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Abstract—Many engineering programs place in their curricula
some courses in Computer Programming, whose content and
quality are generally less rigorous than their Computer Science
equivalents. Most use the C language as development tool, but
the approach applies more effort in describing the language’s
peculiarities than exploiting the practical applications in engi-
neering endeavors. The contributed programming techniques are
born from the experience of teaching Functional Programming,
embodied in headers) that enhance depth and rigorousness in the
development of high quality code: (i) Functional emphasis from
the beginning; (ii) Formal Specifications with exception gener-
ation; (iii) Early focus in recursion, particularly tail recursion;
(iv) Development of Abstract Data Types using C’s opaque types;
(v) Incorporation of First Order and Higher Order Functions;
(vi) Efficient dynamic memory management using a “garbage
collector”; and (vii) Using and Integrated Developed Environment
(IDE) with embedded debugger. The aforementioned headers are
attached at the end of the article.

Index Terms—Functional Programming, Teaching Strategies
for Computer Programming, Recursion, Higher Order Functions.

I. INTRODUCTION

Programming courses for [non computer science] engi-
neering majors (and other scientific disciplines too) have an
undeserved reputation of being the poor sisters in the formal
teaching of Algorithmics and Computer Programming.

The proposal herein described aims to change the learning
focus without changing the substance of the chosen language
(C), by reinforcing an imperative paradigm with several func-
tional programming topics rooted in calculus, providing a basic
substrate for formal verification of pre- and post- conditions,
invariants, and other additions.

The article is organized as follows: There is a brief review
of related work in section II, and of the current thematic
teaching strategy in section III. The technical description of the
implementation continues in section IV, and final conclusions
are located in section V, along two appendices showing
practical programming examples.

II. PREVIOUS WORK

Whether taught by the CS faculty or non CS faculty ,
their contents usually fail short of all the interesting structures
and code practices that make programming fun to learn.
Consolidated engineering schools have their own formed staff
focused in fulfilling the minimum course requirements [1]

rather than instill true analytical and coding capabilities to
future engineers [2].

For the teaching of computer programming concepts, the
traditional approach has been one of building upward from the
concept of variable, keeping very close to the language’s spec-
ifications and the imperative programming paradigm, perhaps
not the best route of approaching its role in algorithm design,
for which other types of tools and strategies are needed. The
main antecedent on teaching proper concepts of computer
programming building on a constructivist approach best suited
for engineers is postulated by Ben-Ari [3], detailing the order
in which must be introduced all conceptual and algorithmic
elements using a programming language as tool, with a later
adaptation by Chesñevar et al [4] and [5].

The C programming language [6] is still one of the most
used in engineering application development just below FOR-
TRAN, with a wide and solid installed code base, incorporated
standard and specialized libraries, and a wealth of available
books and online courses for supervised and unsupervised
learning. Along with its derivatives, it is the language used
in core kernel construction of most used operating systems
(MSWindows, MacOS, BSD, Linux) and their applications.

In general, by purposeful construction C follows an imper-
ative programming paradigm and was not designed to support
a functional one. No wonder there has not been an approach
for teaching algorithms incorporating functional programming
concepts in that language [7], and very few using formal
specifications techniques [8]

On the other hand, there is no manifested interest from
other engineering schools (not closely related to Computer
Science) to migrate toward a purely functional language (such
as Python) in the introductory programming courses. What is
formulated as an objective is to incorporate as unobtrusively
as possible some strengths and concepts of the functional
paradigm enabled by the most recent standard of the C
language and several key compiler extensions to enhance
the width and depth of the learning experience in the Com-
puter Programming I [Introductory] [9] and Computer Pro-
gramming II [Intermediate] [10] for engineers.

III. THEMATIC PROGRAMMIG TEACHING STRATEGY

Most teaching strategies in Algorithmic Programming based
on the C language rely on a book or guides that [unerringly]
develop the traditional approach [11] in which the following



concepts are introduced in a rigidly sequential manner, al-
though it may be helped by visual programming aids:

a. Some detail in problem solving methodology for devel-
oping simple [noncomputer based] algorithms, as pro-
cessing input values into output results variables.

b. Concept of state variables and basic data types, which are
not based in data domains but in how much range can be
expressed in limited storage size. Usually is accompanied
by input and output formatting using “functions” and
presentation templates, and students are instructed to
“ignore” needed functional, with the excuse that they will
be taught later, and the same goes for value and reference
parameter passing (the need for the & in the scanf(%̈ï,
&x) instruction).

c. Control structures if/else/switch/case/while/do/for are
next introduced to immediately enable the implemen-
tation of common algorithms based on bifurcation and
iteration.

d. Homogeneous Structured Data Types, commonly named
arrays (vectors, matrices and other tensors of 1, 2 or more
dimensions), to reinforce the concept of iteration. Usually
character strings and standard libraries are introduced at
this level too [12].

e. Heterogeneous Structured Data Types, commonly called
registers or structs, and struct arrays, are introduced at
this level, covering the input/output of data and values
to/from directory files

f. Structured methods, functions and procedures, value and
reference parameter passing. Abstract Data Types and its
implementation as Concrete Data Types may be aboarded
at this stage, but it is not common and may be time
restricted.

g. Pointers, use and abuse. There is no diving into di-
rect memory allocation administration, smart pointers or
even talk of applying a Conservative Garbage Collector
to avoid memory allocation bugs. including cumulative
memory leaks, orphan pointer catastrophes and free
memory depletion.

h. Haphazard use of an Integrated Development Environ-
ments (IDE). Although there are several opensource IDEs
(Code::Blocks, Eclipse, NetBeans), with nice GUIs and
intrinsic debugger for visualizing dynamic execution,
bug detection and analysis, there is still a segment that
relies on old school command-line tools for the complete
coding-compile-execute cycle.

Transversal to all this is the treatment of the algorithmic
deduction-development phase, with more or less depth. Recur-
sion is a concept that is rarely added to engineering teaching
programs, in the view that is somehow "inefficient" and
difficult to master. This is the main difference in approach
to how programming is properly taught in Computer Science
and affine disciplines. In the latter a lot of emphasis is
made in formal specification design and checkup pre- and
post-conditions, invariants and algorithmic proofs, in which
the chosen implementation language is of less importance.

although many modern languages (C++, Java, Python, Ruby,
Go, Rust, etc.) present multiparadigm characteristics (Object-
oriented, Functional, Imperative).

Themes that require going beyond what is expected at lab
practice are barely touched if at all, such as efficiency and
programming style. Whole swathes of engineering programs
would benefit starting an approach more closely related to the
field.

IV. A PROPOSAL FOR ADDING FUNCTIONAL
CAPABILITIES WHEN TEACHING C PROGRAMMING

To strengthen and improve the teaching and learning ex-
perience we have incorporated the following hybrid method,
which borrows concepts and structures from the functional
paradigm, and is selectively implemented using proper macro
constructions (or coding hacks) on top of the current C
language specification coupled with nonstandard but widely
used compiler extensions. Incorporated coding solutions not in
the public domain are shown proper attribution when known.

i. Functional approach from the beginning, more oriented
to state changes than to variable assignment;

ii. Simplified formal specifications enabling checking pre-
and post- conditions, invariants and bounds over expres-
sions;

iii. Early introduction of recursion for algorithmic solutions,
with particular emphasis in tail recursion;

iv. Abstract Data Types (ADTs) implemented as opaque
struct pointer types under an Application Programming
Interface (API), stored in modular code libraries;

v. Higher Order Functions abstractions to implement for
[almost] generic traditional ADTs (Collection, Set, Stack,
Queue, Sequence, single and double linked Lists);

vi. Using a Garbage Collector for smart managing of dy-
namic memory allocation;

vii. Use an IDE with embedded debugger and dynamic
memory validation tools.

Next we describe in detail the aforementioned points, with
examples of their application.

IV-A. Functional approach from the beginning

The Functional Programming paradigm implements the
following concepts:
Pure Functions: A function only looks at the parameters it
receives, and returns a value based on a calculus associated to
those values. It has no secondary effects whatsoever, such as
modify input parameters (pass by value) or change variables
outside the scope of the function (state immutability).
First Order Functions: Functions are basic dats types having
its own functional operators. It implies the existence of anony-
mous functions and assignable functors just like any variable.

f = (lambda(x) : x2 − x+ 1) =⇒ f(2), evals to 3.

Recursion: The main programming technique is finding self-
referencing algorithms allowing a divide-and-conquer strategy.
Implies the existence of function composition, including self.



Lazy Evaluation: Function and parameter evaluation is de-
layed until their values are really needed. This allows defini-
tions by comprehension and functions that remain undefined
while there are no calculated values.
However, the C language is not a functional language at all. In
fact, it is actually two different languages: proper C and the C
PreProcessor or CPP. Both languages are “Turing complete”
(some arcane tricks must be applied for CPP), and with the
appropriate combination of the former statements and careful
implementation it can be elevated to a more sophisticated
language, changing neither substance nor style.

For this proposal, the introductory course initiates from
the algebraic concept of “function”, freshly carried from the
previous basic Calculus courses, and are then translated to the
language, composing functions over other functions.
The key to starting programming functions from scratch in C
is defining a generic function f with arguments in 0 or more
[numeric] domains and which returns a single [numeric] value.

f : D1 ×D2 × · · · ×Dn −→ D0, r = f(p1, p2, . . . pn)

being D0 the range or codomain of f , and arguments
p1, p2, . . . pn, with pk ∈ Dk, for each domain Dk.
For example, we denote the following real functions

sum : R×R→ R

mul : R×R→ R

com : R×R→ R

The algebraic specification of the above functions is repre-
sented as C code using a simply derived template, as shown
next in Listing 1 (func.c), with Dk being any of char, short,
int, long, float or double C numeric types.

Listing 1: func.c

D0 funcname (D1 p1, D2 p2, ... Dn pn) {
D0 result; /* value to calculate */
result = {...}; /* code using p1, p2, ... pn */
return result;

}

double sum (double x, double y) {
return x + y;

}
double mul (double w, double z) {

return w * z;
}
double com (double a, double b) {

double x = sum( mul(a,b), sum(4,-3) );
return x;

}

Functions in C may be assigned to variables and passed
as arguments to other functions using function pointers, a
very efficient manner of implementing a simple variant of
parameter’s “pass by name”.

IV-B. Simplified formal specifications

The existing assert() directive in C is crafted to define:
invariants [invariant (predicate)], pre-conditions [expects

(predicate)], post-conditions [ensures (predicate)] and index
bounds for loop control [bounded (expression)], along with
other useful macros in a C header called “hoare.h” (see
Appendix B), independently available as source code [13].

Failure in the validation of the predicate in any of the
directives (a violation of some formal specification) triggers
an immediate exception, signaling the respective sourcecode
line, and some explicative message. This only happens if the
DEBUG flag is active, otherwise is ignored. It is a limited
implementation, there are no quantifiers for correctness of
formal specification verification as in advanced languages.
Listing 2 (hoare.c) illustrates a very short example.

Listing 2: hoare.c

#ifdef HOARE_H
_expects( x != 0.0 ); /* precondition */
_invariant( Sum == (k*k+k)/2 ); /* invariant */
_bounded( j ); /* bound (j>=0) */
_ensures( factor >= N ); /* postcondition */

#endif

IV-C. Early introduction of recursion
Most traditional teaching strategies for non-computer scien-

tists favor iteration over recursion on the wrong assumption
that the latter may be more elegant but harder to teach, even
though the work of Mirolo [14] shows hard data revealing
that a functional recursive approach is transformational even
when students have been exposed to imperative programming
in high school. Starting from the first class, emphasis is made
into formulating recursive solutions to problems, specially tail
recursion implementations that take advantage of compiler
optimizations. Listing 3 (raise.c) shows a classic example of
an efficient algorithm to raise a real number x to an integer
power n in a tail recursive manner, and Listing 4 (raise_tr.asm)
shows the compiler’s translation into Assembler.

Listing 3: (raise.c) Tail recursive function to raise a real
number to an integer power

double rsaux_tr(double prod, double x, int n) {
if (!n) /* is n ==0 ? */

return prod; /* end recursion */
if (n&1) /* is n odd ? */

return rsaux_tr(x*prod, x*x, n >> 1);
else /* n is even */

return rsaux_tr( prod, x*x, n >> 1);
}

double raise(double x, int n) {
return rsaux_tr(1,x,n); /* tail recursion */

}

The chosen compiler, gcc v.6.4, under the actual standard
allows important code optimizations enabling compiler options
-O2 or -O3. Tail recursive function calls are translated into
inline loops, which means that formal parameters, instead of
being pushed into the stack, are stored as local variables, and
the recursive invocation (call) is made into a conditional jump



Listing 4: (raise_tr.asm) Automatic optimized Assembler
translation, recursive calls made into conditional jumps

; Compiled by GNU C version 6.4.0 20180410
.globl rsaux_tr
.type rsaux_tr, @function

rsaux_tr:
.startproc ; func rsaux_tr

.L6: testl %edi, %edi ; is n == 0 ? (*)
je .L1 ; end recursion, jump
testb $1, %dil ; is n odd ?
je .L5 ; n is even, jump
mulss %xmm1, %xmm0 ; x * prod

.L5: sarl %edi ; n >> 1
mulss %xmm1, %xmm1 ; x * x
jmp .L6 ; loop back, jump (**)

.L1: rep ret ; return
.endproc

(jmp) backwards, combining an elegant programming style
into a fast and memory efficient equivalent iterative loop that
will not grow the stack at all, at no cost to the programmer.

IV-D. Abstract Data Types (ADTs) implemented as opaque
struct pointer types

Without delving deeply into the ADT concept, the mech-
anism of separate interface headers (.h) and executable code
(.c) allows defining in the header struct pointer types whose
complete implementation description is stored elsewhere in
the corresponding source (an opaque type), allowing hiding
the implementation details from the interface, and enforcing
good programming practices of accessing the ADT implemen-
tation (the Concrete Data Type, CDT) exclusively through
the specified functions in the header, without being able to
know or manipulate directly the interior data structure. In the
example for a Rational ADT interface, this is shown in Listing
5 (rational.h).

Listing 5: rational.h

typedef struct rational_cdt* Rational;
/* Rational is a opaque pointer to the internal */
/* concrete pointer data type rational_cdt */

Rational consR(int num, int den); /* constructor */
int setNumerR(Rational q, int num); /* setter */
int setDenomR(Rational q, int den); /* setter */
Rational simplifyR(int num, int den); /* setter */
int getNumerR(Rational q); /* getter */
int getDenomR(Rational q); /* getter */
Rational sumR(Rational x, Rational y); /* operator */
Rational mulR(Rational x, Rational y); /* operator */

The type is made opaque by defining in the header rational.h
the Rational ADT as a pointer type to a struct (rational_cdt)
without any internal details, in effect creating an opaque defini-
tion of the referenceable object. In the source implementation
of the Rational ADT (in Listing 6 it is called rational_cdt), it
is then redefined with all its attributes and access functions:
constructors, selectors, mutators and destructors, created as

a dynamic structure referenced by the opaque pointer. Its
contents are not visible and it its only accessible by the
selectors and mutators exposed in the interface header.

Listing 6: rational.c

#include "hoare.h"
#include "Rational.h"

typedef struct rational_cdt {
/* Rational Concrete Data Type */

int num, den;
/* numerator and denominador pair */

} rational_cdt;

Rational consR (int num, int den) { /* constructor */
Rational q = (Rational)GC_MALLOC(sizeof(rational_cdt));
_expects(den != 0);

/* preconditionn: denominator must not be zero */
if (den < 0) {

/* if denominator is negative, flip signs */
q->num = -num;
q->den = -den;

} else {
q->num = num;
q->den = den;

}
return q;

}
int setNum (Rational q, int num) { /* setter */

_expects(q != NULL);
/* precondition: q must Exist !! */

return (q->num = num);
} /* replaces numerator only */
Rational sumaR (Rational x, Rational y) { /* operator */

_expects(x != NULL and y != NULL);
/* precondition: x,y exist!! */

return consR((x->num * y->den + x->den * y->num),
(x->den * y->den));

} /* returns a new rational as the sum of *
* two other Rationals */

If we changed the implementation of rational_cdt to int val-
ues[2], and adapted all related functions defined in rational.c
to this representation, the API interface to Rational (rational.h)
would not change and existing code would keep working
without modification.

IV-E. Higher Order Functions

In Functional Programming Higher Order Functions or
HOFs are used to create and manipulate generic functions that
operate on other function types. A catalogue of the most useful
ones follow:

map: Automorphism, a function f : α → β is applied
nondestructively transforming each item of a sequence S of
elements in α, producing a new sequence of elements in β in
the same relative order.

map : (α→ β)× Seq<α> −→ Seq<β>

filter: Automorphism, a predicate p : α → B (boolean)
extracts in nondestructive fashion all elements α from S that
comply with the predicate p, obtaining a new sequence S′ in
the same relative order, with #(S′) ≤ #(S).

filter : (α→ bool)× Seq<α> −→ Seq<α>

reduce or fold-right: Accumulator, where the elements of a



monoidal sequence S are combined in a resulting value r ∈
β when applying some right-associative binary composition
operator Op : α× β → β (having neutral element or identity
ε0 ∈ β) to the whole sequence. The left-associative variant
fold-left is also implemented.

reduce : (α× β → β)× β × Seq<α> −→ β

compose: Algebraic Function Composition. In functional
theory the composition operator (◦) is a fold-left over functions
operating in algebraic chainable (compatibles) types.

h(x) = (f ◦ g)(x) ≡ f(g(x))

g : α→ γ ∧ f : γ → β =⇒ h : α→ β

It is possible to create a generic compose function making a
cumbersome macro use in the style of C++, but if we limit
functions to the integer or real domains (Ω = i|l|f |d) with
up to 3 arguments (extensible to more), we can define the
following generic pointers to function patterns:

Ω_compose_f_gx(f, g)(x) ≡ f(g(x))

Ω_compose_f_gxy(f, g)(x, y) ≡ f(g(x, y))

Ω_compose_f_gx_hx(f, g, h)(x) ≡ f(g(x), h(x))

Ω_compose_f_gx_hy(f, g, h)(x, y) ≡ f(g(x), h(y))

Ω_compose_f_gxyz(f, g)(x, y, z) ≡ f(g(x, y, z))

Ω_compose_f_gx_hx_wx(f, g, h, w)(x) ≡ f(g(x), h(x), w(x))

Ω_compose_f_gx_hy_wz(f, g, h, w)(x, y, z) ≡ f(g(x), h(y), w(z))

We can also define HOFs specific to a particular type, as
shown for the List ADT in Listing 7 (list.h). Here, higher order
functions create new lists from others without modifying or
destroying them, as can be appreciated in Listing 8 (list.c).

Listing 7: list.h

/* List.h */
typedef struct ListCDT_t* List_t;

/* List_t pointer to opaque type ListCDT_t */
typedef int Value_t, Elem_t;

List_t consEmptyEL ();
/* returns an empty List */

List_t consEL(Elem_t e, List_t s);
/* cons of element e and tailing with List s */

Elem_t firstEL(List_t s);
/* first Elem e from List s */

List_t restEL(List_t s);
/* rest of List s */

int insertEL(List_t s, Elem_t e, int pos);
/* insert Elem e at position pos in List s */

List_t mapEL(Elem_t (*fun) (Elem_t), List_t L);
/* returns a transformed copy of List s */

List_t filterEL(bool (*pred) (Elem_t), List_t L);
/* returns a filtered copy of List s */

Value_t reduceVEL(Value_t (*opr)(Elem_t, Value_t),
Value_t eps0, List_t L);

/* returns fold applying operator opr over List s */

IV-E1. Anonymous Functions (lambda): Anonymous
functions are a core part of the building blocks of functional
programming. The C preprocessor allows working with argu-
ment lists of indeterminate length. A very useful macro was

Listing 8: list.c

typedef struct ListCDT_t {
Elem_t info;
List_t next;

} ListCDT_t; /* ListCDT_t Concrete Data Type*/

List_t consEL(Elem_t e, List_t S) {
List_t node = GC_MALLOC(sizeof ListCDT_t);
node->info = e;
node->next = S;
return nodo;

} /* Returns a List with just Elem e */
List_t mapEL(Elem_t (*func)(Elem_t), List_t L) {

if ( L ) return consEL((*func)(firstEL(L)),
mapEL(func, restoEL(L)));

return NULL;
} /* Recursive map HOF implementation (new List) */
List_t filterEL(bool (*pred)(Elem_t), List_t L) {

if ( !L ) return NULL;
if ( (*pred)(firstEL(L)) )

return consEL(firstEL(L),
filterEL(pred, restEL(L)));

return filterEL(pred, restEL(L));
} /* Recursive filter HOF implementation (new List) */
Value_t reduceVEL(Value_t (*opr)(Elem_t, Value_t),

Value_t eps0, List_t L) {
if ( !L ) return ident;
return reduceVEL(opr, (*opr)(eps0,

firstEL(L)), restEL(L));
} /* Recursive fold HOF applying "opr" on List s */

bool isOdd(Elem x) { return ODD(x); }
Elem_t square(Elem x) { return SQR(x); }
Elem_t sum(Elem_t res, Value_t val) { return res + val; }

int main() { /* composition of LAMBDA functions */
List_t a = consEmptyEL();
List_t b, c;
Value_t v, w, z;
a = consEL(1,consEL(2,consEL(3,consEL(4, a))));
/* a is {1 --> 2 --> 3 --> 4} */
b = mapEL(sqr, a);
/* maps sqr() to a, = {1 --> 4 --> 9 --> 16} */
c = filterEL(isOdd, b);
/* filters b with isOdd(), = {1 --> 9} */
v = reduceVEL(sum, 0, c);
/* sum is c folding "+" returns = 10 */
w = reduceVEL(sum, 0, filterEL(isOdd, mapEL(cuad, a)));
/* same as above, but composing filter and map */
z = mapfilterreduce(square, isOdd, sum, a);
/* same, but composing the three HOFs */

}

devised allowing the definition and use of lambda functions
in the code, as shown below The scheme also allows for the
algebraic composition of lambda functions:

i_compose_f_gx = lambda(f, g, x){f(g(x))},
with f = lambda(x){...}, g = lambda(x){...}, x ∈ Z

It is a sophisticated technique that is incorporated optionally
in the introductory course for three main reasons

(i) There is no requested need to teach the use of lambda
functions at this level in the course syllabus;

(ii) It is a feature outside the standard, even though modern
compilers such as gcc and clang allow the nesting of
function definitions, needed for its correct execution; and

(iii) A wrong function definition may give rise to compiling
or execution errors quite difficult to trace and amend.



Listing 9: lambda.c

#include <stdio.h>

/* LAMBDA expression returning a value */
#define lambda(FUNTYPE, PARAMS, ...) ({FUNTYPE lambda PARAMS {__VA_ARGS__;} lambda;})

/* Defining a type for declaring the function */
typedef int (*IFPTR_t)(int);

int (*i_compose_f_gx) (IFPTR_t, IFPTR_t, int); /* compose entire functions */

float (*f_compose_f_gx) (float (*)(float), float (*)(float), float);
/* Or making the definition inline to compose other float functions */

int main()
{

int (*r)(int) = lambda(int, (int x), return x+1);
int (*s)(int, int) = lambda(int, (int x, int y), return x/y);

printf("result = %i\n", s(r(7), r(3)));

/* Defining function composition (f.g)(x) = f(g(x)) [int domain] */
i_compose_f_gx = lambda(int, (IFPTR_t f, IFPTR_t g, int x ), return f(g(x)));

printf("f(g(x)) = %i (ints)\n",
i_compose_f_gx(lambda(int, (int x), return x+x), lambda(int, (int x), return x*x), 6));

/* Defining function composition (f.g)(x) = f(g(x)) [float domain] */
f_compose_f_gx = lambda(float, (float (*f)(float), float (*g)(float), float x), return f(g(x)));

printf("f(g(x)) = %f (floats)\n",
f_compose_f_gx(lambda(float, (float x), return x*x),

lambda(float, (float x), return x+x), 4.0f));

return lambda(int, (int x), return x )(0); /* returns the IDENTITY function applied to 0 */
}

IV-F. Using Boehm’s Garbage Collector for smart managing
of dynamic memory allocation

A common recurrent situation when working with dynamic
memory allocation is the problem of dangling pointers that
no longer reference valid structures, with the consequent
reduction in available memory (“leakage”) and potential catas-
trophic effects when trying to dereference and invalid pointer.

The chosen solution is using the available opensource
(Garbage Collector), particularly Boehm’s GC [15]. The GC
substitutes all calls in C that create, free and manipulate
dynamic memory (malloc(), calloc(), realloc()) for a more
efficient set (GC_MALLOC_ATOMIC(), GC_MALLOC(),
GC_REALLOC()) which use smart pointers to keep track of
memory use. There is no need of using the free() function
any more, although it can be called to provoke a memory
scrambling (GC_FREE()) because all memory is now handled
automatically under demand, the way is done in other common
functional languages (Python, Scheme, Haskell, ML, and also
Java).

Together with the byte-level memory tracker Valgrind from
Nethercote and Seward [16] they do the job of diagnosing
memory execution state to monitor performance and avoid
damaging program disruptions. This allows building relative
big applications having an implicit but efficient memory

management without the programmer being overtly aware of
it, and adjusted to the latest C standard and CERT security
coding practices [17].

IV-G. Use an IDE with embedded debugger and dynamic
memory validation tools.

Multiplatform IDEs (Integrated Development Environ-
ments) such as Code::Blocks [18] or Eclipse [19] are essential
tools for correct tracing and tracking of the interactive pro-
gramming process. They host real time embedded source code
debuggers that allow step-by-step code execution, examining
variables values and memory state at every instant. They
enable an integrated vision of program execution at levels
thought unthinkable in former approaches in the teaching
of Computer Programming for engineers, where active error
hunting was touched briefly if at all, other than blindly using
interspersed printf statements around suspected areas.

V. CONCLUSIONS

One key objection that can be raised for this course strategy
is why going to all this work with C, when it would be so much
easier just going along directly using a language with a truly
functional paradigm. The answer is that choosing the most
adequate programming tool that future engineers should learn
requires joint agreement of all engineering departments, who



are reluctant to change the base language in which much of
their academic and professional practice rely on. Segmenting
student population by engineering discipline so they could
learn separate programming languages does not make efficient
use of the teaching resource, since each school would choose.

V-A. Impact and Consequences

Applying this approach en the current teaching of Com-
puter Programming for Engineers, split into an introductory
course and an advanced one, has had qualitative impact and
consequences.

V-A1. Qualitative results: This is the third consecutive
period running with the approach, and although is evidently
clear that there is not enough data in the time period for mak-
ing and affirmation backed by solid statistics, the number of
the topics covered in the courses have increased by 20%, and
allowed to cover some of them to greater depth. The problems
and lab projects have increased in complexity, and so have
the proposed solutions, highlighting greater comprehension
by students of the functional algorithmic process, much more
appropriate for engineering disciplines that already work based
on the aggregation of functional components.

Results reveal a noticeable jump in quality for homework
and lab coding assignments, and incremented legibility. It
allows painless transference of Calculus (differential and inte-
gral) competences, since this concepts are directly expressible
using the constructions already described.

The topics covered in the Introductory course follow this
learning schedule: functions, formal specifications, conditional
execution, recursion, input/output, parameter passing, iteration,
algorithms on data structures, ADTs,

Looking into the future, recent powerful languages such
as Julia, Python, Rust and Erlang allow greater efficiency
as hybrid languages, and merit further research to determine
whether they are well suited as the computer language of
choice for programming courses in non-computer science
majors.

In the Appendix we show a simple example of a code for
finding the roots of a 2nd degree polynomial (Listing 10), and
how it looks when includes the following “hoare.h” header
(Listing 10) to facilitate program correctness.
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Listing 10: rootpoly2.c: Example of a polynomial root-finding program using the “hoare.h” header

/*
* DESCRIPTION: calculate roots of a second degree polinomial *
* p(x) = Ax^2 + Bx + C = 0 */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include "hoare.h"
const double eps = 0.000001

int main() {
/* Good practice: initializing variables to predefined +

* values, even though they will be substituted by others */
/* Input */

double a = 1.0, b = 0.0, c = 1.0, d = 0.0, r = 0.0;

double root1 = 0.0, root2 = 0.0; /* real roots */

double preal = 0.0, pimag = 0.0; /* complex roots */

bool isComplex = false; /* true if roots are complex */

printf("\Obtain 2nd degree polynomial roots"
"p(x) = Ax^2 + Bx + C = 0");

printf("\n\Give value of cuadratic term ’A’ (real): ");
scanf ("%lf", &a);
printf("\nGive value of linear term ’B’ (real): ");
scanf ("%lf", &b);
printf("\nGiva value of independent term ’C’ (real): ");
scanf ("%lf", &c);
printf("\nLoaded terms A = %f, B = %f, C = %f\n\n", a, b, c);

_expects( a != 0.0); /* modified precondition */
d = b*b - 4*a*c; /* discriminant */
isComplex = (d < 0.0);

/* If d is negative, we get complex roots */
printf("\nDiscriminant D = %lf; is it Complex ? = %d\n\n", d, isComplex);

/* obtain square root of the absolute value of the discriminant d */
r = sqrt(ABS(d));

if (isComplex) {
preal = -b/(2*a);
pimag = r/(2*a);
printf("\nComplex roots %lf +%lfi and %lf %lfi\n\n",

preal, pimag, preal, -pimag);
} else {

root1 = (-b + r)/(2*a);
root2 = (-b - r)/(2*a);
printf("\nreal roots %lf y %lf\n\n", raiz1, raiz2);

}
/* modified postcondition */

_ensures( ((ABS(root1*root2 - c/a) < eps) and
(ABS(root1+root2 + b/a) < eps)) or
((ABS(preal*preal+pimag*pimag - c/a < eps)) and
(ABS(preal+preal + b/a) < eps)) );

return 0;
} /* end main */



Listing 11: hoare.h: A header incorporating several useful macro tips to aid in formal specifications design

/* Code distributed under the GNU LGPL 3.0 License *
* Version 1.07 08/11/2016, Author: Victor Theoktisto */
#pragma once
#ifndef _HOARE_H_INCLUDED_
#define _HOARE_H_INCLUDED_
#include <stdlib.h>
#include <stdio.h>
/* CompilerAssert(exp) is designed to provide error checking at compile-time for assumptions

* made by the programmer at design-time and yet does not produce any run-time code.

* Example: if (CompilerAssert(sizeof(int)==4)) ... */
#define CompilerAssert(Predicate) extern char _CompilerAssert[(Predicate)?1:-1]

enum bool {FALSE=0, TRUE=~0}; /* Useful definitions */
#define and &&
#define or ||
#define not !
#define xor ^
#define GLUE(a,b) a##b
#define XPREFIX(s) s
#define PREFIX(a,b) XPREFIX(a)b
#define ABS(a) ({__auto_type __a = (a); __a < 0 ? -__a : __a;})

/* Compiler warns when the types of x and y are not compatible */
#define MAX(x,y) ({__auto_type __x=(x); __auto_type __y=(y); (void)(&__x==&__y); __x>__y? __x: __y;})
#define MIN(x,y) ({__auto_type __x=(x); __auto_type __y=(y); (void)(&__x==&__y); __x<__y? __x: __y;})
#define ODD(n) ((n)&1)
#define EVEN(n) (!((n)&1))
#define SWAP(__A,__B) do{ __auto_type __T=(__A); (__A)=(__B); (__B)=__T;}while(0) /* failsafe SWAP */
#define MEMSWAP(A,B) \

do{ unsigned char __C[sizeof(A) == sizeof(B) ? (signed)sizeof(A) : -1]; \
memcpy(__C,&B,sizeof(A)); memcpy(&B,&A,sizeof(A)); memcpy(&A,__C,sizeof(A)); \

}while(0) /* failsafe Memory SWAP for any size */
#define ISPOWEROF2(x) (!((x)&((x)-1))) /*--- Is a number a power of two ---*/
#define NUMCELLS(_arraytype) (sizeof(_arraytype)/sizeof(*_arraytype)) /* _NUMCELLS() macro */
#define ONESCOMPLEMENT(x) ((x)^(~0))) /* One’s complement negation as a macro */
#define TWOSCOMPLEMENT(x) (((x)^(~0))+1) /* Two’s complement negation as a macro */
#define SQUARE(x) (__auto_type __x=(x); (__x)*(__x)) /* Safe SQUARE() macro, final form */
#define CUBE(x) (__auto_type __x=(x); (__x)*(__x)*(__x)) /* Safe CUBE() macro, final form */
#define ALLONES ~0 /* fills an integer value with ONES independent of type size */
#if UNICODE /* Distinguishing between ascii chars and wchar chars: */

#define dchar wchar_t
#define TEXT(s) L##s /* word chars (unicode) */

#else
#define dchar char
#define TEXT(s) s /* byte chars (ascii) */

#endif
/* Macros for memory allocation using Boehm’s GC *
* Redefine "malloc()" using GC_MALLOC, "free()" is optional */

#define NEW(__PointerVar) (__PointerVar=GC_MALLOC(sizeof(*__PointerVar)))
#define NEWARRAY(__Dim,__DataType) (GC_MALLOC(__Dim*sizeof(__DataType)))
#define DELETE(__PointerVar) (NULL)

/* General assertion (Predicate) */
#define _assert(Predicate) __do_assert("Assertion does not hold for", Predicate)

/* Precondition (Predicate) */
#define _expects(Predicate) __do_assert("Precondition does not hold for", Predicate)

/* Postcondition (Predicate) */
#define _ensures(Predicate) __do_assert("Postcondition does not hold for", Predicate)

/* Invariant (Predicate) */
#define _invariant(Predicate) __do_assert("Invariant does not hold for", Predicate)

/* Precondition (integer expression) */
#define _bounded(IntExpression) __do_assert("Bound does not hold for", (IntExpression)>=0)
#ifdef NDEBUG

#define __do_assert(Message,Predicate) ((void)0) /* Null statement if not debugging */
#else /* We are debugging !!! */

#define __do_assert(Message,Predicate) \
((void)((Predicate)?0:__my_assert(Message,#Predicate,__FILE__,__LINE__)))

#define __my_assert(Message,Predicate,File,Line) \
((void)printf (">>> At %s:%u: %s ’%s’\n<<< Assertion failed. " \
"Execution will stop now.\n",File,Line,Message,Predicate),exit(1),0)

#endif /* NDEBUG */
#endif /* ifndef _HOARE_H_INCLUDED_ */


