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Abstract— In this paper, we study the emergent 

behaviors in a multi-robot system. The multi-robot 

system uses a model for decision making that is 

composed of three levels: one individual, one collective, 

and another for the knowledge and learning 

management. In particular, the individual level, the 

base of the emergent behavior of the system, is 

composed of a module of perception/interpretation, an 

executing module and a behavioral module that has an 

emotional component, a reactive component, a cognitive 

component and a social component. In this paper, we 

analyze the robot performance, in order to produce an 

emergent behavior in the system. We present an 

example of an emergent scenario, and study its 

instantiation in our multi-robot architecture. 

 
Index Terms—Multi-robot Systems, Emergent 

Systems, Swarm architecture. 

I. INTRODUCTION 

n this work is studied the effect of a multi-robot 

architecture in the emergent behavior of the 

system. Multi-robot systems have been studied 

through different approaches: control architectures, 

cooperation mechanisms, among others [1, 2]. There 

are different works for these kind of systems: in [3] is 

proposed a multi-robot system for hunting tasks 

under a swarm approach; in [4] is described a robot 

swarm that implements an algorithm based on the bee 

hive for food gathering; in [5] is defined a hybrid 

approximation for multi-robot systems; [6] proposes 

an algorithm based on the human immunological 

system for the cooperative objects transportation. 

Other works have added emotions to the robots in the 

system, in [7, 8, 9] are specified emotions in multi-

robot systems, with the goal of consider the influence 

of them in the decision making of each robot. On the 

other hand, the learning and recognition are critical to 

multi-robot systems [10, 11, 12].  

This paper analyses an architecture for 

heterogeneous robot swarms consisting of three 

layers [18]: a first layer that is distributed in each 

robot and supports them, in terms of their processes 

of performance, perception and communication, as 

well as managing also their behavior considering 

reactive, cognitive and social aspects. This layer 

introduces an affective component, which directly 

influences the behavior of the individuals; this 

component is built from an emotional model that 

considers four basic emotions: joy, sadness, anger 

and rejection. The second layer supports the 

collective processes that emerge in the system, based 

on the concept of emergent coordination; this layer 

allows the implantation of swarm intelligence 

algorithms. The third layer manages the processes of 

learning, both individually and collectively. The 

architecture facilitates the emergence and self-

organization in the system, so it is necessary to verify 

the emergence of such concepts.  

In this paper, we study the emerging behaviors in 

this multi-robot system. For this, a series of 

verification methods are used to analyze the 

collective intelligence of the swarm and the situations 

they could solve. Additionally, in this paper, we use 

the AR2P model (it is a model for recognition of 

patterns [22, 23, 26, 27]) to equip the robots with the 

ability to recognize situations. The capability of the 

robot to recognize situations allows it to make better 

decisions, in order to facilitate emerging processes. 

For example, if a robot needs to recruit other robots 

to transport an object, it will optimize the recruiting 

task by sending messages to individuals that it 

recognizes that are willing to collaborate.  

The rest of the paper is organized as follows. 

Section II describes the multi-robot architecture. In 

the section III is described the case study and the 

instantiation of the architecture, and finally, the 

section IV presents an analysis about the emergent 

behavior in the Multi-Robot System. The section V 

describes the conclusions.  
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II. ARCHITECTURE FOR MULTI-ROBOT SYSTEMS WITH 

EMERGENT BEHAVIOR  

In [18, 19], the authors present an architecture for 

multi-robot systems with emergent behavior, called 

AMEB, which is structured in three levels: one 

individual, one collective and another for the 

knowledge and learning management (see Fig. 1). 

AMEB aims to manage the processes that occur in 

a multi-robot system, in particular, with the goal of 

facilitating the emergence in the system. It is a 

distributed architecture, with decision-making 

processes at the local level; it has learning 

mechanisms and shared memory spaces, aspects that 

are specific to emergent systems. An architecture of 

emotion management is included in the individuals 

that make up the system, this in order to influence the 

behavior of each individual, so that the behavior of 

each individual depends on its emotional state. 

 

 
Fig. 1.  AMEB Architecture 

 

The individual level of AMEB is responsible for 

managing the processes inherent to the functioning of 

the individual, controls its mechanisms of perception, 

action and behavior, it is a source of information for 

the other levels. Its perception module sends to the 

coordination level the necessary information about 

the environment of the robot and its interactions with 

it. Also, at the individual level of AMEB, a 

behavioral module is implemented [19], which aims 

to manage the behavior of the robot. The behavioral 

module describes a series of internal components of 

each robot, which through their interactions generate 

the behavior itself. These components are: 

 Reactive component: This component interacts 

directly with the components of perception and 

actuation of the robot, and it is responsible for 

generating reactive behaviors in the robot. This 

component manages survival behaviors of the 

individual, and has priority over any other behavior 

that can be generated. 

 Cognitive component: This component generates 

deliberative behaviors in the robot, based on its 

local knowledge. Here, it generates complex 

behaviors, built from primitive behaviors, which 

allows running specific and more complex actions. 

 Social component: It explodes the collective 

knowledge in decision-making processes of the 

robot. It interacts closely with the other two levels 

(collective and knowledge management), for the 

planning, coordination and/or cooperation 

processes in the system, in order to generate 

behaviors that allow the robot to interact with. 

 Affective component: based on [17], it is proposed 

an affective model, which considers a set of 

positive or negative emotions involved in 

generating behavior of robots, which affects the 

level of self-organization and emergence of the 

system. These emotions directly affect the 

individual and collective behavior of the robots. In 

the behavioral model proposed in this paper, the 

affective component inhibits or activates the 

behaviors generated by the cognitive and social 

components. 

 

The affective component is based on an emotional 

model (see Fig. 2), which considers the set of next 

emotions ε = {anger, rejection, neutral, sadness, joy} 

[20, 21], where the X axis represents the satisfaction 

or dissatisfaction state of the robot in the interval [-

1,1] (see Fig. 2), and the emotional spectrum ranges 

from highly negative emotions like anger, to highly 

positive emotions like joy.  

 

 
Fig. 2.  Emotional model 

 

The coordination level allows the collaboration and 

cooperation between the individuals, and the level of 

learning builds the knowledge of the system. This 

level manages the individual and collective 

knowledge. For more details about these levels, see 

[18, 19]. In this paper, we are interested in the 

affective component, for its influence in the emergent 

behavior of the multi-robot system. 

 

A. Formalization of the Affective Component 

An emotion (Em) evaluates the degree to which a 

process or phenomenon meets the needs of the 

individual. The value of Em is given by the following 

equation, which determine the current emotional state 

of the agent in a given time interval, which depend on 

a series of factors that define the internal state of the 

robot, and that are related to the operation of the 

robot and its performance in the environment [19]: 

 

 Em= 
1

𝑛
∑

𝐵𝑆𝑡+𝑂𝑆𝑡+𝑆𝑆𝑡+𝐼𝑆𝑡

4
𝑛
𝑡=1                     (1) 

                                 (1) 
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Where: t=0 is the initial time and n the final time 

of the time interval. The state variables BS, OS, SS 

and IS are normalized in the interval [0, 1]. The 

description of the state variables that affect the 

emotional state of the robot is: 

 

 Battery State (BS): it represents the energy level 

of the battery of the robot (battery percentage). 

The charge level affects the performance of the 

robot.  

 Operation State (OS): It represents the level of 

performance of the robot, which is in relation to 

its active duration in the system. For example, if 

a robot is active for a high percentage of time, 

then it is assumed that it contribute to 

maintaining its state of mind high. 

 Security State (SS): it is defined by the collisions 

average (due to competitions or obstacles) and 

faults per minute. If the robot presents few faults 

and collisions, then it has a good performance; it 

is assumed that this affects positively its internal 

state. 

 Interaction State (IS): it is defined by the social 

capability (or interaction) of the robot, measured 

by the number of messages (sent, received) per 

minute exchanged. The number of messages 

exchanged helps establish the level of sociability 

in the robot. For this work, more interactions 

positively affect the robot. 

 

Below is a scale of the range of values that allow us 

to discern the type of emotion according to the result 

of the equation (1). 

 
TABLE I. RANGE OF VALUES FOR THE EMOTIONS 

Emotion 

(Em) 
anger reject neutral sadness joy 

Range [-1, -0,5] [-0.4, -0.1] [0,0] [0.1, 0,5] [0.6,1.0] 

 

The calculation of the emotions can be done by two 

fuzzy methods: the first method integrates the fuzzy 

state variables into the eq (1). The second method 

uses fuzzy rules, one for each emotion. In the 

following, some examples of how to calculate the 

emotions by the first method, in the time interval of 1 

to 3 seconds. Suppose: 

 
TABLE II. EXAMPLE OF VALUES OF THE STATE VARIABLES 

t BS OS SS IS 

1 0.3 0.5 0.5 0.4 

2 0.4 0.5 0.5 0.3 

3 0.3 0.5 0.5 0.3 

 

Using the eq(1), Em= 0.4166. According to Table 

I, this value represents an emotional state of sadness. 

This method is proposed to evaluate the quality of 

recognition of emotion recognized by diffuse rules. 

The rule is applied, read reading of the values of the 

state variables, the quality metric is calculated by 

equation 1 and the results are compared. When there 

is mapping the quality and recognition is accurate 

otherwise it is inconsistent. For the values of the 

example in question, the output is consistent with rule 

1 and is inconsistent for rule 2. 

 

In the case of fuzzy rules, BS, OS, SS and IS are 

defined as fuzzy variables composed of the fuzzy 

sets: low, normal and high. Some examples of 

emotions using fuzzy rules are: 

 

 If <BS is low> and <OS is normal > and <SS is 

normal > and <IS is low> then emotion is 

sadness 

 If <BS is high or BS is normal> and <OS is high 

or OS is normal > and <SS is high or SS is 

normal > and <IS is high> then emotion is joy 

B. How the system works 

The robot perceives stimuli that influence in its 

state. This activates the emotional process of the 

robot, which generates a satisfaction index (SI) that 

defines the current emotion in the robot and the type 

of behavior associated (see Fig. 3). In [20, 21] are 

considered three types of behavior: imitative, 

cognitive and reactive, which are related to a specific 

emotional state. They are based on the three sub-

intervals defined in the Fig. 2, an interval related to 

reactive behaviors, one related to cognitive behaviors, 

and the last interval related to imitative behaviors. In 

our proposal, the same assumptions are made. 

 

 
Fig. 3.  Emotional process 

 

In general, highly positive emotions predispose the 

individual to imitate the behavior of other team 

members, while the slightly positive lead to a process 

where the cognitive aspect predominates over the 

imitative aspect. Also, slightly negative emotions 

lead the individual to a process of internal reflection 
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for decision making, and finally, a highly negative 

emotion leads to behaviors that are clearly reactive, 

where the individual seeks to achieve their survival 

by reacting to the stimuli of the environment without 

previous reasoning. 

The inclusion of emotions in the multi-robot system 

seeks to improve its adaptability to the dynamics of 

the environment, as well as facilitate the emergence 

in the system, by modifying the way of performing 

the behaviors that each individual is able to execute. 

The conjunction of individual behaviors, builds the 

overall behavior of the system, which by its nature 

cannot be predicted a priori [25]. For example, in an 

instant t the robot can be happy. In this mental state, 

it can "explore and find”. 

So, the affective component determines the current 

robot’s emotion, which is affected by the 

environment stimuli and the current robot’s state. 

According to the architecture proposed in [18, 19], 

each robot shares its internal state with the other 

robots in the system, in order to recognize its 

emotion, using the following format: 

 
<file_robot_n>  

  <body> sub_state_1= value</body> 

  <body> sub_state _2= value </body> 

  <body> sub_state _3= value </body> 

  <body> sub_state _4= value </body> 

<file_robot_n/> 

 

Based on these sub_states, which represent the BS, 

OS, SS and IS variables with three possible values: 

normal, high and low; can be calculated the emotion 

of the robot, which represents the robot’s satisfaction 

index-Si. Si will affect its actuation and perception 

parameters, leading to a specific behavior (see Fig. 

3). 

The emotional state of a robot must be determined 

at runtime, because can fluctuate its intensity 

according to the stimuli received and the changes in 

its current state. In this way, it is required a 

recognition algorithm, in order to recognize the 

emotions of the robots in a given moment. In this 

paper is used the AR2P algorithm, for more details 

about this approach see [22, 26, 27].  

III. EXPERIMENTAL CONTEXT 

In this section, we present the set of tests carried out 

through simulations without using physical robots. 

A. Test platform 

We suppose a test environment composed of walls, 

obstacles, marks on the ground that represent areas of 

battery charge, as well as marks that simulate objects 

to move, and whose function is to attract robots (see 

Fig. 4).  

 

 
Fig. 4. Test platform  

 

Additionally, the multi-robot system is composed 

of general purpose robots [24], which are managed 

by our architecture [18]. The architecture presents the 

following characteristics: i) It is a fully distributed 

architecture; ii) Decisions are made locally by each 

robot; iii) There is a collective memory.  

Additionally, the robots invoke the AR2P 

algorithm to recognize the emotions of the other 

robots. Information about the internal state of the 

robots is shared across the collective memory. 

B. Case study 

The purpose of the case study is to show the 

emergent behavior in the multi-robot system, for 

example, for recruitment, decision making, among 

others. To carry out the tests, the next scenario is 

considered.  

Cooperative hunting is a phenomenon that occurs 

in nature where a group of individuals have as their 

common goal to catch a moving prey and then feed. 

In some species the individuals are coordinated 

without the presence of a leader, the coordination of 

the group emerges naturally. In a general way, we can 

identify the following sub-tasks during the hunting 

process [25]: 

 

 Detection: an individual of the group detects the 

prey and alerts to the other individuals. 

 Persecution: it begins, where variables such as 

the speed and direction of the hunters are 

regulated according to the response of the prey. 

 Corner: some species corner the prey with the 

aim of attacking collectively. 

 Feed: depending on the species, individuals feed 

on the prey as a group. 
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In this case, individuals go through different states 

of their behaviors, from the excitement of the 

moment of the persecution, until the calm and satiety 

after feeding.  

The robot's emotional state is determined by the 

model presented in section II, which is affected by 

the values of the sub-states described in that section.  

IV. EMERGENCE ANALYSIS IN THE MULTI-ROBOT 

SYSTEM     

Now, we are going to test the capability of the 

multi-robot system to generate emergent behavior 

using different points of views. 

A. Emergent behavior analysis using the MASOES 

model 

In [20, 21] has been proposed a verification 

method of the emergence in a system, using a set of 

concepts related to emerging properties, which are:  

 

 Density (D): It measures the degree of compactness 

in the robotic equipment. 

 Diversity (DI): It measures the degree of 

homogeneity of the group of robots on the system. 

 Synthesis (S): It measures the quality of the 

aggregation mechanism. 

 Independence (IN): It measures the degree of 

autonomy of the robots, in terms of their 

capabilities for decision making without relying on 

other robots. 

 Emotivity (E): It measures the degree of 

emotionality of the system, according to the 

emotional model implemented. 

 Self-organization (SO): It is measured from three 

aspects: degree of satisfaction of the system, its 

anticipation and robustness. 

 Emergence (EM): Measures the degree of evolution 

of the system through the emergence of some 

emerging properties, such as patterns at temporal 

and spatial level, collective norms, etc. 

 

It also defines a series of concepts associated with 

the architecture itself: 

 

 Number of robots (NR): It refers to the number of 

robots acting at a given moment in the system. 

 Type of behavior (TB): It refers to the different 

types of behavior that robots may have. 

 Direct interaction (DI): It refers to the number of 

direct interactions between robots. 

 Indirect interaction (II): It refers to the number of 

interactions of robots through the environment. 

 Aggregation Mechanism (AM): It refers to how the 

information handled by the individual can be useful 

to the collective. 

 Reactive Component (RC): It refers to the reactive 

behaviors of the individual. 

 Cognitive component (CC): It refers to cognitive 

behaviors through processes of reasoning and 

learning. 

 Emotional component (EC): It refers to the robot’s 

emotions. 

 Social component (SC): It refers to how the agent 

interacts with the other individuals in the system. 

 Type of emotion (ET): It refers to the type of 

emotions present in the system. 

 

In the verification method proposed in [21], is 

defined a Fuzzy Cognitive Map (FCM) [32, 33] with 

these concepts, which has been implemented in the 

FCM Designer Tool [34]. The FCM verifies the 

emergent behavior of a system, according to the 

characteristics of the concepts in the system [21].  

Table III presents the results according to the 

verification method, for our scenario. The values of 

the concepts can be low, medium or high, according 

to their contribution in the system. In the hunting 

scenario, the initial value of emotiveness is high 

(0.95) because the robots can change of emotion by 

the different states that occur in the hunting action, 

the emotion types are high (0.9) and the behavior 

component is high (0.95) because our system has a 

behavior component based on an affective model (see 

Fig. 2). Also, the individuals of the group present a 

high degree of density (0.9). The other concepts 

associated with emerging properties are initialized to 

0 in order to observe their behavior during 

verification. 

For this scenario, according to Table III, the 

emergence can be verified (final state of this concept 

is 0.99), where the emotiveness, social component 

and reactive component contribute significantly to the 

emergence in the system. The number of robots 

remains in the medium state, the direct interaction 

goes up to a high value, and the indirect interaction 

even though its value decreases is still high, which 

indicates that the messages transmitted directly 

contribute more to the appearance of the emergency 

in the system. 
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TABLE III. ARCHITECTURAL CONCEPTS 

Concept Initial State Final State 

Emotion type 0.9 0.5 
Social component 0.95 0.88 

Aggregation mechanism 0.5 0.90 
Reactive component 1 0.85 
Cognitive component 0.10 0.72 
Behavior component 0.9 0.81 

Number of robots 0.4 0.6 
Behaviour type 0.8 0.97 

Direct interaction 0.10 0.86 
Indirect interaction 0.95 0.76 

Density 0.9 0.87 
Diversity 0 0.88 
Synthesis 0 0.80 

Independence 0 0.86 
Emotiveness  0.95 0.85 

Self-organization 0 0.99 
Emergence 0 0.99 

 

B. Emergent behavior analysis using simulations 

In order to test the emergence, in this section we 

have used a scenario composed of 5 robots, where the 

initial states of the factors that influence their 

emotional states are established in a random way. At 

the end of the simulation is used the FCM to evaluate 

the emergence in the system with the data obtained 

from the simulation. 

Table IV presents the number of times an emotion 

appeared in the system, and the associated behavior 

types that were generated during the simulation. It is 

observed that in this case, the behaviors are 

concentrated around negative or slightly negative 

emotions, such that reactive and cognitive behavior 

predominates; according to what is expected in the 

proposed scenario, where the reactive behavior of the 

individuals contributes to the achievement of the 

objective, due to the emotional model proposed in 

[19]. 

Figure 5 shows the evolution of the emotional 

state of the robots during the simulation. At first, the 

robots go through an emotional instability, then the 

emotional state begins to present changes, but within 

the same emotional spectrum. As the simulation goes 

on and the robots are running out of battery, then 

their emotions begin to have a negative tendency. 
 

TABLE IV. NUMBER OF EMOTIONS AND BEHAVIOR TYPES 

Emotion 
Reject Angry Sad Joy 

81 0 92 12 

Behavior types 
Reactive Cognitive Imitative 

81 92 12 

 

 
Fig. 5.  Evolution of the emotional state of the robots 
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    From this test case are obtained the values of the 

architectural concepts used to verify the emergence in 

the system, using MASOES. In Table V, the values 

obtained in the simulation (initial values) and the 

final values after executing the FCM, are presented. 

 
TABLE V. ARCHITECTURAL CONCEPTS 

Concept 
Initial State 

(based on the simulation) 

Final 

State 

Emotion type 0,7 0.5 

 Social component 0,60 0.88 
Aggregation mechanism 0,5 0.90 

Reactive component 0,99 0.85 
Cognitive component 0,99 0.72 
Behavior component 0.9 0.81 

Number of robots 0,5 0.66 
Behaviour type 0.65 0.97 

Direct interaction 0.5 0.86 
Indirect interaction 0,5 0.76 

Density 0 0.87 
Diversity 0 0.88 
Synthesis 0 0.88 

Independence 0 0.86 
Emotiveness  0 0.85 

Self-organization 0 0.99 
Emergence 0 1 

 

    It is observed that the concept of emergence 

reaches a high value, similar to the self-organization 

concept. The reactive component maintains its value 

high and the social component increases its value, 

which is consistent with the data obtained. Figure 6 

shows a comparison between the initial and final 

values of the architectural concepts, after executing 

the FCM. The concept of emergence has had a high 

variation. 

    Collectively, the robot group has a slightly 

negative emotional state, which makes that the 

behaviors in the system are reactive and cognitive. 

We remark that in the test case based on hunting such 

behaviors occur. For example, sudden changes 

steering movements to avoid collisions with other 

hunters, sudden speed changes to follow the prey, etc.  

 

 
Fig. 6.  Architectural concepts variation 

V. CONCLUSIONS 

   The proposed architecture (AMEB) facilitates the 

emergence in multi-robot systems, through its three 

layers. The architecture allows the local decision-

making in each robot, and supports the interactions of 

the robot with the environment and with other robots.  

   The behavioral component of the robots allows 

different behaviors and intentions towards the 

execution of a task. This component is based on an 

emotional model, which allows the recognition of the 

emotions in order to generate emergent behaviors. 

This gives a large flexibility to the system to execute 

different tasks. For example, the method for the 

collective decisions in the multi-robot system is 

based on the emotions.  

The emerging properties of AMEB were proved in 

one task that occur in nature, in some animal species, 

where they carry out collective hunting of moving 

prey. The results obtained in the experimentation 

show that the architecture is capable of managing 

tasks of this type, based on an emergent behavior. 

The emergence of behaviors since emotional states 

is not mentioned explicitly in previous works about 

emergence in multi-robot systems [3, 4, 5, 6] or 

emotions in robots [13, 14, 15, 16, 28, 29, 30, 31]. In 

our work, the inclusion of emotions facilitates the 

emergence, since the individual can respond in 

different ways to the situations presented to it. In our 

proposal, the inclusion of the emotions allows 

emergent and self-organized processes [18, 19, 24]. 

Next works will be dedicated to extend this model 

considering more emotions, more situations 

(scenarios), among other things, in order to test the 

scalability of our approach. Also, more experiments 

will be carried out with real robots with the ability to 

recognize emotions in other robots, so that the 

recognition influences the decision making and the 

actions they carry out. 
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