
Using Dojo as a Pedagogical Practice to Introduce
Undergraduate Students to Programming

Fabio Gomes Rocha
Universidade Tiradentes

Sergipe, Brasil
gomesrocha@gmail.com

Rosimeri Ferraz Sabino
Universidade Federal de Sergippe

Sergipe, Brasil
rf.sabino@gmail.com

Guillermo Rodriguez
ISISTAN (UNICEN-CONICET)

Tandil, Argentina
guillermo.rodriguez@isistan.unicen.edu.ar

Abstract—The objective of this article is to analyze the contri-
bution of the use of software for introducing programming, using
Dojo as a pedagogical practice. As an empirical research, we
present a case study in the discipline of Introduction to Program-
ming of the Computer Technician Course of the Brazilian Service
for Industrial Apprenticeship, Regional Department, Sergipe.
Based on the verification of difficulties in students learning,
a test was developed using Dojo as a teaching methodology.
The analysis were performed with a qualitative approach, using
and associating the data obtained from the pedagogical activity,
framework and references adopted in the case study. The final
results showed a reduction in the number of students rate of
absences, higher rate of students satisfaction and higher grades
in the course, showing the possibility of adopting the experiment
due to success in learning.

Keywords: Dojo, Introduction to Programming, Professional
education, Pedagogical practices.

I. INTRODUCTION

The evolution of technology occurred between the 1980s
and 1990s with the emergence of microcomputer and the
Internet has created new jobs and boosted computer program-
ming. Due to the steady growth and high applicability of the
software, it can be widely used ranging from the management
of nuclear power plants to using simple electronic cellphone
games, thus providing the expansion of demand for low-skilled
work for this job. The training of skilled workers has been
widrespread since 1962, in which universities and technical
courses [1] got accredited and were included as a category
of knowledge in WordSkills International, a global event that
started 64 years ago and has the partnership of 52 member
countries [2].

It has been observed that the expectations of computer
technicians about the acquisition of knowledge are covered
with issues related to systematic thinking, data abstraction
and focus on problem solving as a system. The aim of this
discipline (Introduction to Programming) is to focus on the
study of the laws and the validity criteria governing thought
and demonstration” [3]. Being an essential course for computer
programming and therefore to careers related to computing [4],
the Introduction to Programming discipline is administered in
the first phase of the course, where the students should learn
to develop logical reasoning to solve problems.

This discipline involves mental operations involving percep-
tion and analysis geared towards the development of knowl-
edge for solutions; however, this discipline is one of the main

reasons for dropout and failure in the early stages of technical
courses in Computer Science [5]. This scenario therefore
highlights the importance of developing a pedagogical practice
that enables better results and students interest in learning. The
aim of this research is to analyze the contribution of the use
of software for teaching logic, adopting Dojo as a pedagogical
practice [6] [7] [8] [9]. Dojo is a training technique for
programmers, based on tests, designed by David Thomas, who
started this practice in Paris in 2003. It was brought to Brazil in
2007 by Ivan Sanchez, from the Dojo Floripa group [10]. The
Dojo is considered place where developers gather to train and
learn. Meetings are periodic (usually weekly) and focused on
a programming challenge [11]. In the light of the above, this
paper aims to corroborate the hypothesis that the application of
Dojo could facilitate the learning experience of programming,
thereby reducing the rate of failure and dropouts, and also
to increase interaction between students and teacher, and an
abstract view to solve problems. The remainder of the paper
is organized as follows. Section 2 describes background and
related works. Section 3 presents the proposed methodology to
validate our hypothesis. Section 4 reports our case-study and
results. Finally, Section 5 concludes our paper and identifies
future lines of research.

II. BACKGROUND AND RELATED WORK

Dojo is a periodic meeting organized around a programming
challenge where people are encouraged to participate and
share their coding skills with the audience while solving
the problem. Coding by following Dojo aims at acting as a
safe and non-competitive environment, in which everyone is
allowed to learn and make mistakes and share their knowledge
so that everyone can improve and become better at their
craft. Coding dojos are typically coached by a dojo master,
who facilitates the space and time, while the participants
engage in solving a problem. Often at least part of the
participants acts as an audience, whose task is to monitor the
working process of other participants and give feedback and
improvement suggestions [12]. There are some XP principles
that fit Dojo programming. Firstly, Failure promotes to fail
when learning something new. Secondly, Redundancy means
that one can always gain new insights when tackling the same
problem with different strategies. Thirdly, Baby Steps states
that step towards the solution should be small enough so that
everybody can comprehend and replicate it later. There are

some general rules to make Dojo an easygoing and productive
learning environment. The meeting is held in a room with
enough space for all the participants and usually requires
only a projector and a computer or laptop. Having whiteboard
space for sketching and designing discussions is also valu-
able. The participants are encouraged to develop the solution
using Test-Driven Development (TDD) and are free to choose
whichever programming language they prefer. Simultaneously,
considerable attention is paid to agile methods as a means to
improve management of software development processes. The
widespread use of such methods in professional contexts has
encouraged their integration into software engineering training
and undergraduate courses [13]. Along this line, there has been
a strong demand for talented ICT (Information and Communi-
cation Technology) graduates in the software industry in New
Zealand. To meet this demand, in 2015, the government of
New Zealand provided funding for three new ICT Graduate
Schools. The challenge for the schools was twofold: to provide
a qualification for students transitioning into ICT and to
prepare those with an ICT education for the workforce [14].
Particularly, introducing students to Dojo programming has
been widely reported, showing promising results and insights
for improving the teaching of programming in undergraduate
courses. Sato et al. describe the experience of creating and
running an active Coding Dojo in Sao Paulo, Brazil, sharing
the lessons learned from the experience. The role of the Dojo
in the learning process is discussed, showing how it creates
an environment for fostering and sharing Agile practices such
as TDD, Refactoring and Pair Programming, among others
[12]. Schoeffel et al. have proposed to assess Coding Dojo.
As this technique has been poorly addressed in literature, the
research has contributed for finding evidences that it was more
effective than usual classes based on speeches. The paper
reported an experiment that compared the performance of a
group that was exposed to the dojo technique and a control
group exposed to usual speech-based classes. Pre and post
tests were applied to students from a class of technicians
in electronics and informatics. The results showed that the
average grade of the group that has participated at the dojo
activities was significantly higher than the average of the
control group, especially when regarding evaluation of practice
[15]. In [16], the authors have proposed an agile approach
for bringing Agile practices to the learning community by
means of coding dojo. To test the approach, a group of
participants was asked to solve a programming task together
using TDD and pair programming. In their experiment, they
embedded a coding dojo into the Agile practices part of their
undergraduate software engineering course. The participating
students considered the coding dojo a useful experience, and
most of them would recommend participation in coding dojos
for their fellow students, as well. In [17], the authors have
observed that both Pair Programming and Coding Dojo are
rarely used in different types of programming tasks such
as front-end programming tasks. Consequently, the authors
presented an empirical study comparing Pair Programming
and Coding Dojo in the teaching of mockups development.

The results showed that Pair Programming was well accepted
by the students with positive results. Futhermore, despite the
benefits of Coding Dojo in the learning process, students
reported several challenges related to motivation and user
experience. A gamification approach was reported in [18],
in which ClassDojo was designed for increasing students
motivation in learning programming. Being also an experi-
mental study the research was designed according to the con-
trolled grouped pretest, posttest research model. The authors
highligthed student motivation and positive impact on their
lessons. In [19], the authors have presented some Coding
Dojo characteristics that help teaching agile development
techniques. Experienced practitioners were interviewed to get
qualitative information about their perception of the Coding
Dojo practice. By means of a survey, the authors concluded
that Coding Dojo is a teaching technique to help developers
create software with higher test coverage rates. In [20], the
authors described the tool AppInventor for allowing students
to develop mobile applications in a relatively quickly and
easily way using a visual block programming environment.
Experiments by means of a survey showed that students were
able to collaborate and have fun under this approach. In [6],
the authors proposed to use reflective practice as a sense-
making device to underpin the investigation and improvement
of coding dojo for effective learning. By conducting a case-
study with two Dojo sessions, the authors stated that the
insights from the reflective practice and related theories can
open new and interesting inquiries on coding dojo, and help to
better understand the dynamics of coding Dojo, and improve
the Dojo practice accordingly. In [21], the authors proposed
coding Dojo as a teaching technique to help developers create
software with higher test coverage rates. The results showed
three mains aspects. Firstly, baby steps helps gradual solutions
way and it simplify the process of find a solution to a problem.
Secondly, Coding Dojo contributes to learn TDD. Thirdly, pair
programming helps the leveling of the group and it is good
for the Coding Dojo session.

III. METHODOLOGY

As an empirical research, this study was tuned to the obser-
vation of a specific group of students [22], using exploratory
and descriptive tests to verify learning difficulties face by
students. Besides, a trial test of the use of Dojo was utilized
as a methodology for teaching. The analysis of the results
was made under a qualitative approach, associating the data
obtained in the pedagogical activity and frameworks adopted
in the study. The participants consisted of students of Introduc-
tion to Programming discipline, and the course duration was
140 hours from a of total 1.100 hours of Computer Technician
course of the Brazilian Service for Industrial Apprenticeship,
Regional Department, Sergipe, in the period of March-April
2017. This course was called Linked Education, and it was
developed by the Industry Social Service (SESI) and National
Industrial Apprenticeship Service (SENAI), where students
attend high school in SESI in concomitant to technical ed-
ucation in the institute. Classes have annual enrollment. The

class analyzed is in its second year and has an average age
of students between 14 and 16 years. The students were
selected from the morning and afternoon study shifts, and
were students of both genres, as shown in Table 1 below: The

TABLE I
DISTRIBUTION OF CLASS AND GENDER OF THE STUDENTS

Shift Men Women Total
Morning 20 05 25
Afternoon 19 10 29
Total 39 15 54

teaching of the discipline started with 8 hours of theoretical
approach on Applied Logic to Programming, contextualizing
on the formation of the Computer Technician and identifying
the relevance of the development of relevant activities in this
profession. In continuation according to the teaching program,
it was explored the relationship between logic with situations
experienced in the daily lives of students. We seek knowledge
implied, for example the simple fact of decision-making at the
time when an individual crosses a street. This action requires
the evaluation of a traffic light signaling impediment or release
to the pedestrian.

In these introductory classes we adopted the Scratch tool
as an incentive to the performances of classes in groups of
four students for troubleshooting. Scratch is a software created
by Massachusettes Institute of Technology (MIT) for teaching
logic. It allows students to interact in a simple form, and also
create virtual animations based on the application logic.

After three classes, totaling 12 hours, we continued with the
presentation of the concept, the objectives and rules for the use
of Dojo in finding solutions to problems. All students were
involved in solving a single problem in the VisualG software.
In this dynamic, we proposed a challenge. The purpose of
the activity was not related to the resolution of the challenge,
but to learn from the experiences from the group. After the
definition and explanation of the problem, one of the groups
started the coding work from a computer. This activity was
exposed to the large group that is for all to follow. One group
of students assumed the role of the ”pilot”, developing coding,
while the second group acted as ”co-pilot”, observing and
assisting the pilot.

Each group had from five to seven minutes to develop the
activity. At the conclusion of the time limit, the pilot should
join the large group, while the co-pilot takes over the position
of the pilot, taking the first place or position. This was done to
all the groups in the proposed solution. After this activity, we
started with the practice of coding cycle in order to improve
the code initially developed. The pedagogical intention is to
helo students to understand that an initial solution can be
optimized by other contributions, until it becomes the best
one. The following lessons were interspersed with theoretical
content, individual exercises and new propositions solutions
using Dojo, leading to the practice of the contents worked on
the lectures. Thus, every 4 hours of theoryl and practice, there
were 4 hours of use of Dojo.

IV. CASE-STUDY AND RESULTS

The idea of using the Scratch software for pedagogical
experience was based on the constructivist theory, which
states that it attaches particular importance to the role of
constructions in the world as support to what was thought of
in the head mentally, becoming thus least one purely mentalist
doctrine [23]. This technological tool has a simple interface,
which allows the student to interact with virtual characters,
also permitting the creation of interactive stories, games and
animations. Its focus is to help young people think creatively,
systematically and collaboratively [24]. The software of the
target audience are young people between 8 and 16 years
old, and thus the course was applied and investigated for
students within the same age. The pedagogical proposals were
established based on the stages of Piaget [25], putting the
formal operational stage into consideration, which happens
or occurs from the age of 11 or 12 to the adult stage of
an individual. The conditions of human development stage
were applied to the extent to which the student breaks down
the problem in steps, starting from the general problem in a
practical view to the complex thereby. This way, the practice
aimed at developing a more abstract view to establish the
required thought induced logic.

Using students as active participants in the troubleshooting
process ranked them closer to the concrete, i.e, to their
closest experiences in a process of middle man interaction
as described by Bigge [26] about the perceived reality. The
professor and his colleagues were also involved in this pro-
posed dynamic interaction with a view to knowledge, since
this movement implied a subject-subject-object relationship
[27]. The classroom being the place of occurrence of the
activity may take for themselves the prospect of interaction
with knowledge and acts of the educational practice. The role
of being the main place that develops collective intelligence
is also assumed [28].

The act of encoding software results in the creation of an ob-
ject with a specific significance to the students, as they see the
completion of the application using their own knowledge. For
this creation, students are encouraged to realize the problem
individually, but also being led to consider the collaborative
participation of the others in preparing the logical solution.
This way, students had an active and interactive participation,
which is more positive than the passive reception. Moreover
active participation is encouraged by their readiness and learn-
ing standards [26].

In the proposed practice, the participation of the teacher
is particularly relevant in times of transition from theoretical
approach to the detailed explanation of the search for a
solution to the proposed problem. In addition, it is essen-
tial that the teacher clarifies the possibility of the proposed
solution to be reviewed by students and this brings about a
continuous cycle of improvement in the initial solution. The
process of teaching and learning thus becomes a reconstruction
experience [29]. However, the hours of distribution of these
moments of practice of the discipline should not lead students

to exhaustion. Daily practices should be avoided, as evidenced
by the research spaced practice is more efficient than compact
practice [26].

V. CONCLUSIONS

Since introduction to programming is essential to the study
of programming, students are required to understand concepts
and applications pertaining to their training and monitoring
in their professional journey. The teacher in charge of this
course is responsible for creating a motivating and attractive
environment to help develop students cognition. The experi-
ment conducted in this study, using the Dojo as an educational
tool proved to be positive with surprising results among the
zero rate of dropout and 6% of absences. In previous classes,
with the same teacher and teaching practices but without the
use of Dojo, class absences reached a high rate of 23%. At
the end of the dynamic experiments, there was a report from
students who claimed to be motivated, and therefore avoided
skipping school. Though this experiment has been performed
in only two classes, and the results are still preliminary, it is
possible to observe that the interaction and creative application
enables better assimilation of programming for the students.
In the evaluations period prior to the use of Dojo, there were
listed averages between six and seven, six being the minimum
for approval.

After the experiment, the grades increased to the average of
seven point five and eight, highlighting the students’ opinions
on the satisfaction gained in the proposed activity. Students
have to be prepared for the logical processes necessary for the
knowledge and skills to be worked on the course. Even though
our preliminary positive results, the subsequent discipline
called Programming Desktop requires experience in longer
periods of observation, and in other groups. For this reaseon,
we claim the adoption of Dojo as a pedagogical practice for
the development of logical, abstract and systemic thinking.
Therefore, the role of activities and tools used would help
the teacher in making the teaching process more interactive
and collaborative. Bearing in mind that the research does not
hinder the possibilities of success with other practices, more
case studies can be developed for the search of other tools to
be applied to the teaching of logic, such as games and use of
robotic lego.

ACKNOWLEDGMENT

Thank you for Tiradentes University (UNIT) support for this
research.

REFERENCES

[1] J. R. Rice, S. Rosen, History of the department of computer sciences
at purdue university, Purdue University []. : http://www. cs. purdue.
edu/history/history. html [. .: 22 2010 .].

[2] Worldskills, WorldSkills International History, Ipsis Grfica e Editora,
2010.

[3] J. Mazano, J. d. Oliveira, Algoritmos: lógica para desenvolvimento de
programação. 21a, São Paulo: Érica.

[4] E. P. Pimentel, V. F. de França, R. V. Noronha, N. Omar, Avaliação
contı́nua da aprendizagem, das competências e habilidades em
programação de computadores, in: Anais do Workshop de Informática
na Escola, Vol. 1, 2003, pp. 533–544.

[5] Z. S. d. Silveira, Contradições entre capital e trabalho: concepções de
educação tecnológica na reforma do ensino médio e técnico.

[6] J. Rooksby, J. Hunt, X. Wang, The theory and practice of randori coding
dojos, in: International Conference on Agile Software Development,
Springer, 2014, pp. 251–259.

[7] L. Bossavit, E. Gaillot, The coders dojo–a different way to teach and
learn programming, in: International Conference on Extreme Program-
ming and Agile Processes in Software Engineering, Springer, 2005, pp.
290–291.

[8] M. Bravo, A. Goldman, Reinforcing the learning of agile practices
using coding dojos, in: International Conference on Agile Software
Development, Springer, 2010, pp. 379–380.

[9] D. T. Sato, H. Corbucci, M. V. Bravo, Coding dojo: An environment
for learning and sharing agile practices, in: Agile, 2008. AGILE’08.
Conference, IEEE, 2008, pp. 459–464.

[10] E. Bache, The coding dojo handbook, Emily Bache, Canada.
[11] Dojo.

URL http://apoie.org/Dojo.html
[12] D. T. Sato, H. Corbucci, M. V. Bravo, Coding dojo: An environment

for learning and sharing agile practices, in: Agile, 2008. AGILE’08.
Conference, IEEE, 2008, pp. 459–464.

[13] G. Rodrı́guez, Á. Soria, M. Campo, Measuring the impact of agile
coaching on students performance, IEEE Transactions on Education
59 (3) (2016) 202–209.

[14] Y.-C. Tu, G. Dobbie, I. Warren, A. Meads, C. Grout, An experience
report on a boot-camp style programming course, in: Proceedings of
the 49th ACM Technical Symposium on Computer Science Education,
ACM, 2018, pp. 509–514.

[15] P. Schoeffel, D. F. Rosa, R. S. Waslawick, Um experimento do uso
de coding dojo na aprendizagem de programação orientada a objetos,
iSys-Revista Brasileira de Sistemas de Informação 9 (2).

[16] K. Heinonen, K. Hirvikoski, M. Luukkainen, A. Vihavainen, Learning
agile software engineering practices using coding dojo, in: Proceedings
of the 14th annual ACM SIGITE conference on Information technology
education, ACM, 2013, pp. 97–102.

[17] B. Estácio, N. Valentim, L. Rivero, T. Conte, R. Prikladnicki, Evaluating
the use of pair programming and coding dojo in teaching mockups
development: An empirical study, in: System Sciences (HICSS), 2015
48th Hawaii International Conference on, IEEE, 2015, pp. 5084–5093.

[18] H. H. Özer, H. Bicen, Determining the effects of class dojo application
on student success and perception, International Journal of Scientific
Study.

[19] R. B. Da Luz, A. G. S. S. Neto, R. V. Noronha, Teaching tdd, the coding
dojo style, in: Advanced Learning Technologies (ICALT), 2013 IEEE
13th International Conference on, IEEE, 2013, pp. 371–375.

[20] A. M. de Jesus, G. M. da Silva, I. F. Silveira, Using coding dojo with
mobile game development to engage students to learn programing (2017)
50–58.

[21] R. B. da Luz, A. G. S. S. Neto, Coding dojo the social method to teach
test driven development.
URL https://goo.gl/GJxqQ1

[22] R. K. Yin, Case study research: Design and methods (applied social
research methods), London and Singapore: Sage.

[23] S. Papert, Mindstorms: Children, computers, and powerful ideas, Basic
Books, Inc., 1980.

[24] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond,
K. Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, et al.,
Scratch: programming for all, Communications of the ACM 52 (11)
(2009) 60–67.

[25] J. Piaget, D. Elkind, Six psychological studies, Vol. 462, Vintage Books,
1968.

[26] M. L. Bigge, Learning theories for teachers, Harper & Row, 1982.
[27] L. Gamez, Psicologia da educao, LTC, 2013.
[28] V. M. Kenski, Educação e tecnologias, Papirus editora, 2007.
[29] J. Dewey, Experience and education, Kappa Delta Pi, 1998.

