated solutions. This process consists of searching in the
solutions vector listSol, with the objective of compare, at each
iteration, the solution si with the other solutions sj , verifying
if si dominates sj . If the solution si is dominated by sj , then



Algorithm 2: Local Search pseudocode.
input : s

1 s∗ ← s′ ← s;
2 i← 1;
3 while i <= m do
4 j ← 2;
5 while j <= nmi

do
6 exchange jobs s′(mi[j]) and s′(mi[j − 1]) ;
7 rebuilds s′ ;
8 if f(s′) < f(s∗) then
9 s∗ ← s′ ;

10 end
11 s′ ← s; j ++;
12 end
13 end
14 k ← 1;
15 while k <= nflex do
16 jflex ← flexJobs[k];
17 i← machine that will be allocated the jflex ;
18 destroy the solution s′ from right to left until the

jflex;
19 insert the jflex in machine i;
20 j ← index of jflex in machine i ;
21 rebuilds s′;
22 if f(s′) < f(s∗) then
23 s∗ ← s′; s← s′;
24 end
25 while j <= nmi

do
26 exchange jobs s′(mi[j]) and s′(mi[j − 1]) ;
27 rebuilds s′ ;
28 if f(s′) < f(s∗) then
29 s∗ ← s′;
30 end
31 s′ ← s; j ++;
32 end
33 k ++;
34 end
35 return s∗

si is removed from the vector. The pseudocode for selecting
the non-dominated solutions is described in the Algorithm 3.

IV. COMPUTATIONAL EXPERIMENTS

A. Experimental setup

The experiments were conducted on a computer with Intel
Core i5 750 2.67 GHz processor, 8GB of RAM and operating
system Windows 7. The algorithm was implemented in C++
language and compiled with Visual C++ compiler.

The values for the CS and SA parameters were empirically
defined and adjusted according to the results obtained in
the experiments. The combination of parameters and their
respective values are set out in Table I.

Tests were performed considering instances of different
complexity: mk01, mk05 and mk10. The stopping criterion

Algorithm 3: Pseudocode of the selection of the non-
dominated solutions.
input : listSol, qtd

1 s∗ ← s′ ← s;
2 i← 1;
3 while i < qtdm do
4 j ← i+ 1;
5 while j <= qtd do
6 if dominates(listSol[i], listSol[j]) then
7 listSol[j]← listSol[qtd];
8 qtd← qtd− 1; j ← j − 1;
9 end

10 else
11 if dominates(listSol[j], listSol[i]) then
12 listSol[i]← listSol[qtd];
13 qtd← qtd− 1; j ← i;
14 end
15 end
16 j ← i+ 1;
17 end
18 end

TABLE I
COMBINATION OF VALUES USED IN PARAMETER CALIBRATION.

SA
Experiment 1 2 3 4 5 6
SAmax 1000 3000 5000 8000 10000 120000
α 0.95 0.96 0.97 0.975 0.98 0.985
T0 100 200 400 600 800 1000
Tc 0.001 0.0015 0.0018 0.0019 0.0011 0.0112

CS
γ 5 10 15 20 25 30
λ 5 10 15 20 25 30
rmax 1 4 6 8 10 12

was set as 180 seconds without the algorithm presenting new
improvement in the solution. At the end of the tests, the
combination of parameters that obtained the best results was
experiment number 3 of Table I.

B. Computational results of the CS for FJSP

To evaluate the CS, it was applied in the BRdata [26]
instance set, and also to the set of proposed instances. For the
BRdata set the CS was executed 5 times for each instance.
To analyze the efficiency of the algorithm, in Table II, a
comparison is made with the best values obtained by the
Simmulated Annealig Partial Controlled (SAPC) [14] and the
Scatter Search with Path-Relinking (SSPR) [15], considering
the classical criterion of minimize the makespan. Table II
is described below: The first column lists the names of the
instances, followed by their characteristics (number of jobs ×
number of machines); The other columns list the best values
found by each algorithm, followed by the time, in seconds,
necessary to find the solution. The best makespan values
obtained are indicated in bold.



TABLE II
COMPARISON OF THE CS RESULTS WITH THE LITERATURE CONSIDERING

THE CRITERION MINIMIZE THE MAKESPAN.

I |J | × |M | SAPC T(s) SSPR T(s) CS T(s)
Mk01 10× 6 40 3200 40 11 40 1
Mk02 10× 6 28 4600 26 15 26 28
Mk03 15× 8 216 6786 204 24 204 2
Mk04 15× 8 60 5467 60 19 60 7
Mk05 15× 4 168 6781 172 57 173 38
Mk06 10× 15 59 3783 57 40 58 33
Mk07 20× 5 147 7526 139 84 140 110
Mk08 20× 10 524 8792 523 83 523 4
Mk09 20× 10 307 4563 307 52 307 7
Mk10 20× 15 197 7865 196 94 200 189
Mean 174.6 5936.3 172.4 47.9 173.1 41.9

When analyzing the Table II, it can be seen that the
metaheuristic CS proposed in this work found the best known
solution for six of the ten instances considered. For instances
in which CS did not found the best results, it obtained a very
close value, which demonstrates the quality of the results.
When analyzing the average time to obtain the solutions, it
is noticed that the CS proved to be very efficient. However it
is important to emphasize that this is a comparison in which
the algorithms were performed in computers with different
configurations, so a direct comparison becomes limited.

C. Computational results of the CS for BOFJSP

The CS results for the BOFJSP are subdivided into two
sets of instances. The results of the first instance set, which
considers the parameter β1, are listed in Table III. The
results generated from the set of instances that considers
the parameter β2 are shown in Table IV. Both Tables are
presented as follows. The first column indicates the name of
the instance; the second column shows the number of non-
dominated solutions (#NDS) found; and, the MK and TT
columns refer to the respective makespan values and total
tardiness of the non-dominated solutions found.

From the Tables III and IV it is verified that the CS obtained
a total of 94 non-dominated solutions for the 20 considered
instances. It can be seen that the increase in parameter value
β2 in relation to the parameter β1 interfered with the results.
The instances generated from the parameter β1 obtained better
results, that is, 6 non-dominated solutions more (12% better),
and lower mean values of the objective functions, being 3 %
better in the makespan criterion and 19% better in the total
tardiness criterion.

The Pareto frontier graph was generated considering the
results of the Instance Mk10-β1, which is shown in Figure 4.
A set of non-dominated solutions was obtained from the set
of solutions generated by CS. This perspective allows the
decision-maker to more comprehensively assess the impact of
each criterion in the solution.

V. CONCLUSIONS

The present study addressed the Flexible Job Shop Schedul-
ing in a Bi-Objective way (BOFJSP). The model used is based
on an adaptation of the models proposed by Özgüven et al.

TABLE III
NON-DOMINATED SOLUTIONS FOR THE PROPOSED SET OF INSTANCES

BASED ON β1 .

I #NDS MK TT
Mk01-β1 4 40 319

41 245
42 224
43 218

Mk02-β1 3 26 167
31 155
32 133

Mk03-β1 3 204 1592
221 1589
223 1584

Mk04-β1 6 60 683
69 602
70 573
72 534
73 532
81 518

Mk05-β1 5 173 2233
184 1894
187 1746
189 1569
191 1545

Mk06-β1 3 59 492
67 471
68 453

Mk07-β1 6 140 2251
141 2199
142 2183
158 1534
162 1399
165 1388

Mk08-β1 3 523 6022
526 5976
536 5876

Mk09-β1 9 307 5486
308 5480
320 4265
329 4113
330 4112
333 4051
344 4017
345 4003
346 3917

Mk10-β1 8 200 3525
201 3517
202 3485
227 3183
228 3118
238 3081
239 3068
242 3060

Mean 5.0 193.4 2287.6

[25] and Melo and Ronconi [5], considering two criteria in
the objective function, to minimize the makespan and the total
tardiness of jobs, simultaneously.

An algorithm based on the metaheuristic Clustering Search
(CS) was implemented to solve the BOFJSP. CS is a hybrid
algorithm that combines a solutions-generating metaheuristic
and a clustering process. The Simulated Annealing metaheuris-
tic was used as solution generator method for the proposed CS.

The results obtained by the CS considering the makespan
criterion were competitive when compared to the literature,
finding the best solution for 6 of 10 classic problems consid-



TABLE IV
NON-DOMINATED SOLUTIONS FOR THE PROPOSED SET OF INSTANCES

BASED ON β2 .

I #NDS MK TT
Mk01-β2 3 40 210

42 147
43 139

Mk02-β2 3 26 28
28 10
29 9

Mk03-β2 3 204 1134
207 1130
221 1117

Mk04-β2 4 60 604
61 579
70 414
71 378

Mk05-β2 8 173 2190
174 2151
176 2135
177 2106
182 1540
186 1523
187 1393
190 1387

Mk06-β2 4 59 338
63 311
67 307
68 283

Mk07-β2 6 140 1699
142 1667
153 976
154 884
156 866
169 845

Mk08-β2 4 523 6066
524 5917
527 5894
528 5468

Mk09-β2 4 307 4881
308 4874
323 3402
326 3377

Mk10-β2 5 202 2866
229 2532
233 2498
236 2468
237 2348

Mean 4.4 186.8 1843.0

ered. For the bi-objective version of the FJSP, the CS algorithm
found a total of 94 non-dominated solutions in a set of 20
proposed instances, which demonstrates its ability to provide
good solutions to aid in the decision-making process in the
industries.
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[34] P. Hansen and N. Mladenović, “First vs. best improvement: An empirical
study,” Discrete Applied Mathematics, vol. 154, no. 5, pp. 802 – 817,
2006, iV ALIO/EURO Workshop on Applied Combinatorial Optimiza-
tion.




