
Extending ILUPACK with a GPU version of the
BiCGStab method

José Aliaga, Enrique S. Quintana-Ortı́
Dept. de Ingenierı́a y

Ciencia de los Computadores
Universidad Jaime I

Castellón, Spain
{aliaga,quintana}@icc.uji.es

Ernesto Dufrechou, Pablo Ezzatti
Instituto de Computación (INCO)

Universidad de la República
Montevideo, Uruguay

{edufrechou,pezzatti}@fing.edu.uy

Abstract—The solution of sparse linear systems of large di-
mension is an important stage in problems that span a diverse
range of applications. For this reason, a number of software
packages have been developed, among which ILUPACK stands
out due to its inverse-based multilevel ILU preconditioner with
appealing numerical properties. In this work we extend the
iterative methods available in ILUPACK. Concretely, we develop
a data-parallel implementation of the BiCGStab method for
GPUs that expands the set of ILUPACK-preconditioned solvers
for general linear systems. The experimental evaluation, carried
out in a hardware platform equipped with a high-end multicore
CPU and a Nvidia GPU, shows that our novel proposal reaches
speedups values between 5 and 10× when it is compared with
the CPU counterpart and values of up to 8.2× runtime reduction
over other GPU solvers.

Index Terms—Linear Systems, preconditioning technique, mas-
sively parallel processing

I. INTRODUCTION

The solution of large-scale sparse linear systems is a chal-
lenging task appearing in many engineering and scientific
applications. Examples of this particular type of problem ap-
pear, among others, in the discretization of partial differential
equations (PDEs), quantum physics and circuit simulation [1].
In many of these cases, the linear system itself is the most
computationally-demanding stage, requiring a fast and accu-
rate numerical solver when the coefficient matrix of the system
presents a large dimension [2].

A common numerical approach to tackle large and sparse
linear systems employs Krylov subspace-based methods, in
conjunction with some sort of preconditioning. Approximate
matrix factorizations stand out among a wide variety of
preconditioners, due to the acceleration they provide on the
convergence rate of iterative solvers, specially for problems
derived from discretized elliptical PDEs [1]. Although this
class of preconditioners can be also applied to other problems,
standard ILUs (incomplete LU) are likely to face difficulties
for highly indefinite or ill-conditioned matrices. For this rea-
son, much effort has been dedicated over the years in order
to improve their robustness and numerical stability. A relevant
example is ILUPACK,1 a package for the solution of sparse

1Available at http://ilupack.tu-bs.de.

linear systems via Krylov subspace methods that relies on
an inverse-based multilevel ILU preconditioning technique for
general as well as Hermitian positive definite/indefinite linear
systems [3].

Although interesting from a mathematical perspective, the
computation of ILUPACK’s preconditioner and its application
in the context of an iterative Krylov subspace solver are
expensive procedures, especially for sparse linear systems of
large dimension. Their large computational cost motivated the
design of parallel variants of ILUPACK’s CG method [1],
for symmetric positive definite (s.p.d.) systems, on shared-
memory and message-passing platforms [4], [5], [6]. In order
to expose task-parallelism, these implementations calculate
a preconditioner which differs from that computed by the
original (sequential) ILUPACK, offering distinct convergence
rates (though not necessarily slower for the parallel versions).
Moreover, the task-parallel variants usually require more
floating-point arithmetic operations (flops) than the original
ILUPACK, with the overhead cost rapidly growing with the
degree of task-parallelism that is exposed [4].

In [6] we also introduced a version of ILUPACK’s CG
method, for s.p.d. systems that exploits the data-parallelism
intrinsic to the most expensive kernels, off-loading their ex-
ecution to a graphics processing unit (GPU). Compared with
the task-parallel solvers, the data-parallel version preserves
the computational cost, semantics, and convergence rate of
the sequential ILUPACK. Additionally, in [14] we recently
followed a similar approach to accelerate ILUPACK’s solvers
for general and symmetric indefinite linear systems on GPUs,
providing data-parallel implementations of GMRES, BiCG
and SQMR [1].

This work intends to expand the family of Krylov subspace
iterative methods for sparse general linear systems included
in ILUPACK by proposing a data-parallel version of the
Bi-Conjugate Gradient Stabilized Method [8] (BiCGStab).
To accomplish this, we first develop a CPU version of the
solver to then produce a variant that runs entirely on the
graphics accelerator. For this reason, in the new solver we
depart from the reverse-communication scheme followed by
our existing implementations of GMRES and BiCG. The
experimental analysis compares the performance of the new

solver with our previous developments using a set of real
problems extracted from the University of Florida (Sparse)
Matrix Collection (UFMC) [9], and test problems of scalable
size derived from the discretization of PDEs. This comparison
shows an improvement of the speed-up values that ranges from
1.3 to 3.0×. On the other hand, when the CPU and GPU
version of the BiCGStab method are compared, the differences
between their runtime are in range of 5 and 10×.

The rest of the paper is structured as follows. In Section II
we review the iterative solvers integrated into ILUPACK and
the use of GPUs to accelerate them. This is followed by the
description of our proposal in Section III, and the experimental
evaluation performed in Section IV. Finally, a few remarks and
some lines of future work close the paper in Section V.

II. ACCELERATED SOLUTION OF SPARSE LINEAR
SYSTEMS WITH ILUPACK

Consider the linear system Ax = b, where the n × n
coefficient matrix A is large and sparse, and both the right-
hand side vector b and the sought-after solution x contain
n elements. ILUPACK provides software to calculate an
inverse-based multilevel ILU preconditioner M , of dimension
n× n, which can be applied to accelerate the convergence of
Krylov subspace-based iterative solvers. The package includes
numerical methods for different matrix types, precisions, and
arithmetic, covering Hermitian positive definite/indefinite and
general real and complex matrices. When using an iterative
solver enhanced with the ILUPACK preconditioner, the most
demanding task from the computational point of view is the
application of the preconditioner, which occurs (at least once)
per iteration of the solver.

A. Computation of the Preconditioner

Let us focus on the real case, where A,M ∈ Rn×n and
x, b ∈ Rn. The computation of ILUPACK’s preconditioner
proceeds following three steps:

1) Initially, a preprocessing stage scales A by a diagonal
matrix D̃ ∈ Rn×n and reorders the result by a permu-
tation P̃ ∈ Rn×n: Â = P̃T D̃AD̃P̃ .

2) An incomplete factorization next computes Â ≈ LDU ,
where L,UT ∈ Rn×n are unit lower triangular factors
and D ∈ Rn×n is (block) diagonal. In some detail,
Â is processed in this stage to obtain the partial ILU
factorization:

P̂T ÂP̂ ≡
(
B F
G C

)
= LDU + E

=

(
LB 0
LG I

)(
DB 0
0 Sc

)(
UB UF

0 I

)
+ E.

(1)
Here, P̂ ∈ Rn×n is a permutation matrix,
‖L−1‖, ‖U−1‖ / κ, with κ a user-predefined threshold,
E contains the elements “dropped” during the ILU
factorization, and SC represents the approximate Schur
complement assembled from the “rejected” rows and
columns.

3) The process is then restarted with A = Sc, (until Sc is
void or “dense enough” to be handled by a dense solver,)
yielding a multilevel approach.

At level l, the multilevel preconditioner can be recursively
expressed as

Ml ≈ D̃−1P̃ P̂
(
LB 0
LG I

)(
DB 0
0 Ml+1

)(
UB UF

0 I

)
P̂T P̃T D̃−1,

(2)
where LB , DB and UB are blocks of the factors of the multi-
level LDU preconditioner (with LB , UT

B unit lower triangular
and DB diagonal); and Ml+1 stands for the preconditioner
computed at level l + 1.

A detailed explanation of each stage of the process can be
found in [3].

B. Application of the Preconditioner during the Iterative Solve

For the review of this operation, we consider its application
at level l, e.g. to compute z := M−1l r. This requires solving
the system of linear equations:(

LB 0
LG I

)(
DB 0
0 Ml+1

)(
UB UF

0 I

)
P̂T P̃T D̃−1z = P̂T P̃T D̃r.

(3)
Breaking down (3), we first recognize two transformations

to the residual vector, r̂ := P̂T P̃T (D̃r), before the following
block system is defined:(

LB 0
LG I

)(
DB 0
0 Ml+1

)(
UB UF

0 I

)
w = r̂. (4)

This is then solved for w(= P̂T P̃T D̃−1z) in three steps,(
LB 0
LG I

)
y = r̂,

(
DB 0
0 Ml+1

)
x = y,

(
UB UF

0 I

)
w = x,

(5)
where the recursion is defined in the second one.

In turn, the expressions in (5) also need to be solved in two
steps. Assuming y and r̂ are split conformally with the factors,
for the expression on the left of (5) we have(

LB 0
LG I

)(
yB
yC

)
=

(
r̂B
r̂C

)
⇒

LByB = r̂B , yC := r̂C − LGyB .

(6)

Partitioning the vectors as earlier, the expression in the middle
of (5) involves the diagonal-matrix multiplication and the
effective recursion:(

DB 0
0 Ml+1

)(
xB
xC

)
=

(
yB
yC

)
⇒

xB := D−1B yB , xC := M−1l+1yC .

(7)

In the recursion base step, Ml+1 is void and only xB has
to be computed. Finally, after an analogous partitioning, the
expression on the right of (5) can be reformulated as(

UB UF

0 I

)(
wB

wC

)
=

(
xB
xC

)
⇒

wC := xC , UBwB = xB − UFwC ,

(8)

where z is simply obtained from z := D̃(P̃ (P̂w)).
To save memory, ILUPACK discards the off-diagonal blocks

LG and UF once the level of the preconditioner is calculated,
keeping only the rectangular matrices G and F , which are
often much sparser. Thus, (6) is changed as:

LG = GU−1B D−1B ⇒
yC := r̂C −GU−1B D−1B yB = r̂C −GU−1B D−1B L−1B r̂B ,

(9)
while the expressions related to (8) are modified as

UF = D−1B L−1B F ⇒
UBwB = D−1B yB −D−1B L−1B FwC .

(10)

Operating with care, over the previous expressions, the final
expressions are thus obtained,

LBDBUBsB = r̂B , LBDBUB ŝB = FwC ⇒
yC := r̂C −GsB , wB := sB − ŝB

(11)
To summarize the previous description of the method, the
application of the preconditioner requires, at each level, two
SPMV, solving two linear systems with coefficient matrix of
the form LDU , and a few vector kernels.

C. Data-Parallel Variants of ILUPACK

ILUPACK has proved to be highly effective at reducing
the number of iterations necessary for Krylov subspace-based
iterative methods to converge to an acceptable solution for
many sparse linear systems [3], [10], [11]. The primary goal
of our efforts is to reduce the cost of the iteration, by exploiting
the data-level parallelism present in the application of the
preconditioner and remaining operations of the solver using
GPUs. In this sense, this work expands the set of GPU-aware
implementations of iterative methods for general systems
offered by ILUPACK, by adding a data-parallel version of
BiCGStab. Let us first review the data-parallel implementa-
tions of ILUPACK that were already presented in [7], before
we introduce our new contributions in the remaining sections
of the paper.

For many of the systems that we evaluated in [7], the
computational cost required to apply the preconditioner was
dominated by the sparse triangular system solves (SPTRSV)
and the SPMV appearing in (11). We relied on NVIDIA
CUSPARSE to perform these operations in the GPU, since
this library provides efficient implementations of the necessary
kernels and supports the most common sparse matrix formats.
The rest of the operations are mainly vector operations:
diagonal matrix scalings and reorderings, which gained mild
importance only for highly sparse matrices of large dimension,
and were accelerated in our codes via ad-hoc CUDA kernels.

The use of CUSPARSE forced us to adapt the sparse
storage layouts employed by ILUPACK to those supported
by CUSPARSE. The data structure that ILUPACK employs to
maintain the multilevel preconditioner is essentially a linked
list that contains the information computed at each level. This
data includes, for each level, the pointers to the submatrices

that form the ILU factorization (the submatrix that comprises
the LDU -factored of B, and the G and F rectangular matri-
ces), pointers to the vectors involved in the permutations and
diagonal scalings (D̃, P̃ , and P̂), and some metadata (sizes,
types of matrix, etc.); see subsection II-A. ILUPACK stores
the factorization of B in a modified CSR format [12], with
the LB and UT

B factors kept, by columns, in an interlaced
manner. Concretely, only the strict lower triangular part of LB

is recorded, as it is unit diagonal; furthermore, the diagonal
entries contain the inverses of those of UB .

In order to invoke CUSPARSE, we thus needed to split
each factorization into separate L̄ and Ū factors, stored by
rows in the conventional CSR format. This transformation was
done only once, during the calculation of each level of the
preconditioner, and occurred entirely in the CPU. After that,
the L̄ and Ū factors in CSR format were transferred to the
GPU, where the triangular systems involved in the precon-
ditioner application were solved via two consecutive calls to
cusparseDcsrsv_solve. The analysis phase required by
the CUSPARSE solver, which gathers information about the
data dependencies and aggregates the rows of the triangular
matrix into levels, was executed only once for each level of
the preconditioner, and it ran asynchronously with respect to
the host CPU.

Considering the computation of the SPMV in the GPU, G
and F were also transferred to the device during the compu-
tation of the preconditioner. As these matrices are maintained
in ILUPACK using the CSR format, no reorganization was
needed prior to the invocation of the CUSPARSE kernel for
SPMV.

In addition to the application of the preconditioner, we
further enhanced the iterative solvers by off-loading the SPMV
involving A to the GPU. For this purpose, the coefficient
matrix was transferred to the GPU memory before the iterative
solve commences, residing there until completion. The coeffi-
cient matrix A was stored in CSR format, and the SPMV was
computed via the kernel for this purpose in CUSPARSE. The
BiCG solver also involves a SPMV with the transposed matrix
AT , which was computed by calling the kernel in CUSPARSE
with the transposed parameter set. As in the case of the
products that involve FT and GT , a performance improvement
could be obtained by explicitly storing AT in the accelerator,
at the cost of a considerable memory overhead.

III. IMPLEMENTATION OF GPU-BASED BICGSTAB

The BiCGStab method [8] is one of the most widespread
iterative solvers for general linear systems [1] for which,
unfortunately, there is no support in the current distribution
of ILUPACK.

The implementation of all solvers in ILUPACK follows a
reverse communication approach, in which the backbone of
the method is performed by a serial routine that is repeatedly
called. This routine is re-entered at different points, and sets
flags before exiting so that operations such as SPMV, the
application of the preconditioner, and convergence checks can
be then performed by external routines implemented by the

Operation kernel
A→M Compute preconditioner
Initialize x0, r0, r̂0, v0, ρ0, α0, ω0, τ0; k := 0
while (τk > τmax)

ρk+1 = (r̂0, rk) DOT product
β = (ρk+1/ρk)(α/ωk)
pk+1 = rk + β(pk − ωkvk) 2×AXPY
vk+1 = M−1Apk+1 SPMV + apply prec.
α = ρk+1/(r̂0, vk+1) DOT product
s = rk − αvk+1 AXPY
t = M−1As SPMV + apply prec.
ωk+1 = (t, s)/(t, t) 2×DOT product
xk+1 = xk + αpk − ωk+1s 2×AXPY
rk+1 = s− ωk+1t AXPY
τk+1 :=‖ rk+1 ‖2 DOT product
k := k + 1

end while
Fig. 1. Algorithmic formulation of the preconditioned BiCGStab method. τmax is an upper bound on the relative residual for the computed approximation
to the solution.

user. This is aligned with the decision adopted by ILUPACK
to employ SPARSKIT2 as the backbone of the solvers. The
rationale behind this modus operandi is that the implementa-
tion of the SPMV and the application of the preconditioner
can vary according to the characteristics of the coefficients
matrix of the linear system, so it makes sense to provide as
much flexibility as possible. In fact, special classes of sparse
matrices, like band matrices, can greatly benefit from custom
implementations of these kernels, and there are even cases,
such as Toeplitz matrices, where the coefficents do not need
to be stored explicitly and the SPMV is performed by using
closed form expressions.

Despite of the flexibility provided regarding the most com-
putationally important kernels, SPARSKIT solvers have the
disadvantage of performing the backbone of the method, along
with most vector operations, in serial Fortran code. Sticking
to this model when incorporating GPU implementations of the
SPMV and the SPTRSV means having to transfer data to and
from the GPU.

As BiCGStab can be expressed and efficiently implemented
in terms of BLAS operations and the SPMV and SPTRSV
kernels, and our main motivation is that of incorporating an
implementation of BiCGStab that can exploit the benefits of
ILUPACK multilevel preconditioner, we can safely sacrifice
the flexibility provided by the reverse communication strategy
and depart from that model. In this sense, our implementation
encapsulates the method in one monolithic procedure that
receives as inputs, among other parameters, the right-hand
side vector, a tolerance and the initial guess, and produces
the approximate solution to the system in response.

The implementation offloads the entire solver to the GPU,
and is based on the algorithm described in Figure 1. The
right hand side of the system is transferred to the GPU before

2Available at http://www-users.cs.umn.edu/∼saad/software/SPARSKIT/.

the iteration commences and the solution vector is sent back
to the CPU memory once the iteration is completed. This
strategy allows to minimize the required data transferences,
which is especially important in sparse algebra kernels, where
the computational effort dedicated to data transferences is in
general large in comparison with the one corresponding to
actual floating point operations

Following the main ideas in [13] we rely on CUSPARSE li-
brary to perform the SPMV and the sparse triangular solvers
included in the preconditioner. For the vector operations we
also rely on CUBLAS library. Although more efficient imple-
mentations of these kernels are sometimes possible, relying
on a mature and continuously improved library has several
advantages as, for example, adapting to new GPU technologies
without having to modify the code.

With the purpose of counting with a baseline version to
compare our data-parallel implementation, we developed a
CPU version of the algorithm. In particular, our CPU imple-
mentation of BiCGStab relies on a subset of the BLAS routines
distributed with ILUPACK and ad-hoc SPMV and SPTRSV
kernels. However, a different implementation of BLAS as well
as other implementation of the sparse kernels could be used
without any major modification.

IV. EXPERIMENTAL EVALUATION

In this section we initially describe the test cases and
hardware platform employed in the experimental evaluation,
next we briefly present the data parallel versions with which
this proposal will be compared and, finally we present and
analyze the experimental results.

A. Experimental Setup

All experiments in this paper were carried out in IEEE
double-precision arithmetic, using a server equipped with an
Intel(R) Xeon(R) CPU E5-2620 v2 (six cores at 2.10GHz), and

128 GB of DDR3 RAM memory. The platform also contains a
NVIDIA “Kepler” K40m GPUs, each with 2,880 CUDA cores
and 12 GB of GDDR5 RAM.

The CPU codes were compiled with the Intel(R) Parallel
Studio 2016 (update 3) with the -O3 flag set. The GPU
compiler and the CUSPARSE library were those in version
6.5 of the CUDA Toolkit. In all cases, the total execution
time includes the cost of transferring the problem data and
final result between the main memory and the GPU.

B. Test Cases

1) Laplacian: We considered the Laplacian equation ∆u =
f in a 3D unit cube Ω = [0, 1]3 with Dirichlet boundary
conditions u = g on δΩ. The discretization consists in a
uniform mesh of size h = 1

N+1 and a seven-point stencil
is used. The resulting linear system Au = b has an s.p.d.
coefficient matrix with seven nonzero elements per row, and
n = N3 unknowns. We performed experiments with N = 200
and 252, which results in two s.p.d. linear systems of order
n ≈ 8M and 16M, respectively; see Table I for details.

2) UFMC: We selected a variety of large-scale matrices
from the UFMC benchmark collection; see Table I.

3) Convection-Diffusion Problems (CDP): In addition, we
considered the PDE ε∆u+b∗u = f in Ω, where Ω = [0, 1]3.
For this example, we use homogeneous Dirichlet boundary
conditions, i.e. u = 0 on ∂Ω. The diffusion coefficient ε is set
to 1, and the convective functions b(x, y, z) are given by:

conv. in x-direction: [1, 0, 0],
diagonal convection: 1√

3
[1, 1, 1],

circular convection: [12 − z, x−
1
2 ,

1
2 − y].

The domain is discretized with a uniform mesh of size
h = 1

N+1 resulting in a linear system of size N3. For the
experiments we chose a value of N = 200; see Table I. For
the diffusion part −ε∆u we use a seven-point-stencil. The
convective part b ∗ u is discretized using up-wind differences.

C. Evaluation

We start the experimental evaluation by comparing the
performance of the CPU and GPU versions of the BiCGStab
method.

Table II compares our CPU and GPU variants of BiCGStab.
In addition to the total execution time of the solver, we present
the average time (and speed-up) per iteration, as in some cases
the number of iterations of the CPU and GPU versions differ
slightly. The discrepancies are small and occur for those cases
with higher condition number, which are more susceptible to
floating-point rounding errors.

Regarding the use of the GPU, the acceleration factor for
the solver iteration, when it is compared with the baseline
CPU variant, varies between 5 and 10×, with the exact
speed-up depending on characteristics of the problem such
as its dimension, the sparsity pattern of the coefficient matrix,
and the sparsity of the incomplete factors produced by the
multilevel ILU factorization underlying ILUPACK. Speedup
values in this range should be expected since, although the

CPU version uses only one core, this is a memory-bound
problem and the peak memory bandwith of the K40 GPU is
only 5.6× larger than that of the Xeon processor.

In the other hand, it is interesting to compare the per-
formance of our data-parallel version of BiCGStab with the
previous GPU accelerated solvers developed for ILUPACK.
Table III summarizes the runtime taken by two of these
solvers, the BiCG and GMRES methods, which were pre-
sented in [14]. In both cases, only the SPMV and the appli-
cation of the preconditioner are offloaded to the accelerator,
while performing the rest of the solver in the CPU. The
experiments were re-executed on the current platform so the
runtime values may differ with the ones in [14].

The execution times observed for BiCGStab highlight the
benefits of including this method in the suite of CPU solvers
supported by ILUPACK, as it generally attains better con-
vergence rates and delivers lower execution times than the
GMRES and BiCG counterparts. Specifically, the BiCGStab
reaches a better relative residual in all cases except for the
Freescale1, where the BiCG method, is slightly better. From
the performance perspective the runtime reductions are all in
favour of the BiCGStab with benefits between 1.3 and 8.2×.

V. CONCLUDING REMARKS AND FUTURE WORK

We have proposed and evaluated a data-parallel implemen-
tation of BiCGStab method, a well-known iterative method,
enhanced with the inverse-based multilevel preconditioner
of ILUPACK, for the solution of large and sparse linear
systems of equations. Our results report considerable speed-
ups with respect to the massively parallel solvers included into
ILUPACK in previous works. At this point, we remind that,
except for the previous version of our data-parallel solvers
upon which our new codes are built on, there exists no
other parallel version of ILUPACK solvers for general linear
systems. Therefore, the acceleration factors that we report are
those that a user of the solvers integrated into ILUPACK can
presently expect.

As part of future work, we plan to address the new
bottlenecks, in particular, by developing optimized SPTRSV
and SPMV kernels, specifically tailored to the operations that
appear during the application of ILUPACK’s preconditioner,
as an alternative to those from CUSPARSE.

ACKNOWLEDGEMENT

J. I. Aliaga and E. S. Quintana-Ortı́ were supported by
project TIN2017-82972-R of the MINECO and FEDER. E.
Dufrechou y P. Ezzatti acknowledge the support of Programa
de Desarrollo de las Ciencias Básicas, the Agencia Nacional
de Investigación e Innovación, and the Universidad de la
República of Uruguay.

REFERENCES

[1] Y. Saad”, ”Iterative Methods for Sparse Linear Systems”, 2nd ed.
Philadelphia, PA, USA: SIAM, 2003.

[2] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra,
V. Eijkhout, R. Pozo, C. Romine, and H. V. der Vorst, Templates for the
Solution of Linear Systems: Building Blocks for Iterative Methods, 2nd
Edition. SIAM, 1994.

TABLE I
MATRICES USED IN THE EXPERIMENTS: DIMENSION n AND NUMBER OF NONZEROS nnz.

Collection Matrix n nnz nnz/n

Laplacian A200 8,000,000 31,880,000 3,99
A252 16,003,008 63,821,520 3,99

UFMC

cage14 1,505,785 27,130,349 18.02
Freescale1 3,428,755 17,052,626 4.97
rajat31 4,690,002 20,316,253 4.33
cage15 5,154,859 99,199,551 19.24

CDP
circular 8,000,000 55,760,000 6,97
diagonal 8,000,000 55,760,000 6,97
unit-vector 8,000,000 55,760,000 6,97

TABLE II
EXECUTION TIME OF NEW DATA-PARALLEL VERSION OF BICGSTAB: NUMBER OF ITERATIONS FOR CONVERGENCE; TOTAL EXECUTION TIME (IN SEC.);

AVERAGE TIME PER ITERATION; AVERAGE SPEED-UP PER ITERATION OF BICGSTAB GPU VERSION; AND RELATIVE RESIDUAL. IN THE GPU VARIANT
ALL KERNELS PROCEED IN THE GPU.

Avg. speed-up
Total Avg. time per iter. with Relative

Matrix Device #Iter. time per iter. respect to. . . residual

A200 CPU 3 4.27 1.423 8.21 1.40E-11
GPU 3 0.52 0.173 – 1.40E-11

A252 CPU 3 7.16 2.386 7.02 1.30E-11
GPU 3 1.02 0.340 – 1.30E-11

cage14 CPU 3 1.93 0.643 5.36 3.40E-10
GPU 3 0.36 0.120 – 3.40E-10

Freescale1 CPU 92 54.21 0.589 9.07 2.30E-03
GPU 87 5.65 0.064 – 2.20E-03

rajat31 CPU 2 1.62 0.810 5.40 7.80E-09
GPU 2 0.30 0.150 – 7.80E-09

cage15 CPU 3 7.28 2.426 6.07 5.40E-10
GPU 3 1.20 0.400 – 5.40E-10

circular CPU 115 239.84 2.085 8.07 6.90E-08
GPU 100 25.84 0.258 – 3.90E-08

diagonal CPU 111 281.80 2.538 10.09 6.60E-08
GPU 114 28.68 0.251 – 5.20E-08

unit-vector CPU 115 240.07 2.087 8.22 4.70E-08
GPU 108 27.42 0.253 – 4.00E-08

[3] M. Bollhöfer and Y. Saad, “Multilevel preconditioners constructed from
inverse–based ILUs,” SIAM J. Sci. Comput., vol. 27, no. 5, pp. 1627–
1650, 2006.

[4] J. I. Aliaga, M. Bollhöfer, A. F. Martı́n, and E. S. Quintana-Ortı́,
“Exploiting thread-level parallelism in the iterative solution of sparse
linear systems,” Parallel Computing, vol. 37, no. 3, pp. 183–202, 2011.

[5] ——, “Parallelization of multilevel ILU preconditioners on distributed-
memory multiprocessors,” in Applied Parallel and Scientific Computing,
LNCS, 2012, vol. 7133, pp. 162–172.

[6] J. I. Aliaga, R. M. Badia, M. Barreda, M. Bollhöfer, E. Dufrechou,
P. Ezzatti, and E. S. Quintana-Ortı́, “Exploiting task and data parallelism
in ILUPACK’s preconditioned CG solver on NUMA architectures and
many-core accelerators,” Parallel Computing, vol. 54, pp. 97–107, 2016.

[7] J. I. Aliaga, M. Bollhöfer, E. Dufrechou, P. Ezzatti, and E. S. Quintana-
Ortı́, “A data-parallel ILUPACK for sparse general and symmetric
indefinite linear systems,” in Lecture Notes in Computer Science, 14th
Int. Workshop on Algorithms, Models and Tools for Parallel Computing
on Heterogeneous Platforms – HeteroPar’16. Springer, 2016, to appear.

[8] H. A. van der Vorst, “Bi-CgStab: A fast and smoothly converging
variant of bi-cg for the solution of nonsymmetric linear systems,” SIAM
Journal on Scientific and Statistical Computing, vol. 13, no. 2, pp.
631–644, 1992. [Online]. Available: https://doi.org/10.1137/0913035

[9] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1–25, 2011.

[10] O. Schenk, A. Wächter, and M. Weiser, “Inertia Revealing Precondi-
tioning For Large-Scale Nonconvex Constrained Optimization,” SIAM
J. Scientific Computing, vol. 31, no. 2, pp. 939–960, 2008.

[11] M. Bollhöfer, M. J. Grote, and O. Schenk, “Algebraic multilevel pre-
conditioner for the helmholtz equation in heterogeneous media,” SIAM
Journal on Scientific Computing, vol. 31, no. 5, pp. 3781–3805, 2009.

[12] V. Eijkhout, “LAPACK working note 50: Distributed sparse data struc-
tures for linear algebra operations,” Knoxville, TN, USA, Tech. Rep.,
1992.

[13] M. Naumov, “Incomplete-LU and Cholesky preconditioned. Iterative
methods using CUSPARSE and CUBLAS,” NVIDIA white paper, 2011.

[14] J. I. Aliaga, M. Bollhöfer, E. Dufrechou, P. Ezzatti, and E. S. Quintana-
Ortı́, “A data-parallel ILUPACK for sparse general and symmetric
indefinite linear systems,” in Euro-Par 2016: Parallel Processing
Workshops - Euro-Par 2016 International Workshops, Grenoble, France,
August 24-26, 2016, Revised Selected Papers, 2016, pp. 121–133.
[Online]. Available: https://doi.org/10.1007/978-3-319-58943-5 10

TABLE III
EXECUTION TIME OF NEW DATA-PARALLEL VERSION OF BICGSTAB: NUMBER OF ITERATIONS FOR CONVERGENCE; TOTAL EXECUTION TIME (IN SEC.);

AVERAGE TIME PER ITERATION; AVERAGE SPEED-UP PER ITERATION OF BICGSTAB GPU VERSION; AND RELATIVE RESIDUAL. IN THE GPU VARIANT
ALL KERNELS PROCEED IN THE GPU.

Total Speed-up with Relative
Matrix solver #Iter. time respect to. . . residual

A200
GMRES 8 4.27 8.21 4.00E-09

BiCG 14 1.84 3.54 5.30E-09
BiCGStab 3 0.52 – 1.40E-11

A252
GMRES 8 7.16 7.02 3.90E-09

BiCG 14 3.62 3.55 5.80E-09
BiCGStab 3 1.02 – 1.30E-11

cage14
GMRES 3 0.49 1.36 2.40E-09

BiCG 3 0.68 1.89 2.70E-09
BiCGStab 3 0.36 – 3.40E-10

Freescale1
GMRES 92 7.33 1.30 6.30E-03

BiCG 87 26.96 4.77 1.00E-03
BiCGStab 87 5.65 – 2.20E-03

rajat31
GMRES 2 0.67 2.23 3.60E-07

BiCG 2 0.88 2.93 1.40E-06
BiCGStab 2 0.30 – 7.80E-09

cage15
GMRES 3 1.61 1.34 4.80E-09

BiCG 3 2.33 1.94 5.50E-09
BiCGStab 3 1.20 – 5.40E-10

circular
GMRES 115 95.37 3.69 1.40E-06

BiCG 100 86.97 3.37 1.20E-07
BiCGStab 100 25.84 – 3.90E-08

diagonal
GMRES 111 114.52 3.99 1.60E-06

BiCG 114 89.77 3.13 2.00E-07
BiCGStab 114 28.68 – 5.20E-08

unit-vector
GMRES 115 119.61 4.36 1.40E-06

BiCG 108 95.33 3.48 4.10E-08
BiCGStab 108 27.42 – 4.00E-08

