
A hybrid iterated local search metaheuristic for the
flexible job shop scheduling problem

Dayan de C. Bissoli
Graduate School of Computer Science (PPGI)

Federal University of Espı́rito Santo (UFES)
Vitória, Brazil

dayan.bissoli@ufes.br

André R. S. Amaral
Graduate School of Computer Science (PPGI)

Federal University of Espı́rito Santo (UFES)
Vitória, Brazil

amaral@inf.ufes.br

Abstract—In the flexible job shop scheduling problem (FJSP)
we have a set of jobs and a set of machines. A job is characterized
by a set of operations that must be processed in a predetermined
order. Each operation can be processed in a specific set of
machines and each of these machines can process at most one
operation at a time, respecting the restriction that before starting
a new operation, the current one must be finished. Scheduling
is an assignment of operations at time intervals on machines.
The classic objective of the FJSP is to find a schedule that
minimizes the completion time of the jobs, called makespan.
Considering that the FJSP is an NP-hard problem, solution
methods based on metaheuristics become a good alternative, since
they aim to explore the space of solutions in an intelligent way,
obtaining high-quality but not necessarily optimal solutions at a
reduced computational cost. Thus, to solve the FJSP, this article
describes a hybrid iterated local search (HILS) algorithm, which
uses the simulated annealing (SA) metaheuristic as local search.
Computational experiments with a standard set of instances of
the problem indicated that the proposed HILS implementation is
robust and competitive when compared with the best algorithms
of the literature.

Index Terms—flexible job shop scheduling, hybrid metaheuris-
tic, iterated local search, simulated annealing

I. INTRODUCTION

Scheduling is one of the most important problems in pro-
duction planning and control systems. The classical job shop
scheduling problem (JSP) is one of the most difficult problems
in this area. The JSP aims to schedule a set of jobs by means of
a set of machines so as to optimize some objective function
(OF). Each job consists of a sequence of operations, which
must be processed uninterruptedly on specific machines [1]–
[3].

When considering real cases, the JSP has the limitation that
each operation can only be processed on a single machine.
Therefore, an extension called flexible job shop scheduling
problem (FJSP) arises, in which it is possible that an operation
of a given job be processed in alternative machines. Thus, in
addition to having the characteristic scheduling problem (JSP),
the FJSP also has a routing sub-problem in which one has to
select an appropriate machine among those available to process
each operation [4], [5].

Figure 1 shows an example of a productive environment
based on the FJSP, where the arrows indicate the possible
paths of the jobs through the machines, thus, illustrating the

alternatives for processing the operations. The assignment of
each operation to an alternative machine implies finding for
each job a path which starts to the left of the figure and ends
to the right. In addition to defining the assignments, it is still
necessary to determine the sequences of the operations to be
processed in each machine. The description of the environment
represented in Figure 1 is intended to clarify how the FJSP
jobs can go through alternative ways through the machines:

• Job 1 has 4 operations and its first operation can be
processed alternately on machines 1 or 2. The second
operation of job 1 must be processed on the machine
1. In this way, if the first operation is also processed
on machine 1, re-circulation occurs. The third operation
of job 1 must be performed on machine 3 and the last
operation on machine 4.

• Job 2 has 3 operations, with only the second one having
processing alternatives, machines 3 or 4.

• Job 3 also has 3 operations and its second operation can
be processed either on machine 2 or machine 3.

MACHINE 01

MACHINE 02

MACHINE 03 MACHINE 04

Job 1 Job 2 Job 3

Fig. 1. Representation of a FJSP.

Because the FJSP is an NP-hard problem, the application of
exact methods becomes limited [6]. In this way, in this work in
order to solve the FJSP, considering makespan as the objective
function, we implemented a hybrid algorithm (HILS) based on
iterated local search (ILS) and using simulated annealing (SA)
as a local search method. Computational experiments with a



standard set of instances for the problem indicated that the
proposed implementation is efficient and provides high-quality
solutions to the FJSP.

This study is organized as follows. The next section presents
the related literature. Next, the problem modeling and the
proposed metaheuristic are described. Then, computational
experiments are reported followed by the conclusions.

II. RELATED LITERATURE

The FJSP was proposed by Brucker and Schlie [7], who
developed an algorithm, which solves an instance with two
machines in polynomial time. Since then, several approaches
have been proposed to solve the FJSP. Most of the works
present heuristic and/or metaheuristic approaches [5], [8].
Whereas [9] applied a branch-and-bound algorithm for the
FJSP and compared it with two metaheuristics based on Tabu
Search (TS) and Simulated Annealing (SA). More recently,
Previero [10] has employed two strategies to solve the FJSP.
The first one is an exact Branch-and-Cut (B & C) algorithm
with a variant that aggregates valid inequalities of [11] to a
model proposed by [12]. The second approach is based on
two metaheuristics: Local Branching (LB) and Diversification,
Refining and Tight-refining (DRT). The results were compared
with [12] and with those of the solver Gurobi [13]. In general,
metaheuristic-based approaches performed better in relation to
exact methods and only for 3 out of 59 instances tested did
metaheuristics not obtain the best results.

Considering heuristic methods, [14] have proposed hierar-
chical approaches, in which the assignments of the operations
to machines (routing) and the scheduling of the operations
(scheduling) were studied separately. However, most of the
works in the literature consider the two subproblems simulta-
neously, such as [15] and [16], which applied tabu search to the
FJSP (in [16] a new re-attribution procedure of the operations
was proposed). [17] presented two neighborhood structures to
improve the Tabu Search (TS) algorithm proposed by [16].

An algorithm called Effective Genetic Algorithm (eGA)
was developed by Zhang et al. [18] who adopted different
strategies for selection, crossover and mutation. The compu-
tational results show that the eGA leads to the same or better
computational time and solution quality compared with other
genetic algorithms.

More recently, [19] presented an algorithm based on SA,
with a mechanism of partial scheduling and a cooling mech-
anism, which is a function of the standard deviation. It was
found that SA with the proposed mechanism, called SA-Partial
Controlled (SA-PC), converges faster to good solutions than
without the proposed mechanism.

A metaheuristic that combines Scatter Search and Path-
Relinking with TS (SSPR) was developed by [20] for the FJSP.
The authors sought to combine the diversification character-
istic provided by Scatter Search and Path-Relinking with the
intensifying nature of TS. This method was compared with the
ones in the literature and obtained the best known values for
58 out of 178 considered instances.

Ishikawa et al. [21] implemented a hybrid evolutionary
method called Hierarchical Multi-Space Competitive Dis-
tributed Genetic Algorithm (HmcDGA). The method presented
competitive results, but with a high computational cost. A
Quantum Particle Swarm Optimization algorithm (QPSO) was
proposed by [22] to solve the FJSP. The mutation operator, a
technique that originates from genetic algorithms, is used as a
resource to help avoid premature convergence and to diversify
the solution. Another tool used by QPSO to provide greater
diversity and reduce computational cost in the search is the use
of chaotic numbers (logistic map) instead of random numbers.

Gao et al. [23] proposed a Discrete Harmony Search (DHS)
algorithm for the FJSP with multiple objectives. Posteriorly,
a variation of DHS, called Effective Operations Permutation-
Based Discrete Harmony Search (EOPDHS) was applied to the
FJSP by [24]. The authors used an operator called the Modified
Intelligent Mutation, in order to probabilistically balance the
the maximum working time of the machines during the general
search process. The results were compared with the literature
and indicated that the proposed algorithm is effective for the
solution of the FJSP.

Li et al. [25] developed for the FJSP a Hybrid Artificial Bee
Colony (HABC) algorithm based on the Artificial Bee Colony
(ABC) and TS algorithms. The roulette method and crossover
operator for bees were implemented with the aim of improv-
ing population initialization and exploration, respectively. On
average, the results presented by HABC were better than the
results presented by the other well-known algorithms used in
the comparison.

III. PROBLEM FORMULATION

The FJSP can be formulated as follows [5]: We are given
a set of n jobs to be processed on m machines; the set
of machines is denoted by: M = {M1,M2, ...,Mm}; job i
consists of a sequence of ni operations: (Oi,1, Oi,2, ..., Oi,ni

);
each operation must be executed to finish the job; the execution
of each operation j of a job i(Oi,j) requires a machine
of a given set Mi,j ; the time for the operation Oi,j to be
processed on machine Mk is pi,j,k. The following assumptions
are considered:

1) All machines are available at time t = 0.
2) All jobs are available at time t = 0.
3) Each operation must be processed by only one machine

at a time.
4) There are no precedence constraints between the opera-

tions of different jobs; thus, the jobs are independent of
each other.

5) An operation that started processing can not be inter-
rupted.

6) Transport time between jobs and machines and time to
set up the machine for the processing of a particular
operation are included in the processing time.

The FJSP can be categorized into two subproblems [5]:
1) A routing subproblem in which one has to select an

appropriate machine among those available to process
each operation.



2) A scheduling subproblem in which the operations as-
signments are sequenced on all selected machines to
obtain a feasible scheduling that minimizes a predefined
objective.

Figure 2 illustrates a disjunctive graph of a FJSP with 3 jobs
and 4 machines, which is an abstraction of the productive en-
vironment shown in Figure 1. Vertices 1 through 10 represent
the operations. Vertices 0 and 11 correspond, respectively, to
artificial operations of start and end of the scheduling. The
vertices are connected by conjunctive and disjunctive arcs.
Conjunctive arcs consecutively connect the operations of each
job, indicating the order of precedence to be respected. Arcs
that do not have definite orientation are called disjunctive arcs,
which link operations to be performed on the same machine.
It is noticed that disjunctive arcs for different machines may
be incident on a vertex, which characterizes flexibility.

0

8

1

5

9

2

6

10

3

7

4

11

M1 or M2 M1 M3 M4

M2M1 M4 or M3

M1 M2 or M3 M4

Conjunctive arc:
Disjunctive arc: M1 M2 M3 M4

Fig. 2. Disjunctive graph: representation of a scheduling.

The FSJP graph defines a feasible solution if it is acyclic
[16]. Figure 3 exemplifies a solution obtained by defining the
orientations of the disjunctive arcs of the graph of Figure 2.

0

8

1

5

9

2

6

10

3

7

4

11

M1

M1 M3 M4

M2M1 M3

M1 M2 M4

M4
Conjunctive arc:
Disjunctive arc: M3M2M1

Fig. 3. FJSP solution.

A. Hybrid Iterated Local Search

To solve the FJSP, we developed an algorithm based on
Iterated Local Search (ILS) [26]. The classical ILS considers
that generating new initial solutions through the application
of perturbations in the local optimal solution allows a better
exploration of the neighborhood by local search. Algorithm 1
presents the generic pseudocode of HILS metaheuristic, using
SA as local search.

Algorithm 1: HILS Pseudocode for FJSP.
input : ILSmax

output : Solution s
1 s← InicitalSolution();
2 s← LS1(s);
3 for i← 1 to ILSmax do
4 si ← Pertubation(s, kmax);
5 si ← SimulatedAnnealing(si, SAmax);
6 s← Acceptance (s, si);
7 end

After generating an initial solution s (line 1), HILS applies
a local search to s (line 2), in order to get a local optimum
solution and then starts the iterative process (lines 3-7). Until
the limit of ILSmax iterations is reached, HILS performs a
perturbation in the best solution s, to submit it to a local search
algorithm and then evaluate it by an acceptance criterion. In
this implementation, the parameter ILSmax is determined by
a timeout. These steps are described below.

1) Initial Solution: The construction of the initial solution s
is performed in a random way. The idea is based on randomly
selecting the jobs to be added in s, and when there is flexibility,
randomly choose one machine among the set of alternative
machines.

2) Local Search 1: The Local Search 1 (LS1) implemented
was based on the best improvement method [27] and is
presented in Algorith 2. Its behavior consists of exploring the
neighborhood of the current solution s. The strategy is divided
into two stages (a) and (b):

(a) The first step (lines 3-13) consists of obtaining, at
each iteration, a new solution s′ when performing an
exchange in the processing order of a job of a machine in
the solution s. Thus, when selecting a certain machine,
from the second job of the scheduling, the exchange is
done with its neighbor on the left. After the exchange,
the solution is reconstructed to the right of the exchange
made. Then it is evaluated if there was improvement
in the solution (s′ < s∗). If so, the best solution is
updated (s∗ ← s′). After each exchange, s is returned
(s′ ← s) and the algorithm selects the next job on the
right. The process repeats until all jobs of all machines
of the solution s have been evaluated.

(b) At the end of step (a), the algorithm begins the ex-
ploration of the solution in the neighborhood due to
flexibility (lines 15-34). The idea is for jobs that have
flexibility to make all the possible exchanges between
the alternative machines and for each exchange to ex-
plore the whole neighborhood of the machine inserted
in the solution s′ in the same way as in (a). To do this,
select a job from the flexibility list (line 16), and in
accordance with its alternative machine, the exchange
is effected in s′. Then the solution is reconstructed as
in (a). Subsequently, the algorithm evaluates whether
s′ < s, and if so, the best solution is updated (s∗ ← s′).



At the end of each exchange, the solution is returned
s′ ← s and select the next job flexJobs[k+1] which has
flexibility. This process is repeated until all flexibility is
evaluated.

Algorithm 2: Local Search pseudocode.
input : s

1 s∗ ← s′ ← s;
2 i← 1;
3 while i <= m do
4 j ← 2;
5 while j <= nmi

do
6 exchange jobs s′(mi[j]) and s′(mi[j − 1]) ;
7 rebuilds s′ ;
8 if f(s′) < f(s∗) then
9 s∗ ← s′ ;

10 end
11 s′ ← s; j ++;
12 end
13 end
14 k ← 1;
15 while k <= nflex do
16 jflex ← flexJobs[k];
17 i← machine that will be allocated the jflex ;
18 destroy the solution s′ from right to left until the

jflex;
19 insert the jflex in machine i;
20 j ← index of jflex in machine i ;
21 rebuilds s′;
22 if f(s′) < f(s∗) then
23 s∗ ← s′; s← s′;
24 end
25 while j <= nmi do
26 exchange jobs s′(mi[j]) and s′(mi[j − 1]) ;
27 rebuilds s′ ;
28 if f(s′) < f(s∗) then
29 s∗ ← s′;
30 end
31 s′ ← s; j ++;
32 end
33 k ++;
34 end
35 return s∗

3) Local Search 2 - Simulated Annealing: In the proposed
SA, we use three different ways to explore the neighborhood:
N1, N2 and N3, which are described below. The application
of a local search (LS1) is another variation proposed in the
classic SA.

The pseudocode of the proposed SA as local search is
presented in Algorithm 3. SA starts at a temperature T0, which
is decremented according to the value of α (line 23), running
until it reaches final temperature Tf . At each temperature there
are SAmax iterations (lines 5-17). At each iteration of the SA
a perturbation in the current solution takes place according

to one of the three neighborhoods (N1, N2 or N3), which
are randomly selected, obtaining s′ (lines 7-8). If s′ is better
than the overall solution, update s∗ and apply the local search
LS1 in this solution (lines 9-16). Otherwise, considering a
given priority, the search continues from s′ or s (lines 19-21).
The SAmax parameter was configured based on [19], which
defined the number of SA iterations as I = 2× (m× (n−1)),
being m the number of machines and n the number of jobs.

Algorithm 3: Pseudocode of SA with local search.
input : T0, Tf , α, SAmax, Solution s
output: Solution s∗

1 s∗ ← s;
2 T ← T0;
3 while T > Tf do
4 iter ← 0 ;
5 while iter < SAmax do
6 iter ← iter + 1 ;
7 k ← random[1, 3] ;
8 s′ ← Nk(s);
9 if f(s′) < f(s) then

10 s← s′;
11 if f(s′) < f(s∗) then
12 s∗ ← s′;
13 s′ ← LS1(s’);
14 if f(s′) < f(s∗) then
15 s∗ ← s′;
16 end
17 end
18 end
19 else
20 s← s′, with probability e

−(f(s′)−f(s))
T ;

21 end
22 end
23 T ← T × α;
24 end
25 return s∗

4) Neighborhood Structures: In order to search for better
solutions, SA has the characteristic of exploring the neighbor-
hood in an iterative way, making exchanges between neigh-
bors. In the FJSP context, moves are performed by changing
the routing (e.g. by moving an operation from one machine
to another), or by changing a scheduling (e.g. by shifting an
operation or exchanging two operations) [28], [29]. Thus, three
ways of exploring the neighborhood were used: N1, N2 and
N3, which are described below.

a) Neighborhood Structure N1: The strategy used in the
neighborhood structure N1 is based on exchanging positions
between operations on a machine. For this, we randomly select
a machine and then randomly select an operation among the
ones allocated in the machine. Only the first operation on the
selected machine does not enter the raffle. This is due to how
the exchange is performed: when selecting an operation, the



exchange move is always performed with its nearest neighbor
on the left.

In the Figure 4 an N1 exchange move is shown. Initially,
Machine 2 (M2) was randomly selected. M2 processes, in the
following order, the operations O1,1, O2,1, O3,1 and O4,1.
Then, a new raffle is carried out, and the operation O2,1 is
selected. Then the exchange is made with the operation located
to its left. Therefore, the updated sequence of operations
processed in M2 is as follows: O2,1, O1,1, O3,1 and O4,1.

OM2 1,1 O2,1 O3,1 O4,1(a)

(b) OM2 2,1 O1,1 O3,1 O4,1

Fig. 4. Exchange move: N1.

b) Neighborhood Structure N2: The strategy used in
the neighborhood structure N2 is based on exploiting the
flexibility. The method seeks to exchange an operation that
has flexibility from one machine to another. For this, a raffle
is initially realized to select an operation among those with
flexibility. The machine on which the operation is allocated
is identified. Then, randomly select another machine that can
process it and then, exchange the operation from the current
machine to the selected machine. The solution is repaired, in
order to maintain its viability.

Figure 5 presents an N2 exchange move. Initially the
operation O2,2 was randomly selected among those that have
flexibility. It was identified that the O2,2 operation is allocated
on the M1 machine. It was found that the O2,2 operation can
be processed alternately in several machines, among which
the machine M2 was randomly selected. In this way the O2,2

operation was exchanged from machine M1 to machine M2.

OM2 1,1 O2,1 O3,1 O4,1(a)

(b) OM2 2,1 O1,1 O3,1 O4,1

OM1 2,1 O1,2 O2,2
(a)

OM2 1,1

OM1 2,1 O1,2 O2,2

OM2 1,1 O2,2
(b)

O1,1 O2,1 O2,2
(a)

1Machines

(b)

Operation O1,2

2 1 2

O2,1 O1,1 O2,2

2Machines

Operation O1,2

1 1 2

O1,1 O1,2 O2,1

1Machines

Operation O2,2

2 1 2

Machines

Operation O1,1 O1,2 O2,1 O2,2

1 2 1 1

s1

s2

Fig. 5. Exchange move: N2.

c) Neighborhood Structure N3: The neighborhood struc-
ture N3 is an extension of N1, and is based on performing
the exchange of operations considering the order in which they
were inserted in the solution. For this, an auxiliary vector is
used, which stores the history of the sequence of insertion
of operations in the machines to build the solution. The N3

exchange has the following characteristic:

1) In the data structure that stored the order of insertion
of the operations in the machines, an operation X is
randomly selected;

2) If the operation Y to the left of X does not belong to
the same job as X, then the positions of X and Y are
exchanged in the auxiliary vector;

3) Otherwise, operation Y is designated as operation X.
Return to step 2.

Figure 6 illustrates a N3 move when precedence is violated.
The O2,2 operation was randomly selected. In the auxiliary
structure, which stored the order of insertion of the operations,
a search was made and it was verified that the operation O2,1

is on its left. It has been verified that the operations belong to
the same job and there will be a violation of the precedence
restriction if the exchange was made. In this way, the next
operation to the left of O2,2 was selected: O2,1. As in this
case there is no breach in precedence, the exchange was made
between O2,1 and O1,1.

O1,1 O2,1 O2,2
(a)

1Machine

(b)

Operation O1,2

2 1 2

O2,1 O1,1 O2,2

2Machine

Operation O1,2

1 1 2

Fig. 6. N3 exchange move - when the order of precedence is violated.

5) Perturbation: As perturbation strategy, is performed
kmax exchanges movements in s. In order not to make the
deterministic search, at each iteration a random selection of
N1, N2 or N3. The Algorithm 4 shows the pseudocode of
this step.

Algorithm 4: Perturbation of the HILS to the FJSP.
input : s, kmax

output : Solution s
1 for i← 1 to kmax do
2 k ← random[1, 3] ;
3 s← Nk(s);
4 end

6) Acceptance Criteria: For HILS accept an intermediary
solution si, it must be better than the current solution s. Thus,
it is evaluated whether f(si) < f(s), and if so, the solution
s is discarded and the search continues in si. Otherwise, the
search continues in s.

IV. COMPUTATIONAL EXPERIMENTS

A. Experimental Setup

To illustrate the effectiveness of the HILS algorithm de-
scribed in this article, we consider traditional sets of FJSP
instances found in the literature: HUdata [15], BRdata [14],
DPdata [16] and BCdata [30], providing a total of 178 in-
stances with different sizes and flexibility (the average number
of possible machines per operation).

The HILS algorithm was implemented in C++ language and
compiled with the Visual C++ compiler. The experiments were



run on an Intel Core i5-750 2.67GHz computer with 8GB of
RAM, using Windows 7 Ultimate 64-bit operating system. The
HILS algorithm was applied 10 times for each instance, and
the best and the average value of the makespan value found
was recorded.

In order to calibrate HILS, tests were performed with three
small, medium and large instances (mk01, 10a and mk10,
respectively). The tests were based on the methodology used
in [31], in which some fair values for the parameters are used
based on the development of the SA, then some values are
kept fixed, while others parameters are changed. The Table I
presents the final result of the calibration process.

TABLE I
DEFINITION OF HILS PARAMETERS.

Parameter Defined value Values tested
T0 100 100, 1000 and 10000
α 0.998 -
Tf 0.001 -

SAmax I I , I × 10 and I × 100
kmax I × 0.1 10, I × 0.1 and 100

T imemax 1800 600, 1200 and 1800

In order to achieve greater diversification and intensification
of the search, at the end of each iteration of HILS, the param-
eters SAmax and kmax have their values doubled (limited to
30000). Thus, with each new iteration of HILS, the solution s
will suffer a greater number of perturbations, which tends to
diversify the search, and when necessary, SA will perform a
greater number of iterations at each temperature, intensifying
the search.

B. Computational results and comparison to the literature

Is presented in Table II the summary of the results of HILS
algorithm for the HUdata set of instances, across each of
the three subsets of 43 instances: edata, rdata and vdata. For
each subset of instances, Table II shows the average value
of the best makespan (MS), the average makespan obtained
in ten runs of the algorithms for each instance (Av.) and
the respective average time required for HILS to obtain the
makespan in ten runs, in seconds (T(s)).

TABLE II
SUMMARY OF RESULTS: HUDATA.

TS [17] HILS
Set MS Av. T(s) MS Av. T(s)

HUdata/edata 1003.8 1004.8 2.8 1003.2 1004.9 289.3
HUdata/rdata 909.9 911.4 4.2 909.0 910.7 362.3
HUdata/vdata 895.6 895.9 4.3 895.4 895.7 243.2

Mean 936.4 937.4 3.7 935.9 937.1 298.3

For the HUdata instance set, the results are subdivided into
edata, vdata and rdata. The results of HILS are compared
with those generated by the tabu search (TS) metaheuristic
[17], considering that only in that work, among the ones
evaluated, the results for the HUdata the set of instances are
detailed. The HILS algorithm obtained a new best known
solution (BKS) for several instances. The results of the HILS

algorithm for the instances that generated a new BKS are
reported in Tables III, IV and V. The tables show, for each
instance (I), the best makespan value (MS) obtained in ten
runs of the algorithms, the average of the MS in the 10
executions (Av.), the average time required to get the best MS,
in seconds (T(s)) and the standard deviation (SD). Considering
that the good results generated by TS are in almost two
decades without improvement, even with the FJSP being quite
approached in that period, it is emphasized that were obtained
in HUdata set of instances, 28 new BKS. In order to do so, it
was decided to explore the ILS diversification / intensification
power for a longer period of time, which made it possible to
achieve new BKS.

TABLE III
NEW BKS GENERATED BY HILS FOR THE SET edata.

TS [17] HILS
I MS Av. T(s) SD MS Av. T(s) SD

la24 909 911.6 3.9 2.6 908 909.6 218.5 1.6
la26 1125 1127.0 5.5 3.4 1113 1118.4 1251.6 4.2
la27 1186 1188.8 9.3 3.3 1182 1186.3 633.5 3.2
la28 1149 1149.0 3.4 0.0 1147 1147.7 926.8 0.9
la29 1118 1120.6 5.5 2.9 1116 1118.6 775.7 2.3
la30 1204 1213.2 9.2 6.5 1201 1204.8 776.0 2.4
la31 1539 1540.6 9.6 0.9 1536 1540.9 388.5 2.1
la36 1162 1163.2 8.1 1.8 1160 1165.1 272.4 2.6
la38 1144 1146.6 6.9 2.6 1143 1156.1 1012.9 4.7
la40 1150 1151.6 7.8 2.6 1146 1149.4 1183.1 3.2

TABLE IV
NEW BKS GENERATED BY HILS FOR THE SET rdata.

TS [17] HILS
I MS Av. T(s) SD MS Av. T(s) SD

la03 478 478.2 1.4 0.5 477 477.8 374.5 0.4
la15 1090 1090.0 1.8 0.0 1089 1089.9 73.0 0.3
la22 760 763.6 5.1 2.1 757 760.5 1051.0 2.2
la23 842 845.2 6.5 3.0 840 843.8 640.1 2.9
la24 808 813.8 4.1 3.4 806 810.6 814.5 2.3
la25 791 794.4 3.4 2.2 787 792.9 614.2 2.7
la27 1091 1092.6 7.5 1.3 1088 1090.3 711.4 1.6
la28 1080 1081.6 7.5 1.1 1079 1080.6 517.8 1.0
la29 998 998.6 4.0 1.3 997 998.0 488.2 0.9
la33 1499 1500.0 11.5 1.0 1498 1498.9 322.8 0.3
la37 1077 1080.6 9.5 2.7 1068 1078.5 810.9 5.1
la38 962 968.0 9.3 3.7 958 969.5 671.5 8.1
la40 970 974.0 6.1 3.4 966 970.1 807.7 4.4

TABLE V
NEW BKS GENERATED BY HILS FOR THE SET vdata.

TS [17] HILS
I MS Av. T(s) SD MS Av. T(s) SD

la21 806 807.6 4.7 1.5 805 805.5 846.3 0.7
la22 739 739.8 6.4 0.8 736 736.8 1057.6 0.6
la23 815 816.0 5.7 1.2 813 813.8 1082.1 0.9
la24 777 779.0 6.8 1.6 776 777.0 836.6 0.7
la25 756 756.4 6.3 0.6 754 755.0 1099.0 0.8

Considering the BRdata dataset, the Table VI shows a
comparison of the results of the proposed HILS algorithm with
some recent and relevant works found in the literature: HABC
[25], QPSO [22], DHS [23], best results from [10], SA-PC



[19], HmcDGA [21], SSPR [20], eGA [18] and TS [17]. The
results of the Table VI are presented as follows: column (I)
lists the name of the instances and the next columns indicate
the best makespan values found by each method. At the end
of the Table VI the general mean of the best makespan values
of each method is presented, as well as the number of times
each method reached the best known solution (#BKS). The
BKS values for each instance are bolded.

When analyzing the Table VI, we realize that no algorithm
reaches the BKS for each instance. The SSPR [20] has a
slightly better performance, obtaining the best average value
of the makespan and reaching 8 BKS for 10 instances. On the
other hand, Previero [10] presented the highest mean, 6.5%
worse than SSPR, and reached only 3 BKS. The proposed
HILS reached 6 of 10 BKS, with a deviation of only 0.17%
of the mean result of the SSPR. However, when analyzing
the general mean of each algorithm, it is verified that its
performances are very close.

The results of the HILS algorithm for the DPdata set are
compared with the literature and are presented in Table VII. It
should be noted that not all references run tests on the DPdata
dataset and therefore such references are not listed in the Table
VII. It is important to note that no algorithm always reaches
a BKS. The eGA algorithm [18] obtained the best average
of the best values achieved in the set of DPdata instances.
The proposed HILS algorithm obtained only one BKS, but
presented a deviation of only 0.93% of the mean obtained by
the eGA.

Table VIII presents the results of the proposed algorithms
for the BCdata set. A comparison is made with the best results
from Previero [10], SSPR [20], eGA [18] and TS [17]. As for
the set DPdata, not all references conducted experiments with
set BCdata. On average, the results of the algorithms in this
comparison are very close. The SSPR obtained the best results,
reaching 20 of the 21 BKS and the best average value. The
HILS algorithm presented the same number of BKSs as eGA
and TS, which on average presented slightly better values.

The Tables VI to VIII presented only the best makespan
values found by the algorithms for each instance for the reason
that the works present different methodologies of presentation
of the results. In this way, as the intention is to present a
broad comparison between well known algorithms found in
the literature, we opted for this presentation format.

The detailed results of the HILS algorithm for the data sets
BRdata, DPdata and BCdata are shown, respectively, in the
Tables IX, X and XI. For each instance (I), the tables show the
best makespan value (MS) found in 10 executions, followed
by the average value of MS (Av.), the average computational
time, in seconds (T(s)) and the standard deviation (SD) of the
MS values obtained in the ten executions of the algorithm.

V. CONCLUSIONS

This study considers the flexible job shop scheduling prob-
lem (FJSP) and presents a hybrid iterated local search algo-
rithm, which uses the simulated annealing metaheuristic as
local search (HILS).

To evaluate the performance of the HILS, an extensive set
of instances obtained from the literature was used and the
results were compared with those of the best algorithms in
the literature. The computational experiments showed that the
proposed HILS algorithm is competitive when compared to
the literature. In particular, HILS was able to improve the
best known solution (BKS) for 28 of the 178 FJSP instances
considered.

ACKNOWLEDGMENT

The first author acknowledges support of FAPES (Espı́rito
Santo Research Foundation), Grant 68199325/2014.

REFERENCES

[1] M. Laguna and R. Marti, “Grasp and path relinking for 2-layer straight
line crossing minimization,” INFORMS Journal on Computing, vol. 11,
no. 1, pp. 44–52, 1999.

[2] I. Kacem, S. Hammadi, and P. Borne, “Approach by localization and
multiobjective evolutionary optimization for flexible job-shop scheduling
problems,” IEEE Transactions on Systems, Man, and Cybernetics, Part
C (Applications and Reviews), vol. 32, no. 1, pp. 1–13, Feb 2002.

[3] J.-Q. Li, Q.-K. Pan, and M. F. Tasgetiren, “A discrete artificial bee colony
algorithm for the multi-objective flexible job-shop scheduling problem
with maintenance activities,” Applied Mathematical Modelling, vol. 38,
no. 3, pp. 1111 – 1132, 2014.

[4] N. B. Ho and J. C. Tay, “Genace: an efficient cultural algorithm for
solving the flexible job-shop problem,” in Proceedings of the 2004
Congress on Evolutionary Computation (IEEE Cat. No.04TH8753),
vol. 2, June 2004, pp. 1759–1766 Vol.2.

[5] I. A. Chaudhry and A. A. Khan, “A research survey: review of
flexible job shop scheduling techniques,” International Transactions in
Operational Research, vol. 23, no. 3, pp. 551–591, 2016. [Online].
Available: http://dx.doi.org/10.1111/itor.12199

[6] M. R. Garey, D. S. Johnson, and R. Sethi, “The complexity
of flowshop and jobshop scheduling,” Mathematics of Operations
Research, vol. 1, no. 2, pp. 117–129, 1976. [Online]. Available:
https://doi.org/10.1287/moor.1.2.117

[7] P. Brucker and R. Schlie, “Job-shop scheduling with multi-purpose
machines,” Computing, vol. 45, no. 4, pp. 369–375, Dec 1990.

[8] D. Cinar, Y. I. Topcu, and J. A. Oliveira, A Taxonomy for the Flexible Job
Shop Scheduling Problem. Cham: Springer International Publishing,
2015, pp. 17–37.

[9] P. Fattahi, M. Saidi Mehrabad, and F. Jolai, “Mathematical modeling and
heuristic approaches to flexible job shop scheduling problems,” Journal
of Intelligent Manufacturing, vol. 18, no. 3, pp. 331–342, Jun 2007.

[10] W. D. Previero, “Estratégias de resolução para o problema de job-
shop flexı́vel,” Ph.D. dissertation, Instituto de Matemática e Estatı́stica,
Universidade de São Paulo, São Paulo, 9 2016, doutorado em Ciência
da Computação.

[11] D. Applegate and W. Cook, “A computational study of the job-shop
scheduling problem,” ORSA Journal on Computing, vol. 3, no. 2, pp.
149–156, 1991. [Online]. Available: https://doi.org/10.1287/ijoc.3.2.149

[12] E. G. Birgin, P. Feofiloff, C. G. Fernandes, E. L. de Melo, M. T. I.
Oshiro, and D. P. Ronconi, “A milp model for an extended version of
the flexible job shop problem,” Optimization Letters, vol. 8, no. 4, pp.
1417–1431, Apr 2014.

[13] GUROBI, Gurobi Optimizer Reference Manual, 2016. [Online].
Available: https://www.gurobi.com

[14] P. Brandimarte, “Routing and scheduling in a flexible job shop by tabu
search,” Annals of Operations Research, vol. 41, no. 3, pp. 157–183,
Sep 1993.

[15] J. Hurink, B. Jurisch, and M. Thole, “Tabu search for the job-
shop scheduling problem with multi-purpose machines,” Operations-
Research-Spektrum, vol. 15, no. 4, pp. 205–215, Dec 1994. [Online].
Available: https://doi.org/10.1007/BF01719451

[16] S. Dauzère-Pérès and J. Paulli, “An integrated approach for modeling
and solving the general multiprocessor job-shop scheduling problem
using tabu search,” Annals of Operations Research, vol. 70, no. 0, pp.
281–306, 1997.



TABLE VI
COMPARISON OF THE HILS RESULTS WITH THE LITERATURE FOR THE SET BRDATA

I HILS EOPDHS HABC QPSO DHS Previero SA-PC HmcDGA SSPR eGA TS
Mk01 40 40 41 37 40 40 40 40 40 40 40
Mk02 26 26 26 26 28 26 28 26 26 26 26
Mk03 204 204 206 204 204 204 216 204 204 204 204
Mk04 60 60 62 60 60 60 60 60 60 60 60
Mk05 173 172 176 173 172 176 168 175 172 173 173
Mk06 58 60 60 64 67 65 59 60 57 58 58
Mk07 139 139 140 139 143 150 147 144 139 144 144
Mk08 523 523 526 523 523 524 524 523 523 523 523
Mk09 307 307 307 307 309 341 307 311 307 307 307
Mk10 197 207 208 205 212 250 197 217 196 198 198
Mean 172.7 173.8 175.2 173.8 175.8 183.6 174.6 176.0 172.4 173.3 173.3
#BKS 6 5 2 7 3 3 3 4 8 5 5

TABLE VII
COMPARISON OF THE HILS RESULTS WITH THE LITERATURE FOR THE SET

DPDATA.

I HILS QPSO Previero SSPR eGA TS
1a 2505 2505 2762 2505 2516 2518
2a 2231 2230 2424 2229 2231 2231
3a 2229 2229 2355 2228 2232 2229
4a 2503 2498 2670 2503 2515 2503
5a 2215 2207 2376 2211 2208 2216
6a 2202 2170 2254 2183 2174 2203
7a 2286 2264 2595 2274 2217 2283
8a 2067 2073 2265 2064 2073 2069
9a 2064 2066 2378 2062 2066 2066
10a 2277 2205 2585 2269 2189 2291
11a 2064 2050 2229 2051 2063 2063
12a 2029 2019 2492 2018 2019 2034
13a 2259 2253 2708 2248 2194 2260
14a 2169 2167 2448 2163 2167 2167
15a 2163 2165 3287 2162 2165 2167
16a 2255 2252 2595 2244 2211 2255
17a 2151 2134 2696 2130 2109 2141
18a 2134 2123 3164 2119 2089 2137

Mean 2211.3 2200.6 2571.3 2203.5 2191.0 2212.9
#BKS 1 5 0 8 6 0

TABLE VIII
COMPARISON OF THE HILS RESULTS WITH THE LITERATURE FOR THE SET

BCDATA.

I HILS Previero SSPR eGA TS
mt10c1 927 927 927 928 928
mt10cc 910 908 908 910 910
mt10x 922 918 918 918 918
mt10xx 918 918 918 918 918

mt10xxx 918 918 918 918 918
mt10xy 906 905 905 906 906
mt10xyz 858 847 847 847 847
setb4c9 914 914 914 919 919
setb4cc 909 907 907 909 909
setb4x 925 925 925 925 925
setb4xx 925 925 925 925 925

setb4xxx 925 925 925 925 925
setb4xy 910 910 910 916 916
setb4xyz 905 902 905 905 905
seti5c12 1174 1174 1170 1174 1174
seti5cc 1136 1136 1135 1136 1136
seti5x 1202 1205 1198 1201 1201

seti5xx 1198 1200 1197 1199 1199
seti5xxx 1203 1200 1194 1197 1197
seti5xy 1136 1136 1135 1136 1136
seti5xyz 1128 1129 1125 1125 1125

Mean 997.6 996.6 995.5 997.0 997.0
#BKS 8 14 20 8 8

TABLE IX
DETAILED HILS RESULTS FOR THE SET BRDATA.

HILS
I MS Av. T(s) SD

Mk01 40 40.0 2.2 0.0
Mk02 26 26.8 30.2 0.4
Mk03 204 204.0 2.6 0.0
Mk04 60 60.1 13.6 0.3
Mk05 173 173.0 115.4 0.0
Mk06 58 59.4 582.4 0.7
Mk07 139 140.3 1119.9 0.5
Mk08 523 523.0 5.1 0.0
Mk09 307 307.0 9.9 0.0
Mk10 197 198.6 1346.3 1.2
Mean 172.7 173.2 322.8 0.3

TABLE X
DETAILED HILS RESULTS FOR THE SET DPDATA.

HILS
I MS Av. T(s) SD

1a 2505 2517.6 906.5 5.1
2a 2231 2234.2 570.2 1.7
3a 2229 2230.0 745.5 0.5
4a 2503 2508.1 745.2 3.8
5a 2215 2221.4 731.3 2.8
6a 2202 2206.4 896.3 2.4
7a 2286 2295.2 1136.2 7.1
8a 2067 2069.5 1250.1 1.8
9a 2064 2066.3 602.3 1.2

10a 2277 2286.3 1480.3 6.9
11a 2064 2065.8 1099.5 1.3
12a 2029 2037.0 1262.0 3.5
13a 2259 2262.6 1111.9 4.0
14a 2169 2171.2 169.7 1.4
15a 2163 2165.6 874.1 1.3
16a 2255 2261.5 1443.6 4.0
17a 2151 2155.8 67.2 3.6
18a 2134 2141.7 828.3 3.6

Mean 2211.3 2216.5 884.5 3.1

[17] M. Mastrolilli and L. M. Gambardella, “Effective neighbourhood func-
tions for the flexible job shop problem,” Journal of Scheduling, vol. 3,
no. 1, pp. 3–20, 2000.

[18] G. Zhang, L. Gao, and Y. Shi, “An effective genetic algorithm for the
flexible job-shop scheduling problem,” Expert Systems with Applica-
tions, vol. 38, no. 4, pp. 3563 – 3573, 2011.

[19] M. A. Cruz-Chávez, M. G. Martı́nez-Rangel, and M. H. Cruz-Rosales,
“Accelerated simulated annealing algorithm applied to the flexible job
shop scheduling problem,” International Transactions in Operational
Research, pp. 1–19, 2015.



TABLE XI
DETAILED HILS RESULTS FOR THE SET BCDATA.

HILS
I MS Av. T(s) SD

mt10c1 927 927.0 24.6 0.0
mt10cc 910 910.0 138.5 0.0
mt10x 922 923.8 702.5 2.1

mt10xx 918 920.1 364.0 3.8
mt10xxx 918 921.5 691.0 4.7
mt10xy 906 907.7 925.7 0.7
mt10xyz 858 858.4 280.6 0.8
setb4c9 914 918.0 395.2 3.7
setb4cc 909 913.6 886.4 3.4
setb4x 925 930.0 404.2 4.3
setb4xx 925 929.0 555.6 3.6

setb4xxx 925 930.6 446.1 4.9
setb4xy 910 918.8 712.6 4.7
setb4xyz 905 908.1 476.5 3.4
seti5c12 1174 1174.6 751.8 1.0
seti5cc 1136 1137.5 934.0 1.3
seti5x 1202 1207.4 870.8 2.7
seti5xx 1198 1208.0 1008.6 4.3

seti5xxx 1203 1207.3 1140.2 2.6
seti5xy 1136 1141.2 848.5 4.4
seti5xyz 1128 1130.3 680.7 2.7

Mean 997.6 1001.1 630.4 2.8

[20] M. A. González, C. R. Vela, and R. Varela, “Scatter search with
path relinking for the flexible job shop scheduling problem,” European
Journal of Operational Research, vol. 245, no. 1, pp. 35 – 45, 2015.

[21] S. Ishikawa, R. Kubota, and K. Horio, “Effective hierarchical opti-
mization by a hierarchical multi-space competitive genetic algorithm
for the flexible job-shop scheduling problem,” Expert Systems with
Applications, vol. 42, no. 24, pp. 9434 – 9440, 2015.

[22] M. R. Singh and S. Mahapatra, “A quantum behaved particle swarm
optimization for flexible job shop scheduling,” Computers & Industrial
Engineering, vol. 93, no. Supplement C, pp. 36 – 44, 2016.

[23] K. Z. Gao, P. N. Suganthan, Q. K. Pan, T. J. Chua, T. X. Cai, and
C. S. Chong, “Discrete harmony search algorithm for flexible job shop
scheduling problem with multiple objectives,” Journal of Intelligent
Manufacturing, vol. 27, no. 2, pp. 363–374, Apr 2016.

[24] M. Gaham, B. Bouzouia, and N. Achour, “An effective operations
permutation-based discrete harmony search approach for the flexible job
shop scheduling problem with makespan criterion,” Applied Intelligence,
Aug 2017.

[25] X. Li, Z. Peng, B. Du, J. Guo, W. Xu, and K. Zhuang, “Hybrid artificial
bee colony algorithm with a rescheduling strategy for solving flexible
job shop scheduling problems,” Computers & Industrial Engineering,
vol. 113, no. Supplement C, pp. 10 – 26, 2017.

[26] H. R. Lourenço, O. C. Martin, and T. Stützle, “Iterated local search,”
in Handbook of Metaheuristics, volume 57 of International Series in
Operations Research and Management Science. Kluwer Academic
Publisher, 2002, pp. 321–353.

[27] P. Hansen and N. Mladenović, “First vs. best improvement: An empirical
study,” Discrete Applied Mathematics, vol. 154, no. 5, pp. 802 – 817,
2006, iV ALIO/EURO Workshop on Applied Combinatorial Optimiza-
tion.

[28] P. Brucker, “The job-shop problem: Old and new challenges,” in in
Proceedings of the MISTA Conference 2007, 2007, pp. 15–22.

[29] P. Brucker and S. Knust, Complex Scheduling, 2nd ed., ser. GOR-
Publications. Springer-Verlag Berlin Heidelberg, 2012.

[30] J. Barnes and J. Chambers, “Flexible job shop scheduling by tabu
search.” 1996, report Series: ORP96-09. Graduate program in operations
research and industrial engineering. The University of Texas at Austin.

[31] G. M. Ribeiro, G. R. Mauri, and L. A. N. Lorena, “A simple and robust
simulated annealing algorithm for scheduling workover rigs on onshore
oil fields,” Computers & Industrial Engineering, vol. 60, no. 4, pp. 519
– 526, 2011.




