
A Chatterbot Sensitive to Student’s Context to help
on Software Engineering Education

Leo Natan Paschoal
Institute of Mathematics and Computer Science

University of São Paulo
São Carlos, São Paulo, Brazil
leonatanpaschoal@gmail.com

Myke Morais de Oliveira
Center of Computational Science
Federal University of Rio Grande

Rio Grande, Brazil
myke.oliveira09@gmail.com

Patricia M. Mozzaquatro Chicon
Human and Social Sciences Center

University of Cruz Alta
Cruz Alta, Brazil

patriciamozzaquatro@gmail.com

Abstract—Requirements extraction is an important element
of the software development process. One of the most used
techniques for requirements extraction is the interview. Initiatives
to support the training and technical training of computing
students in this area are being proposed, such as the development
of support mechanisms. These initiatives are proposed by the fact
that computing students are graduating with limited practical
knowledge in requirements extraction. In parallel, chatterbots
have been investigated as tools with the capacity to support the
training of students from different areas of knowledge, since
the main characteristic is verbal conversational behavior. In
medicine, for example, they can take on the role of a sick
patient to train students to extract information about the patient’s
symptoms. One subject that has been explored in the context
of educational chatterbots is context awareness, so that the
chatterbot can present the right information for the right user.
These surveys start from the premise that not every student
has the same knowledge as their peers on the subject. Thus,
in this research work in full paper we describe a chatterbot
that offers support to Software Engineering Education, focusing
mainly on the requirements extraction, which assumes the role
of a stakeholder. A prototype of a chatterbot that is sensitive to
student’s context is presented, as well as preliminary results on
the impact of this support mechanism in Software Engineering
Education.

Index Terms—Conversational Systems, Requirements Engi-
neering Education, Software Development Process, Ubiquitous
Learning.

I. INTRODUCTION

The development of software is done by means of a
sequence of steps which constitute a process. There are
several models that support the development of software, but
regardless of the software development process model used,
one step is the requirements extraction. This is the stage
where the computing professional will understand what the
customer needs, how the software system will behave, what its
features and characteristics [26]. To conduct the requirements
extraction, several techniques have been developed since the
emergence of Software Engineering. These techniques support
the professional and seek to reduce the difficulties related to
this stage. Among the existing techniques, one of the most
traditional is the interview [22]. In this case, the professional
will have to conduct the activity to make questions to the
client, in order to understand what the client needs. When
applying the technique, the professional must ask appropriate

questions, so that the customer can answer them without
the need of technical computing skills, seeing that not all
stakeholder will be in the computing area.

After extracting requirements, this professional will write
the requirements document. If he makes a mistake while
completing the requirements document, the software will be
subjected to contain faults, which will affect the quality of the
document and consequently the software. Fault may induce the
software to commit errors, such as an unexpected return, which
may cause a failure[14]. It is known that a faulty software
system can be critical [29], generate cost [4] and reduce user
confidence [25]. In this sense, the activity of extracting require-
ments is important and has a direct relation with the software
quality. Faced with this, the Software Engineering teaching
becomes indispensable in the computing courses curriculum,
where the requirements extraction is one of the contents to
be taught. Although requirements extraction is taught, studies
mention that students graduate and enter into job market with
little or no experience in the role of requirements analyst [11].
Given this fact, the academic environment as responsible for
the training of these subjects, is committed to offer subsidies
to improve the quality of training.

Studies have been conducted to support the Software Engi-
neering teaching and requirements extraction. In the specific
requirements extraction context, educational games have been
developed [17]. In some of these, students are submerged in a
simulated day-to-day reality of a Software Engineer and will
have to conduct some of the activities to extract requirements.
Other types of resources are also used in order to train the
student to face the reality of the profession of a Software En-
gineer, more specifically as requirements analyst/engineer. One
tool to support student training, which can provide guidelines,
interacting with the user in natural language that can be used
in this area is a chatterbot. Chatterbots are programs that have
the ability to talk to the user in natural language, simulating a
human being, so the user believes that he is interacting with
another person [8], [27].

Chatterbots have been used in different areas of human
knowledge, such as in the area of Health [3] and Computing
[2]. In the context of health teaching, for example, chatterbots
can take on the roles of sick patients, the student has to
interview the chatterbot and try to identify which disease it

may have, which exams he/she needs to request for and/or
even medicines he/she will need to prescribe [16]. In the area
of Computer Networking teaching, for example, chatterbot can
be used to support the student or professional in training, as
in handling and checking existing problems on the network
[15].

A study front has been conducted aiming to incorporate
features in these systems, so that the chatterbot is aware of
the user context [13]. In this regard, the chatterbot knows
the user’s location, who is with him, what is the user’s
previous knowledge about the subject, among other informa-
tions. [19], [20], [18] when reporting their work, mention that
these chatterbots are moving towards Ubiquitous Computing,
because they present system characteristics with a certain
level of ubiquity. In the work of [12], the authors present
ELAI, a chatterbot to support the Computer Networks teaching
that considers the student’s expertise on the subject of the
discipline by assisting him in moments of doubt. To do this,
before the student has access to chatterbot, he must answer a
test about the subjects that are taught in the discipline.

Taking into account the context presented, we believe that
a chatterbot to support the development of technical skills of
requirements extraction can be developed. Being aware that
students with different knowledge about Software Engineering
can make use of it, we attribute some characteristics to the
chatterbot, so that it has capacity to know what the students
prior knowledge about Software Engineering, since the more
knowledge about Software Engineering the greater its chances
of students having a larger domain on the requirement ex-
traction technique. Thus, if the student has a higher level of
expertise on the subject than its peers, it may be frustrated
by using a chatterbot that has a facilitator knowledge base for
training.

Therefore, we developed a chatterbot to support the Soft-
ware Engineering teaching, focusing mainly on requirements
extraction training with the interview technique, which has the
ability to become aware of the student’s previous knowledge
about the content and that keep up with the student’ perfor-
mance in the learning of a Software Engineering discipline.
In this article, we present the design and development of a
chatterbot prototype to support Software Engineering teach-
ing, with different knowledge bases that are used to support
students with different levels of expertise. A pilot study was
conducted to investigate the impact on students’ learning of
Software Engineering. Subsequently, an experimental study
was conducted to investigate the instructional efficiency of the
chatterbot sensitive to student’s context.

This article is structured as follows. Section 2 presents the
developed chatterbot. Section 3 presents a pilot study that was
conducted. Section 4 presents the results of an experimental
study on chatterbot viability. Finally, section 5 presents the
final considerations.

II. DEVELOPMENT OF THE CHATTERBOT

This section has the purpose of presenting the chatterbot
conception that we call Ubibot (an acronym for A Chatterbot

with a Ubiquity Level). We have developed it to support the
learning in Software Processes Models and Requirements En-
gineering. Thus, it has knowledge bases that were built to help
students of Software Engineering courses when these students
have doubts about these subjects. For this work an effort was
coordinated between the department’s teachers and tutors for
the initial modeling of the chatterbot knowledge base. These
teachers are used to teach Software Engineering courses and
are often faced with students with similar questions. In this
sense, knowledge bases were built with questions that were
more frequent and subjects that generated greater questions
among students.

Besides having knowledge bases in order to help the student
in learning, we have built some knowledge bases aiming to
assign the chatterbot not only the role of a tutor, but also a
stakeholder who is interested in a software for a sector of the
university. In this sense, Department’s teachers assisted in the
definition of the requirements of this software. It was defined
that the scope of the software project would be a conference
management system, to organize submission and proofreading,
similar to EasyChair1. The purpose of developing these knowl-
edge bases is to contribute with the development of students’
skills in extracting requirements. They were built so that the
student had to do several questions to the chatterbot, in order
to extract the necessary information.

The chatterbot knowledge bases were developed using the
Pattern Matching Technique. The language used to support the
construction of chatterbot knowledge was a language based
on Extensible Markup Language (XML). We use an inference
machine that runs an algorithm called Graphmaster [24]. We
chose the Pattern Matching Technique, the XML language
and an inference machine with the Graphmaster algorithm,
as they are described in the academic literature of the area as
being more suitable to the implementation of chatterbots for
educational purposes [10], [7]. For the context of this work,
we use an open source inference machine called Program O2,
which is implemented in the Hypertext Preprocessor language.

For the construction of the chatterbot was also considered
the treatment of information that it sends to the student,
taking into account the student’s learning context. In this
sense, we rely on the work of [12] to define what types of
information about the user to consider. We chose to develop a
chatterbot that offers answers to the user about their questions,
considering their level of expertise, similar to the work of
[12]. In this regard, we instantiate the identification module
developed in the work of [12] for Software Process Models
and Requirements Engineering. We also propose an evolution
for the module, since the original module is not able to identify
how much the student has learned during the course. To this
end, we have developed the chatterbot as a module for the
Learning Management System (LMS) Moodle, since we use
information about the students that are available in this LMS.

The Ubibot identifies information about the student in

1https://easychair.org/conferences.cgi
2https://www.program-o.com/

order to assist him in taking into account his real needs and
knowledge about the subject he is studying. For this purpose,
when offering help to the student, it identifies the student’s
previous knowledge and the knowledge evolution, the latter
only when the teacher makes available the student’s grades
in the LMS Moodle. In order to identify prior knowledge,
a chatterbot module, called MINE, has been developed. It is
similar to the one developed by [12] composed of ten objective
questions that were extracted from some editions of the
National Examination Performance of Students (ENADE)3 and
the National Examination for entrance into Post-Graduation
in Computer Science (POSCOMP)4 related to the content of
Software Process Models and Requirements Extraction.

After the student answers the questions that compose the
MINE, the system performs the sum of the numbers that
translate the student’s answer options, totaling an average.
In this sense, the system uses the delimiter factor, built
and evidenced in Table 1 to identify prior knowledge. The
classification was based on the works of [12] and [21].

TABLE I
IDENTIFICATION OF PRIOR KNOWLEDGE OF THE STUDENT

Level of Expertise Limiting Factor

Basic expertise 0 ≤ correct answers ≤ 4

Intermediate expertise 4 < correct answers ≤ 7

Advanced expertise 7 < correct answers ≤ 10

When the student accesses the Moodle environment, the
chatterbot will initially identify their prior knowledge about
the subjects mentioned, and then it will be available to the
student in an HTML block within the course. In this perspec-
tive, when questioned by the student, the chatterbot will be
aware of the level of knowledge to present answers considering
this information. In order to provide custom adaptation, the
help messages on the topics of Software Engineering were
separated according to the three levels of experience defined.
In this sense, the chatterbot when interacting with the student
modifies the degree of complexity of their answers, in order
not to frustrate the student during the learning of the content.
According to [12] this is necessary because a discipline can
be made up of students with different levels of knowledge.
Thus, a student with a basic level of knowledge, for example,
when asking a question, expects the answer to be easy to
understand. In contrast, a student with advanced knowledge
does not expect a trivial answer. To support the classification
of a response to different levels of knowledge, teachers who
assist in modeling chatterbot knowledge were consulted.

As mentioned, we created an extension for the module that
identifies the student’s previous knowledge. In this extension,
the aim is to ascertain the student’s performance in the
discipline he is studying. Thus, we built a module that we
call MIDE that analyzes the students’ grades that are enrolled
in Moodle in Software Engineering courses. When there is a

3http://portal.inep.gov.br/enade
4http://www.sbc.org.br/educacao/poscomp

grade in the course available in the Moodle environment, the
chatterbot, through MIDE, verifies the grade obtained by the
student and registers an update in the previous knowledge. This
update basically consists of transforming the grade scored by
the student on a scale of zero to ten points and reclassifying the
student context. To illustrate the operation of the chatterbot,
we constructed a diagram (Figure 1) that represents the main
activities that the chatterbot performs to be able to interact
with the user taking into account the learning context.

Besides the ability to modify its help messages according
to the student’s learning context, an important characteristic
to be considered by the Ubibot is that it is able to adapt to
different types of interfaces, considering its access by means
of any device, which are important characteristics to a system
directed to the ubiquitous learning. The interface adaptation
component was made up using the Boostrap5 framework. It
has been inserted into the Moodle environment as a theme to
make the environment provide access-related services on any
type of computing device that has access to a browser. The
main Ubibot interface is shown in Figure 2.

III. PILOT STUDY

This section discusses the planning and conduction of a pilot
study that was conducted with Software Engineering students.
We conducted the study with the purpose of verifying students’
perceptions about the chatterbot, as well as investigating
chatterbot’s ability to act as a stakeholder. In this sense, the
section was structured so that it is possible to describe how the
intervention happened, what activities the students performed,
what instruments were used to collect data, and finally, the
results that were obtained.

A. Intervention

The Ubibot was socialized with 15 students of an under-
graduate course in Computer Science from a higher education
institution. These students were studying Software Engineer-
ing. The intervention took place over a period of five weeks.
We chose the weeks in which the students were learning the
contents that are treated in the chatterbot knowledge bases.
In the first week, the authors presented the chatterbot to the
students, explaining the operation of the system and presenting
a brief user tutorial. In addition, at the first meeting the stu-
dents were explained that their participation was voluntary and
therefore the students could decide if they would participate
in the research.

At the first week’s meeting, participants accessed the envi-
ronment to interact with the chatterbot. In parallel there was
the execution of the MINE module that collected the data
referring to the students’ level of knowledge. In this way, the
students had to answer the questions of the form. In the initial
contact with the environment, it was observed that thirteen
students (87%) were in the basic knowledge level, that is,
they could not answer more than four questions in the MINE
questionnaire, in contrast two of them (13%) have managed to

5https://goo.gl/Qv4DUW

Activity Diagram0act

MIDE moduleMINE moduleChatterbot main interfaceStudent

Access the
LMS

identify
context

are there any tasks in
the LMS that have
already been evaluated?

[NO]

[NO]

Has the student's level
of knowledge been
identified?

answer the
questionnaire

identify the
level of
knowledge

Basic
expertise

Intermediate
expertise

Advanced
expertise

Show
chatterbot

[YES]

Identify the context
again by considering
the grades in the
activities

[YES]

Basic
expertise

Intermediate
expertise

Advanced
expertise

Fig. 1. The main activities carried out by chatterbot

Fig. 2. Chatterbot main interface (in Portuguese)

answer more than seven questions and have gained the level
of advanced knowledge.

In the subsequent weekly meetings, the researchers made
themselves available to address participants’ questions about
using chatterbot. During this period the students perform
activities in the discipline with the help of chatterbot, in order
to familiarize themselves with the system.

In the course of these weeks, three activities were requested
for the students to perform, with a defined deadline, similar
to the activities carried out in courses taught in the distance
learning mode, in which the student must accomplish the
activity and send it by the LMS. After receiving the resolutions
of each activity, the researchers made the evaluation of them
and make available the students’ grades in the LMS. At the
same time, the MIDE module was in execution, to change the
students contexts.

In the fifth meeting two tasks were made available for the
participants to perform. Students should use the chatterbot
as a support mechanism to accomplish them. The first task
was proposed with the aim of the participants evaluating the
knowledge bases of the chatterbot, that is, ascertaining if
the knowledge bases were well trained, if they could meet
the students’ demands, and if the chatterbot could help them
considering the students context. In this sense, students had
to answer some questions about Software Process Models
and Requirements Engineering. The second task, in turn, was
designed to get students to train their skills in extracting
requirements. In this way, the students were asked to interview
the chatterbot in order to extract the functional and non-
functional requirements and from that writing the requirements
document. Thus, each participant would have to build and
deliver the requirements document. This document was later
evaluated by the researchers, which aims to assess if the
students were able to extract all the requirements that were
expected.

After using the chatterbot, the students delivered the two
tasks performed and answered the evaluation questionnaires
provided by the research authors. Therefore, through the ques-
tionnaires it was possible to collect data on aspects inherent
to the operation of the system and through each task it was
possible to have knowledge about how much the chatterbot
can help the students in the accomplishment of tasks and
on the possibility of using it as training facility requirements
extraction.

B. Instrumentation

For the pilot study context, we prepared three activities that
were executed during the five weeks in which students had
the opportunity to interact with the chatterbot. In addition,
two tasks were prepared for the students to perform in a face-
to-face meeting, held in the fifth week. The first task was a
list of exercises with questions, in which the students would
have to talk about the subject, being able to consult chatterbot
to assist in the answers. In the second task, it was specified
that the students should construct a requirements document,

from the chatterbot conversation. To support the achievement
of the second task, a template has been made available.

Besides the activities, two instruments were built for data
collection. The first one consists of a survey that aims to verify
the students’ perceptions regarding Ubibot, composed of ten
objective questions. The questionnaire was validated with the
Cronbach’s Alpha Test[6], in order to prove that the internal
consistency of the questionnaire is considered good since α =
0.87. Table 2 presents the questions prepared to evaluate the
chatterbot.

TABLE II
SURVEY QUESTIONS

Question Type

(1) When interacting with chatterbot for the first time,

was the experience exciting?
Likert scale (Mandotory)

(2) Did the chatterbot contribute to the execution and

conclusion of tasks?
Likert scale (Mandotory)

(3) When using chatterbot did you have the opportunity to

create your own knowledge?
Likert scale (Mandotory)

(4) Using chatterbot will you improve your knowledge? Likert scale (Mandotory)

(5) Was there a delay in the responses provided by

chatterbot?
Likert scale (Mandotory)

(6) Are the answers provided by chatterbot repetitive? Likert scale (Mandotory)

(7) Has chatterbot crashed or interrupted its use? Likert scale (Mandotory)

(8) Does chatterbot integration with Moodle result in a

user-friendly interface?
Likert scale (Mandotory)

(9) Is chatterbot unreliable? Likert scale (Mandotory)

(10) Do you want to continue using chatterbot? Likert scale (Mandotory)

The second questionnaire used in the research was an adap-
tation of the System Usability Scale (SUS)[5]. This instrument
aims to evaluate the usability of products[5]. According to
[1] it is often used in systems evaluations. In the study of
[12] the authors recommend the use of this instrument to
ascertain the usability of chatterbot. The SUS is composed
of ten questions, all of which are based on the Likert scale,
whose response options can range from ”Strongly Disagree”
(1 point) to ”Strongly Agree” (5 points). Table 3 presents the
SUS issues that were used to measure agent usability.

TABLE III
SYSTEM USABILITY SCALE

Question Type

(1) I think that I would like to use the Ubibot frequently. Likert scale (Mandotory)

(2) I found the Ubibot unnecessarily complex. Likert scale (Mandotory)

(3) I thought the Ubibot was easy to use. Likert scale (Mandotory)

(4) I think that I would need the support of a technical

person to be able to use the Ubibot.
Likert scale (Mandotory)

(5) I found the various functions in the Ubibot were well

integrated.
Likert scale (Mandotory)

(6) I thought there was too much inconsistency in the

Ubibot.
Likert scale (Mandotory)

(7) I would imagine that most people would learn to use

the Ubibot very quickly.
Likert scale (Mandotory)

(8) I found the Ubibot very cumbersome to use. Likert scale (Mandotory)

(9) I felt very confident using the Ubibot. Likert scale (Mandotory)

(10) I needed to learn a lot of things before I could get

going with the Ubibot.
Likert scale (Mandotory)

In an application of the SUS, when obtaining the answers of
the user, it is necessary to calculate the SUS score. The score
of each item can range from 0 to 4. In order to obtain the odd
scores, the answers of the odd questions are subtracted by 1,
while the even scores are given by 5 minus the value of the
answers of the even questions. The partial SUS score, which
can range from 0 to 100, is found by the sum of its scores
multiplied by 2.5. Finally, to obtain the global SUS score, the
mean values obtained by the partial SUS are calculated.

C. Results and Discutions

This section aims to present the results of the students
perceptions about the Ubibot functionalities, the evaluation
of usability and the data about the interaction between the
students and Ubibot while the chatterbot played the role of a
stakeholder.

1) Perception of students: This section seeks to present the
results of the first questionnaire applied. The results obtained
through the survey are synthesized and presented in Figure 3.
It should be noted that all questions had the same response
options. In Figure 3 are presented only the response options
that were pointed out by participants.

40%

0%

73,30%

13,30%

60%

0%

0%

20%

33,30%

6,70%

13,30%

13,30%

0%

6,70%

26,70%

6,70%

6,70%

46,70%

6,70%

6,70%

40%

40%

20%

20%

60%

26,70%

13,30%

53,30%

20%

53,30%

13,30%

53,30%

33,30%

6,70%

13,30%

6,70%

40%

33,30%

46,70%

26,70%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10th question

9th question

8th question

7thquestion

6th question

5th question

4th question

3rd question

2nd question

1st question

Strongly disagree Disagree Undecided Agree Strongly agree

Fig. 3. Results of the ten likert scale questions

The first question was intended to understand if the students
were excited when they used chatterbot for the first time. As a
result, 26.7% agreed totally, 13.3% agreed in part, 40% were
undecided and 20% disagreed completely. With these results,
it is possible to notice that some participants did not find the
experience exciting. This result may be directly related to the
aid that the chatterbot issued, because most students (87%)
received help in the first week of a knowledge base belonging
to the basic context, so perhaps for this reason they were not
so excited during the first experiment.

The second question had the goal of ascertaining if the
agent contributed in some way to the accomplishment of the
tasks carried out by the students. The results of this question
were positive, since 53.3% of the respondents indicated the
option ”Strongly agree” and 46.7% ”Agree”. The results on the
graph show that Ubibot has been able to assist the participants
according to their needs. However, as it turned out, there was
some time during the implementation of activities that the
agent failed to fully assist a portion of the sampling.

The third question was to verify if Ubibot offered op-
portunities for students to construct new knowledge in an
autonomous way. Among respondents, 40% of the evaluators
were undecided, 33.3% fully agreed, 20% agreed in part and
one (or 6.7%) participant disagreed. According to the data
obtained in this question, the vast majority of respondents
agreed in some way that Ubibot allows the student to be able
to create their own knowledge.

The fourth questioning had the goal of detecting whether
students believe that Ubibot will allow them to improve

their knowledge through utilization. Its possible to verify
satisfactory results, since 93.3% of the students agreed, with
40% of the respondents fully agreeing, while 53.3% agreed
partially. In this sense, it was possible to verify that chatterbot
is a support mechanism with great potential that can contribute
to the construction of knowledge.

The fifth question aimed to verify if the chatterbot took
too much time to help the student. The results show that
60% disagreed completely, revealing that the responses are
instantaneous. However, the results show that some students
may have identified that at certain times there was delay, this
can be observed through the 6.7% of participants who fully
agreed and 13.3% partially agreed. It should be noted that the
delay in the responses emitted by the chatterbot may be related
to several factors such as machine processing that supports the
execution of the chatterbot and the operation of the interpreter.
A concise response can only be traced through new studies to
analyze the factors that may cause this delay in response.

In the sixth question we tried to find out if the answers given
by chatterbot were repetitive. The results show that 46.7% of
participants judged indecision, 26.7% partially agreed, 13.3%
fully agreed and 13.3% disagreed completely. Participants
were expected to disagree with the affirmative. However, the
discrepant results show that there is a need to expand knowl-
edge bases, since there are some bases that were constructed
with the premise of several questions for a response, for
example the following input patterns ”talk about the cascade
model” and ”describe on the cascade model” have the same
response to a given context and few random resources with
response options. One improvement option that can be done
is to create several answers to the question using an XML
language structure called rondom.

When questioned on the seventh question about catching
chatterbot crashes or interruptions, 73.3% disagreed com-
pletely, 13.3% disagreed, 6.7% were undecided, and 6.7%
totally agreed. Although there was one participant who fully
agreed, there was a predominance of negative outcomes
(86.6%), which suggests that most evaluators found no in-
terruptions or blockages during application.

The eighth question had as goal to verify if the integration
of Ubibot in Moodle managed to result in a friendly interface.
Repercussion reveals that the participants rated the interface
as friendly, given that 33.3% agreed totally and 60% agreed
in part. In parallel, one participant revealed that he disagreed
in part.

In the ninth question, the responses ranged from ”Strongly
disagree” to ”Agree”, With 73.3% of the students judging that
the agent is trustworthy. Based on the results, it is possible to
infer that the index found is probably associated with readiness
in the recommendations. In other words, it is possible to
assume that 20% of the sample presumed that the agents
recommendations failed to meet all the needs of the students.
However, it is worth mentioning that these 20% agreed in part,
that is, they only agreed with one of the characteristics of the
whole and therefore it is presumed that some needs of these
participants were attended by the chatterbot.

Finally, in the tenth question we asked the students if
they would like to continue using chatterbot in the discipline.
Among the results, 53.3% were found to be interested, 20%
partially agreed, which favored the inclusion of interests at
certain times, and 26.7% are undecided and did not give their
opinion. It is important to note that there was no discord, which
is a demonstration of performance and perhaps the interest of
students in continuing to use chatterbot.

In general, the results presented demonstrate that the Ubibot
was able to satisfy the students with satisfaction during the
interaction, meeting our expectations, both from an educa-
tional and technical point of view. From the educational point
of view, it was able to offer support in the execution of
activities, the opportunity for students to build new knowledge,
and support to improve their understanding of the contents.
On the technical aspects, the chatterbot was able to act as
a synchronous mechanism, not delaying to respond to the
requests of the student. However, there is a need to expand
chatterbot knowledge bases. Another characteristic observed
is that the students recognized that chatterbot has a friendly
interface. Although the data reveals an user-friendly interface,
we chose to use an instrument established to examine the
usability of the chatterbot. Thus, the next section will present
the usability assessment.

2) Usability: The fifteen respondents answered the ten
questions related to the usability assessment of the integration.
The partial scores of each user are shown in Figure 4.

According to the partial SUS scores, its minimum value
was 60 points (users 6 and 11), while its maximum was 97.50
points (user 12). The mode values were 65 points (users 1, 5,
9 and 10). The average was 70.33 points, which represents
the overall SUS score, suggesting that the usability of the
integration obtained a good acceptance by the users, a result
considered good, since, according to [1] the average value of
the overall SUS is 69.5 points. [23] infers that a SUS score
higher than 68 points is considered above the average and
consequently good.

The Figure 4 presents a comparison between the Ubibot
SUS result and the SUS midpoints for different types of
product interfaces. These data were reported by [1], which
points out that products that have a web application interface
will have good usability if they have a SUS value of at least
68.2 points and 65.9 points for mobile products. Considering
the ability of Ubibot to be accessed by both desktops and
mobile devices, from the results found it is possible to infer
that Ubibot meets the usability requirements.

3) Chatterbot performance as a Stakeholder: We evaluated
the requirements documents constructed by the students from
the original requirements document that was built by the
group of professors of our department, who assisted in the
modeling of chatterbot knowledge. We analyzed the functional
requirements that each student was able to extract, the non-
functional requirements and the actors / users of the system.
The original requirements document written by the professors
of our department specifies a total of 13 functional require-
ments and 5 non-functional requirements. In addition, the

document reveals that there are three possible users for the
system: the system administrator, the author who submits the
article and the reviewer, and the author can assume the role
of reviewer. On the number of authors, 13 students were able
to identify the existence of two actors (reviewer and authors),
the other students described that the system would have three
actors, as expected by the specification.

When analyzing the functional requirements that each par-
ticipant was able to extract from the chatterbot, we observed
that only one student was able to recognize all the require-
ments that were expected, that is, that were defined by the
teachers in the software specification. The Figure 5 shows
the results obtained, in which it is possible to observe the
number of functional requirements that each student was
able to identify. From these results, we observed the median
number of requirements that the students identified in order to
have a better idea of the total number of requirements that
the participants identified. As such, we obtained a median
of 10. The standard deviation value was also calculated,
revealing a number equal to 1.56. This data reveals that there
was not much discrepancy between the number of functional
requirements that the student group was able to extract.

Regarding non-functional requirements, it was observed that
four students were able to identify the five non-functional
requirements that were predicted. Three students described
in the requirements document only one requirement. We
calculated the median and standard deviation values of the
results and found that the median was equal to 3 and the
standard deviation value was 1.56, which indicates that 50%
of participants could identify more than 3 non-functional
requirements. Figure 6 shows the number of nonfunctional
requirements that each student was able to extract.

From the results obtained, also considering the perceptions
of the students that used the chatterbot, we believe that
it can be used as a mechanism to support the training of
requirements. When analyzing studies that discuss the use of
”real world” projects that require clients and / or stakeholders,
such as the study of [9], we believe that our chatterbot can
be exploited when there is lack of ”real world” clients, since
they have the skills to simulate a stakeholder.

After conducting the pilot study, we verified the need to
investigate the impact of chatterbot’s ability to interact with
the student in a context-aware manner. In the pilot study
evaluations, we do not care about our chatterbot being context-
sensitive and supporting the student. Therefore, it was neces-
sary to analyze if chatterbot help messages can influence the
use of the it. Regarding this issue, we created an experimental
study that is described in the next section.

IV. EXPERIMENTAL STUDY

We conducted an experimental study, setting up a protocol
that was established based on the recommendations of [28].
The objective of the experimental study was to analyze the
instructional efficiency of Ubibot, verifying if the information
emitted by Ubibot can influence the accomplishment of the
activities carried out by the students. To do so, we have

65 67.5
72.5 70

65
60

82.5
77.5

65 65
60

97.5

75

62.5
70

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

SU
S

Sc
o

re

Students

70.33
68.20
65.90

Global SUS scoreCell Phones Web

Fig. 4. Score SUS by Students

0
1
2
3
4
5
6
7
8
9

10
11
12
13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of functional requirements identified that were correct

Number of functional requirements expected

Fig. 5. Functional requirements extracted by the student from interaction with
chatterbot

0

1

2

3

4

5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Number of non-functional requirements identified that were correct

Number of expected non-functional requirements

Fig. 6. Non-functional requirements extracted by the student from interaction
with chatterbot

created another version of our chatterbot. This version we call
OutContextbot (an acronym for a chatterbot without context
awareness), it does not have the context identification modules

(MINE and MIDE) and their knowledge bases mix the three
levels that the user could be. Therefore, we conducted the
study comparing the Ubibot chatterbot that assists the student
in a conscious way with the OutContextbot chatterbot that
assists the student without being aware of context.

The goals of the experiment were specified in parts as
a paradigm similar to Goal/Question/Metric (GQM): to an-
alyze the instructional efficiency of the chatterbot sensitive
to student’s context in solving students’ questions compared
to the instructional efficiency of a chatterbot that is not
sensitive to student’s context with the purpose of verifying its
applicability, with respect to the interaction with the students,
from the point of view of the researchers, in the context
of students of an undergraduate course in Computer Science,
enrolled in a Software Engineering discipline. These goals
were stipulated from the definition of a research question:
does the context-sensitive chatterbot present more efficient
instructions than chatterbot without context-sensitivity?

To answer this question, we defined as metrics the students
feedback who would interact with chatterbots. To measure
the feedback, we elaborate a question: ”Does the chatterbot
contribute to the achievement of the concept test?”. To support,
we use a Likert scale with five response options, varying
between Strongly disagree and Strongly agree. Thus, we
prepared an intervention so that a class composed of 30
Software Engineering students participated in the experiment.
We invited a Software Engineering class to participate in our
experiment, different from the one that participated in the pilot
study, in order to avoid bias in the experimental study. From
the total of 30 students who were invited, only 19 students
accepted to participate in the experiment. Therefore, the class
was divided in two groups, a group composed of 10 people
used Ubibot and the other group used the OutContextbot.

For the context of this experiment, students had not learned

the Software Process Models content. As a result of this, we
used two meetings at a time outside the discipline, one per
week. In the first week, students had an expositive lecture
about the content. Already in the second week, we made
chatterbots available to the class. We randomly assigned the
addresses in which the chatterbots were hosted, so that each
student in the course had one of the versions of our chatterbots.
For this reason, 10 students were selected to interact with
Ubibot and the other 9 students with OutContextbot. After the
distribution of the addresses, a theoretical test of the content
was delivered to the students and the students were informed
that they should use the chatterbots to answer the questions
about the exercises.

It is important to point out that we have built an environment
conducive to the experiment, so that students could access
chatterbots because they were hosted on local servers. This
environment was configured in order to prevent students from
using other teaching materials available in the LMS (the
teaching materials of the course available in Moodle were
concealed for students) or on the Internet. In addition, it is
important to make it clear that we had not previously informed
the students that they would take the theoretical test, i.e. the
students only learned that they would take the test in the
second class. The theoretical test encompassed only the subject
of software process models and was prepared by the authors
of this research from issues extracted from previous editions
of the ENADE and POSCOMP exams, since these exams are
generally prepared by specialists in the area. This test was
not designed for evaluation, but rather to provide conditions
to students in which they are faced with difficult situations
where might emerge questions, forcing them to use chatterbots
to assist them in the resolution of these questions.

After the students take the theoretical test, we ask them to
give a feedback about the real contribution of the chatterbot in
conducting the theoretical test, considering the messages that
the chatterbot issued during the interaction. This feedback was
to answer the question mentioned earlier in this section. By
using the Likert scale as a response option, each response
option was converted to a score ranging from zero to four
points, with zero being assigned to the ”Strongly disagree”
and 4 assigned to the ”Strongly agree” alternative. From this
point, we transform the answers into quantitative data, aiming
to perform a hypothesis test. In this sense, to support our study,
from our research question, we defined two hypotheses and
applied the hypothesis test. The null hypothesis is that the
responses emitted by Ubibot are as efficient as those emitted
by OutContextbot (i.e. Ho: Efficiency (Ubibot) = Efficiency
(OutContextbot)). The alternative hypothesis is that there is a
difference in the efficiency terms from messages issued by
Ubibot and OutContextbot (i.e. Ha: Efficiency (Ubibot) 6=
Efficiency (OutContextbot)).

After converting student answers into quantitative data, we
analyzed the data. To perform the statistical tests, a confidence
interval was adopted for α = 0.05. After alpha is specified, we
calculate the normality of the data using the Shapiro-Wilk test.
When we applied the test, we observed that the samples were

not Gaussian, since p-value for the data of the group that used
Ubibot was p = 0.0184 and the p-value for the data of the
group that used the OutContextbot was p = 0.0148. In this
sense, considering that our samples are independent and the
distribution is not normal, we used the Mann-Whitney test. The
Mann-Whitney test resulted in a p-value lower than α, given
that p = 0.0250. Based on this, we reject the null hypothesis
(Ho) and we can identify that one of our chatterbots stands
out from the other.

When we did a descriptive analysis of the data using
descriptive statistics, we could observe that the median scores
of the group that used Ubibot is higher than the median of
the group that used the OutContextbot. What is observed in
the results is that the group that used the Ubibot presented a
greater agreement index in relation to the instructions emitted
by the chatterbot than the group that used the OutContextbot
chatterbot. Thus, it can be deduced that chatterbot presents
more efficient instructions than chatterbot without context-
sensitivity.

V. CONCLUSIONS

This article aimed to present the conception and evaluation
of a chatterbot called Ubibot that is able to act as a tutor and
a stakeholder. When acting as a tutor, it identifies information
about the student (level of knowledge and student performance
in the discipline), with the purpose of supporting the student
in a context-aware manner. By acting as a stakeholder, it
intends to train requirements extraction skills. It is important
to emphasize that the performance of a stakeholder is inde-
pendent of the student’s learning context. Regarding design,
we present technical characteristics of chatterbot development
and operation. In the evaluation, we tried to find out if it was
able to satisfactorily attend the students, both in the sense of
acting as a context-aware tutor, or if their interface did not
have problems that could contribute to the minimization of
its use. We have also constructed another chatterbot, the one
with no ability to identify the student’s context, in order to
compare if the student believes that the assistance of a context-
sensitive chatterbot are more efficient than the assistance of a
chatterbot without the ability to emit information in a aware-
context manner.

In future work, we believe that we could conduct some
experiments to evaluate our chatterbot with a larger group
of students, since in both the pilot study and the experi-
mental study, our sampling is not significant. We need to
conduct studies with a larger group of students. We would
also like to expand Ubibot’s knowledge base and experiment
with approaches that favor active learning methodologies such
as Project Based Learning in order to get students to use
chatterbot in the absence of a client or stakeholder. In addition,
thinking about the benefits that the community can bring, we
are trying to turn our chatterbot into an open educational
resource.

REFERENCES

[1] A. Bangor, P. Kortum, and J. Miller. Determining what individual sus
scores mean: Adding an adjective rating scale. Journal of Usability
Studies, 4(3):114–123, 2009.

[2] L. Benotti, M. C. Martinez, and F. Schapachnik. A tool for introducing
computer science with automatic formative assessment. IEEE Transac-
tions on Learning Technologies, 11(2):179–192, 2017.

[3] T. W. Bickmore, L. M. Pfeifer, D. Byron, S. Forsythe, L. E. Henault,
B. W. Jack, R. Silliman, and M. K. Paasche-Orlow. Usability of con-
versational agents by patients with inadequate health literacy: Evidence
from two clinical trials. Journal of Health Communication, 15:197–210,
2010.

[4] F. Brady. Cambridge university study states software bugs cost economy
$312 billion per year. available at: <http://bit.ly/2lmwt8a>, 2013.

[5] J. Brooke. Sus: A retrospective. Journal of Usability Studies, 8(2):29–
40, 2013.

[6] L. J. Cronbach. Coefficient alpha and the internal structure of tests.
Psychometrika, 16(3):297–334, 1951.

[7] K. Denecke, S. Lutz Hochreutener, A. Pöpel, and R. May. Talking
to ana: A mobile self-anamnesis application with conversational user
interface. In International Conference on Digital Health, pages 85–89,
New York, NY, USA, 2018. ACM.

[8] O. V. Deryugina. Chatterbots. Scientific and Technical Information
Processing, 37(2):143–147, 2010.

[9] M. L. Fioravanti, B. Sena, L. N. Paschoal, L. R. Silva, A. P. Allian,
E. Y. Nakagawa, S. R. Souza, S. Isotani, and E. F. Barbosa. Integrating
project based learning and project management for software engineering
teaching: An experience report. In 49th ACM Technical Symposium on
Computer Science Education, pages 806–811, 2018.

[10] S. Ghose and J. J. Barua. Toward the implementation of a topic specific
dialogue based natural language chatbot as an undergraduate advisor. In
International Conference on Informatics, Electronics and Vision, pages
1–5, 2013.

[11] R. Q. Gonalves and M. Thiry. Development of a game to support the
teaching of requirements engineering: The requirements island. In 9th
Brazilian Symposium on Computer Games and Digital Entertainment
(SBGames), pages 358–3691, Florianpolis, Brazil, 2017.

[12] F. Herpich, F. B. Nunes, G. B. Voss, and R. D. Medina. Three-
dimensional virtual environment and npc: A perspective about intelligent
agents ubiquitous. In F. M. M. Neto, R. de Souza, and A. S.
Gomes, editors, Handbook of Research on 3-D Virtual Environments
and Hypermedia for Ubiquitous Learning, chapter 21, pages 510–536.
IGI Global, Hershey, EUA, 2016.

[13] P. Hsuan, C. R. Dow, K. H. Chen, Y. Y. Chen, and Y. H. Li. An
ubiquitous teaching assistant using knowledge retrieval and adaptive
learning techniques. In International Conference on Integration of
Knowledge Intensive Multi-Agent Systems, pages 121–126, 2007.

[14] IEEE. Ieee standard glossary of software engineering terminology.
Technical report, 1990.

[15] M. D. Leonhardt, L. Tarouco, R. M. Vicari, E. R. Santos, and M. d. S. d.
Silva. Using chatbots for network management training through
problem-based oriented education. In 7th IEEE International Conference
on Advanced Learning Technologies (ICALT), pages 845–847, 2007.

[16] V. López, E. M. Eisman, and J. L. Castro. A tool for training primary
health care medical students: The virtual simulated patient. In 20th IEEE
International Conference on Tools with Artificial Intelligence, pages
194–201, 2008.

[17] S. Ouhbi, A. Idri, J. L. Fernández-Alemán, and A. Toval. Requirements
engineering education: A systematic mapping study. Requirements
Engineering, 20(2):119–138, 2015.

[18] L. N. Paschoal, P. M. M. Chicon, and G. A. M. Falkembach. Ubibot: um
agente conversacional ciente do contexto de aprendizagem do usuário.
RENOTE - Revista Novas Tecnologias na Educação, 14(1):01–10, 2016.

[19] L. N. Paschoal, P. M. M. Chicon, and G. A. M. Falkembach. Concepção,
implementação e avaliação de um agente conversacional com suporte
à aprendizagem ubı́qua. RENOTE - Revista Novas Tecnologias na
Educação, 15(1):01–10, 2017.

[20] L. N. Paschoal, P. M. Mozzaquatro, A. L. Krassmann, and M. O. Binelo.
Ubibot: Agente inteligente consciente do contexto de aprendizagem do
usurio integrado ao ambiente moodle. In XXI Congreso Internacional
de Informtica Educativa (TISE), pages 95–104, 2016.

[21] C. C. Possobom, A. R. K. Mühlbeier, F. B. Nunes, A. Carvalho, R. B.
Gomes, and R. D. Medina. Uma aplicação dinâmica para detectar o
nı́vel de conhecimento do aluno. In XXIII Ciclo de Palestras Novas
Tecnologias na Educação, pages 01–10, 2014.

[22] R. Pressman and B. Maxim. Software Engineering-8a Edition. McGraw
Hill Brasil, São Paulo, Brasil, 2016.

[23] J. Sauro. Measuring usability with the system usability scale (sus).
available at: <https://measuringu.com/sus/>, Feb. 2011.

[24] B. A. Shawar and E. Atwell. Chatbots: can they serve as natural language
interfaces to qa corpus? In 6th International Conference Advances in
Computer Science and Engineering, pages 183–188, 2010.

[25] T. J. Shippey. Exploiting Abstract Syntax Trees to Locate Software
Defects. PhD thesis, University of Hertfordshire, School of Computer
Sciences, United Kingdom, 2015.

[26] I. Sommerville. Software testing. In I. Sommerville, editor, Software En-
gineering, chapter 8, pages 144–163. Pearson Addison-Wesley, Boston,
Massachusetts, EUA, 2016.

[27] A. F. van Woudenberg. A chatbot dialogue manager, chatbots and
dialogue systems: A hybrid approach. Master’s thesis, Faculty of Man-
agement, Science and Technology - Open University of the Netherlands,
Heerlen, Netherlands, 2014.

[28] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and
A. Wesslen. Experimentation in Software Engineering. Springer Berlin
Heidelberg, 2012.

[29] M. Zhivich and R. K. Cunningham. The real cost of software errors.
IEEE Security Privacy, 7(2):87–90, 2009.

