
Evolving technology to better support teaching
introductory programming inside Moodle

Leônidas de Oliveira Brandão∗, Igor Moreira Félix∗, Patricia Alves Pereira‡ and Anarosa Alves Franco Brandão§
∗Instituto de Matemática e Estatı́stica - IME

University of São Paulo
São Paulo, Brazil

Email: leo@ime.usp.br, igormf@ime.usp.br
‡ Ibmec São Paulo
São Paulo, Brazil

Email: patricia.pereira@ibmec.edu.br
§Escola Politécnica

University of São Paulo
São Paulo, Brazil

Email: anarosa.brandao@poli.usp.br

Abstract—Nowadays, it is increasing the importance of devel-
oping skills related to the computational thinking at earlier stages
of education, and the adoption of tools that implement the visual
programming paradigm has been well succeeded in presenting in-
troductory notions of programming from kindergarten to college.
Such tools allows the user to program while manipulating blocks
that represent programming languages instructions. iVProg is
among this class of tools and was firstly implemented in Java and
could be integrated to Moodle using iAssign. Due to technological
evolution, iVProg also evolved to iVProgH and its integration
to Moodle is still possible by using the new version of iAssign
that allow the integration of HTML 5 packages to Moodle.
In this paper we describe how this evolution takes place and
presents iVProgH functionalities as well as iAssign extension to
include HTML 5 packages into Moodle. In addition, we give
some teaching support whenever integrated using iVProgH with
Moodle using iAssign.

Abstract—A importância de se desenvolver as habilidades rela-
cionadas ao pensamento computacional tem ganho importância
nos últimos anos, tendo recebido crescente atenção mesmo nos
estágios iniciais da educação formal. Além disso, a adoção de
ferramentas que implementam o paradigma de programação
visual tem apresentado relativo sucesso para se introduzir o
noções iniciais de programação, principalmente no ensino fun-
damental I. Tais ferramentas permitem que o usuário-aprendiz
programe a partir da manipulação de ı́cones ou blocos que
representam as intruções das linguagens de programação. Entre
essas ferramentas, encontra-se o iVProg, cuja primeira versão
foi implementada em Java em 2009, possibilitando seu uso como
aplicativo ou integrado à ambientes Web. Desde a primeira versão
o iVProg também podia ser integrado ao ambiente Moodle a
partir do uso do pacote iAssign. Nesse artigo apresentamos uma
necessária evolução do iVProg para uma versão em HTML 5, o
iVProgH. Para manter a integração com o Moodle, foi preciso
também avançar o pacote iAssign, que agora permite a integração
de qualquer pacote de módulo interativo de aprendizagem
codificado em HTML 5.

Index Terms—iVProg, iAssign, visual programming, Moodle

I. INTRODUCTION

The increasing role of Information and Communication
Technologies in our daily lives as well as the pervasiveness

of computing in several branches of activities makes compu-
tational thinking a strong desirable skill. Such a need brings
the inclusion of introductory programming disciplines in dif-
ferent education levels. In fact, the discipline of introductory
programming is part of other curriculum than the STEM one,
but also of humanities and medicine. In addition, it was also
included in elementary and high school [1, 2].

Computational thinking involves the ability of representing
and solving a problem in a way that could be “easily”
translated in a programming language [3, 4]. This is why
introducing the first notions of programming at earlier stages
of education is so important.

Nevertheless, for those who were at college or universities at
the first decade of the 2000, that are numbers to attest the fail
rate in introductory programming courses was about 33% [5, 6,
7]. Bosse and Gerosa [8] report that more than 50% of students
enrolled in MAC115, an introductory course of programming
at USP, during the years of 2010 to 2014, had failed.

Although the numbers are recent, this is not a novelty:
Du Boulay [9] stated in 1986 that “Learning to program is
not easy”. Moreover, there is an awareness that the lack of
skills and cognitive abilities to formulate and solve problems
algorithmically within novices result in high fail and drop out
rates.

In this context, the proposition of approaches to facilitate
the acquisition of such skills and cognitive abilities is strongly
desirable. It is worth to mention that acquiring such skills
and abilities is beyond learning an specific programming
language like C, Java or Phyton. The visual programming
paradigm is one of the approaches adopted to teach and learn
algorithms, which are computational solutions for problems
or, in other words, description of computational thinking. We
can cite, among existing visual programming tools, Alice [10],
Greenfoot [11], Scratch [12] and iVProg [13].

By adopting visual programming to teach introductory
programming, we use graphical components to allow the



construction of algorithms while simply manipulating them
and reducing the cognitive load related to the syntax of tradi-
tional programming languages [10, 11, 14, 15, 16]. Moreover,
due to its nature of stimulating computational thinking, tools
to support visual programming has been successfully used
even in advanced programming courses, such as distributed
programming [16].

Whenever we think about introducing algorithms for
novices at universities and colleges, it is of particular interest
that tools to support the teaching process could be available
anywhere, anytime, integrated to web-based learning environ-
ments, such as Moodle.

In this paper we present iVProgH, the HTML 51 version
of iVProg, and an extension of iAssign [17] to incorporate
interactive Learning Modules (iLM) [18] coded in HTML 5
into Moodle. These are technological evolution of existing
tools to address new constraints of web browsers.

The paper is structured as follows: section II briefly presents
iVProg and iAssign in their earlier versions, section III presents
iVProgH and its model to perform automatic assessment,
section IV presents the extension of iAssign to allow the
integration of interactive Learning Modules (iLM) coded in
HTML 5 in Moodle. In addition, section V presents some
guidelines to use iVProgH integrated to Moodle and, finally, in
section VI we present our final considerations and conclusion.

II. iVProg AND iAssign

In this section we present two of the LInE2 free educational
systems, the iVProg and the iAssign. The first one is an
educational software to be used to present the concepts of
programming, and the second is a software to integrate other
educational Web software to Moodle, when these software
could be classified as interactive Learning Modules (iLM) [18,
19, 20, 21]. Besides, all iVProg versions can be considered
iLM, so they can be integrated to Moodle by the iAssign.

A. iVProg

iVProg3 (interactive Visual Programming in the internet)
is a tool to support teaching and learning of introductory
programming. Its first version was launched in 2009 [14] and a
refactored version is available since 2015 [22]. The conception
of iVProg was guided by the following requirements:

• allow its integration to a web-based system or platform
to support teaching and learning;

• allow the authoring of exercises to be deployed in repos-
itories;

• provide automatic evaluation of exercises;
• decrease the cognitive load of learning the syntax of

an specific programming language while learning algo-
rithms.

1This means HTML (Hypertext Markup Language) version 5, enriched by
JavaScript and CSS (Cascading Style Sheets).

2Laboratory of Informatics in Education, sited on the University of São
Paulo - http://line.ime.usp.br.

3iVProg: available at http://www.matematica.br/ivprog/

The first version of iVProg was a simplification of Alice
2.0 [10]. By simplification we mean extracting some function-
alities, such as 3D animation, to allow its use as an applet4.
A screenshot of its interface is presented in figure 1, with an
algorithm to calculate n! (the factorial of a non negative integer
n). This version could be executed within a web browser
(applet) or individually, as a Java application.

Figure 1. iVProg (Java) - version 1

Figure 2. iVProg (Java) - version 2.

The second version of iVProg was a refactored version
of the first one. In fact, it was conceived as a product of
an iLM software product line [21]. The interface of this

4mini Java applications that had used to run in any web browser.



version is presented in figure 2, with the same example
presented in figure 1. Its interface includes the commands in a
contextualized way, differently from its first version and Alice.

Since it was first launched, iVProg has been successfully
used by teachers and students in introductory programming
courses [13], most of the time integrated with Moodle using
iAssign. However, since 2015 some web browsers started
experiencing problems to run applets. This was because it
depends on the NPAPI (Netscape Plug-in API) technology to
properly run and, for instance, Firefox/Mozilla does not include
NPAPI since version 52, Chrome since version 45.

For this reason we started a new iVProg version, now
implemented in HTML 5, and initiated the extension of iAssign
to allow the incorporation of iLM coded in HTML 5 to Moodle.
The iVProg in HTML 5 is presented in section III and the
extension of iAssign is presented in section V.

B. iAssign

iAssign is one of the avaliable modules to extends the
Moodle system. It brought to Moodle the main idea introduced
by SAW (Web Learning System) [18, 19, 20] package with
resources for improving its interactivity by allowing the inte-
gration of iLM into educational contexts offered by the system.
The main functionalities provided by iAssign are: interactive
activity, iLM filter, and detailed report [17]. A screenshot of
the iAssign interface is given in figure 3.

Figure 3. iAssign activities’ main interface

An Interactive Activity is a resource for authoring interactive
activities (exercises or examples) using iLM; an iLM filter is
a resource for integrating iLM to Moodle, making possible to
use the iLM in any Moodle’s asynchronous context, such as
forum, glossary, wiki etc.

Figure 4 shows the use of an iLM to support teaching
Geometry in the context of a glossary. At the top of figure
4 we have the authoring interface of the Moodle’s glossary
activity. In order to include the iLM to turn the activity into
an interactive activity it is needed to insert the iLM file name
between specific tags delimiters (<ia> · · · </ia>) where it
must be displayed within the text. The bottom of figure 4
shows the way the interactive activity is displayed for students.

A detailed report provides information related to the per-
formance of students while doing the interactive activities.

Figure 4. iLM filter - including an Interactive Activity of Geometry.

It includes information about how many attempts the student
got to finish the activity and, if the iLM provides automatic
assessment resources, it presents the status of the activity, e.g,
if it was evaluated as correct or wrong (see figure 5).

Figure 5. Detailed report of activities (green tick means correct; red wrong)

III. iVProgH

iVProgH is an evolving implementation of iVProg version 2,
now in HTML 5, to provide interoperability among all current
Web browsers. Figure 6 presents its main interface, which is
very similar to the previous version (see figure 2). In addition,
iVProgH can be easily incorporated to the any web-based
environment by simply writing a few lines of HTML code.

iVProgH maintains the commands contextualized, as it was
in iVProg version 2. This model brings as advantage to learners
the reduction of options available in the graphical interface.
For example, in an initial context, any command is available
(see left block in figure 7), but after creating a selection
command, the options available in the context of selection
are automatically restricted to the viable ones, which mean,
the creation of logical expressions (see the right side in figure
7).

In the iVProgH stable version, the following types of
variables are available: integer, real, text and boolean. In
addition, it provides resources to attributions, two variations
of loops (while and for), commands for control flow (logical



Figure 6. iVProgH main interface

Figure 7. Contextualized commands in iVProgH

selection) and command for input/output (i.e., read and print).
Comparing both versions, iVProgH innovates in the authoring
interface provided to teachers, to create interactive activities
with automatic assessment.

Automated assessment in iVProgH is implemented based
on test cases. Therefore, in order to prepare an exercise to
have automatic assessment, the teacher must create a list of
inputs and their corresponding outputs, the expected outputs.
The expected outputs are used to compare the values provided
by the one who solve the exercise and press the bottom to
send it for evaluation.

1) Test Case design: The aim of test cases is to simulate
the behavior of a correct algorithm. For example, in an activity
targeting the output of the average of two integer values
(entered by the user), one test case could be: using as inputs
the list (−1, 102) and as its corresponding output the single
value 51.5 (i.e. (−1 + 102)/2 = 101/2). A second test could
have as input the values −1 and 101, and the correspondent
output 50.

In formal terms, each test case consists of two lists, the in-
put list (e1, e2, . . ., ek) and its correspondent (if using a correct
algorithm) output list (s1,1, s1,2, . . ., s1,l1 , s2,1, s2,2, . . ., si,l2 ,
. . . sk,1, sk,2, . . ., sk,lk). On one hand, when the student’s algo-
rithm is tested, iVProgH uses e1 as its first input, e2 as the sec-
ond input, and so on. On the other hand, if (o1,1, o1,2, . . ., o1,l1 ,
o2,1, o2,2, . . ., oi,l2 , . . . ok,1, ok,2, . . ., ok,lk) are the outputs
from the student’s algorithm when using the input list, these
are compared with the expected output (some distance metric
like

∑k
i=1

∑li
j=1 ‖oi,j − si,j‖).

To avoid mistakes, it is recommended that the teacher
implements a complete version of the expected algorithm to
create the list of inputs and expected results to the activity.
Having the algorithm, the teacher must provides the most

significant inputs to the problem and submits them to the it.
The output list will be formed by the algorithm’s outputs, in
the very same order. The process of generating a list of test
cases is represented in figure 8.

Figure 8. Schema to Generate a Test Case

It’s possible to illustrate the use of test cases using a simple
problem: Develop an algorithm that reads an integer value
and prints this number and its square. To this problem, the
test cases could be the following six pair of lists (table I):

Table I
EXAMPLE OF TEST CASES

Inputs Outputs
-5 -5 25
-2 -2 4
0 0 0
8 8 64

10 10 100
100 100 10000

2) Solving an exercise in iVProgH: creating and algorithm:
The students must have access to the problem statement,
devise a solution for it, implement an algorithm in iVProg
(that solves the problem) and then send it to evaluation. This
process is represented in figure 9.

Figure 9. Algorithm Elaboration and Submission Process

When the student finishes one version of algorithm-solution
and “press” evaluation button, the iVProg proceeds to the
following steps: 1. gets the first item e1, from the first test
case, and submits it to student’s algorithm; 2. captures the
outputs generated by the input (o1,1, o1,2, . . ., o1,l1); and 3.
compares them to the expected outputs (s1,1, s1,2, . . ., s1,l1).

Depends on the iLM configuration, it is possible to evaluate
if the algorithm is correct without sending it to the server, as
many times as the student wish. In current version of iAssign,
only the last student’s submission (and its grade) is registered.

3) Automatic Assessment in iVProgH: As aforementioned,
iVProgH compares the outputs sent after the solution of an
exercise with the expected ones, resulting in a grade between
0 and 1. If there is no difference between the expected output
and the sent output, it is attributed integral grade 1. However if
significant difference is detected in the sent outputs, the grade
should be zero (0). iVProgH repeats this process for all entries



and, at the end of the list of test cases, it generates a mean of
grades.

The assessment process is presented in diagram at the
figure 10. The algorithm is executed using the input list
(e1, . . ., ek). Then the sent outputs (o11 , . . ., ok,lk) are com-
pared with the expected outputs (s11 , . . ., sk,lk). The automatic
assessment process begins with the reception of the algorithm
sent for evaluation, then it is executed for the whole list of
test cases inputs. Finally, the comparison among the generated
outputs and the expected results and its associate results are
presented (“printed”) in the iVProgH output area.

Figure 10. Algorithm Evaluation Process

It’s important to highlight that the test case evaluation’s
efficiency is directly related to their coverage extension. This
mean that teachers must provide test cases for each possible
variations for the algorithm behavior. For instance, if the
purpose of an algorithm is to determine the highest value in
a sequence, it is necessary that at least one test case includes
the highest number in the first position and other test must
have the highest number at the end of the sequence.

IV. INTEGRATOR OF iLM TO Moodle VIA iAssign

Since the first version of iAssign, in 2010, it provides the
integration of Java packages to the Moodle environment. This
means that any Moodle administrator can install new iLM,
teachers can produce new interactive activities to their students
with this iLM, and students can view, test and send their
solutions, in an integrated fashion. Besides, iAssign has usual
features to import, export, duplicate, remove, and configure. In
the figure 11 is presented a components diagram for Moodle-
iAssign-iLM. In the diagram we can devise that iAssign is
integrated with Moodle by its Activity modules and Filters.

Figure 11. Components of Moodle-iAssign-iLM

To allow the incorporation of HTML 5, new PHP scripts
were developed and others were re-factored, resulting in 32

new or modified scripts, from a total of 51. The current
directory structure is presented in table II.

Table II
THE iAssign DIRECTORY STRUCTURE

Directories Comments
mod/iassign iAssign directory inside Moodle
mod/iassign/backup/moodle2 containing files to provide backups/restoration
mod/iassign/classes/event treatment to event
mod/iassign/db database management (updates, upgrades, . . . )
mod/iassign/icon support imagens
mod/iassign/ilm directory to all the installed iLM
mod/iassign/ilm debug to help debug during development
mod/iassign/ilm handlers new directory to manage iLM Java and HTML 5
mod/iassign/lang language dictionary (PT BR, EN US, FR)
mod/iassign/pix to provide iAssign logo

To be integrated into Moodle, an HTML 5 package, as well
as any other iLM, has to implement at least the first two
methods described below:

• a method to read a content file through URL (so iAssign
can inform the parameter iLM_PARAM_Assignment
to the iLM package);

• a method named getAnswer(), to returns to iAssign a
text with the student’s answer to the activity; and

• if the iLM contains an engine to automatic assessment, a
method named getEvaluation().

If the iLM implements automatic assessment, like iVProgH,
iAssign manages the results obtained by student in the activity,
inserting the activity’s grade in the Moodle gradebook.

For security reasons, the integration of new iLM is restricted
to users with administrative permissions in Moodle system. To
add a new instance or a new version of a previously installed
iLM, the user accesses the administrative area, enables block
edition, selects the tab plugins and, in the block activities,
selects the package iAssign. Figure 12 shows the Moodle
interface for such installation.

Figure 12. Adding a new iLM in Moodle via iAssign

When the new iLM has been successfully installed, users
with teacher’s role in some course, are able to create new
activities using the recent added iLM and their students may
solve such activities.



A. iLM integrated to Moodle: operation

When integrated into Moodle, any available iLM is ready
to be used. The teacher can author interactive activities using
the iLM and make them available to the students. In their
turn, the students can solve proposed problems using the iLM,
test their solution (if the iLM provides automatic assessment
mechanism), and sent it to the server. The teacher can see the
student’s answer. If the iLM has a mechanism to automatic
assessment, then iAssign also manages the associated grades,
integrating them to the Moodle’s gradebook (or Grader re-
port).

It is worth note that, iAssign considers as grade a value
between 0 and 1 (0.5 means medium grade) that is registered
in the Moodle database.

V. iVProgH INTEGRATED TO Moodle VIA iAssign

Any iLM can be considered as a coarse-grained learning
object (LO) since they can be found, reused, and are inter-
operable [23, 24]. Besides, the essence of LO is to be
devoted to education and be used via Web. Several Learning
Management System (LMS), like Moodle, provides methods to
allow the LO integration and usage.

In this sense, the iAssign is a Moodle integrator of iLM,
like iVProgH. However its use is tight integrated, as explained
in previous sections. Moreover, since iVProgH provides au-
tomatic assessment, the teacher can easily detect conceptual
flaws or, even, if an activity is not well adjusted (maybe
presenting some conception error or the difficulty is over the
students knowledge). For instance, in a period of time, if no
student could solved the problem, this could mean that the
statement is ambiguous or contains errors.

To the students, a significant advantage of iVProgH-iAssign
over a weak integrated LO could be the facility to use and
detect problems in their solution. In the following, we will
describe how an activity can be authored using iVProgH-
iAssign, as well as how this activity can be executed. A
sequence diagram of this operation is given in Figure 13.

Figure 13. iVProg Operation Sequence Diagram

1) Activity authoring - teacher role: The iVProgH provides
an interface for teachers to create activities, actually to create
test cases, as explained in section III. The initial step is the
common one to any Moodle activity creation (turning on the
edition mode; selecting the Add an activity or resource and
iAssign option). After the iAssign block of activity is created
(as in figure 3), it must be selected inside it the option Add
activity and chosen the iVProgH among the iLM options. In
this context, it must be opened the online editor, that will
result in the test case builder in figure 14, the left rectangle.

Figure 14. Activity authoring

2) Working out on an activity - student role: The activity
is available to the student in a Web page with the iLM, and
the iLM loads the corresponding activity file. In the iVProg
example, the file with its test cases.

Using as example the problem: Build an algorithm that,
after reading an integer number, it prints the square of this
number, an example of solution is presented in figure 15.

If the student wants, it is possible to run the algorithm, by
“clicking” the run button (represented as a black triangle in
the figure 15). The output is presented at the console area (the
gray area, at the botton of the figure).

VI. FINAL CONSIDERATIONS

In this paper we presented the evolution of a suite of tools to
support the teaching and learning algorithms and introductory
programming in web-based learning environments such as
Moodle.

The suite of tools is composed of an iLM and a Moodle
package for integrating iLMs to Moodle. The iLM is a visual



Figure 15. Creating and testing an algorithm

programming tool with automatic assessment resources, the
iVProgH, and the integrator is iAssign. This suite evolu-
tion aims to provide interoperability among all existing web
browsers and avoid problems with incompatibility concerning
legacy Java applets. Therefore, iVProgH is implemented in
HTML 5 and iAssign was extended to integrate HTML 5
modules to Moodle.

This evolution willl be extended to all the available iLM in
order to support interactive learning of issues like Geometry,
Calculus, and Combinatorics.

REFERENCES

[1] F. Heintz, L. Mannila, K. Nygårds, P. Parnes, , and
B. Regnell, “Computing at school in sweden - experi-
ences from introducing computer science within existing
subjects,” in Proceedings of the International Conference
on Informatics in Schools: Situation, Evolution, and
Perspectives. Cham: Springer, 2015. [Online]. Available:
URLhttps://lucris.lub.lu.se/ws/files/1573415/8033906.pdf

[2] V. Dagiene, T. Jevsikova, C. Schulte, S. Sentance, and
N. Thota, “A comparison of current trends within com-
puter science teaching in school in germany and the
uk,” in Proceedings of the 6th International Conference
ISSEP, ser. ISSEP 2013, 2013, pp. 63–75.

[3] J. M. Wing, “Computational thinking,” Communications
of the ACM, vol. 49, no. 3, pp. 33–35, 2006.

[4] V. Barr and C. Stephenson, “Bringing computational
thinking to k-12: what is involved and what is the role
of the computer science education community?” ACM
Inroads, vol. 2, no. 1, pp. 48–54, 2011.

[5] M. E. Caspersen, “Educating novices in the skills of
programming,” Ph.D. dissertation, PhD thesis, Depart-
ment of Computer Science, Universidade de Aarhus,
Dinamarca, 2007.

[6] J. Bennedsen and M. E. Caspersen, “Failure rates in
introductory programming,” SIGCSE Bulletin, vol. 39,
no. 2, pp. 32–36, Jun. 2007. [Online]. Available:
URLhttp://doi.acm.org/10.1145/1272848.1272879

[7] C. Watson and F. W. Li, “Failure rates in introductory
programming revisited,” in Proceedings of the 2014
Conference on Innovation & Technology in Computer
Science Education, ser. ITiCSE ’14. New York, NY,
USA: ACM, 2014, pp. 39–44. [Online]. Available:
URLhttp://doi.acm.org/10.1145/2591708.2591749

[8] Y. Bosse and M. A. Gerosa, “Reprovações e Tranca-
mentos nas Disciplinas de Introdução à Programação da
Universidade de São Paulo: Um Estudo Preliminar,” in
WEI-Workshop sobre Educação em Computação.(2015),
2015, pp. 1–10.

[9] B. D. Boulay, “Some difficulties of learning to
program,” Journal of Educational Computing Research,
vol. 2, no. 1, pp. 57–73, 1986. [Online]. Available:
URLhttps://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[10] S. Cooper, W. Dann, and R. Pausch, “Alice: A 3-D Tool
for Introductory Programming Concepts,” in Proceedings
of the Fifth Annual CCSC Northeastern Conference
on The Journal of Computing in Small Colleges, ser.
CCSC ’00. USA: Consortium for Computing Sciences
in Colleges, 2000, pp. 107–116. [Online]. Available:
URLhttp://dl.acm.org/citation.cfm?id=364132.364161

[11] P. Henriksen and M. Kölling, “Greenfoot: Combining
object visualisation with interaction,” in Companion
to the 19th Annual ACM SIGPLAN Conference on
Object-oriented Programming Systems, Languages, and
Applications, ser. OOPSLA ’04. New York, NY,
USA: ACM, 2004, pp. 73–82. [Online]. Available:
URLhttp://doi.acm.org/10.1145/1028664.1028701

[12] M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk,
E. Eastmond, K. Brennan, A. Millner, E. Rosenbaum,
J. Silver, B. Silverman, and Y. Kafai, “Scratch:
Programming for All,” Commun. ACM, vol. 52,
no. 11, pp. 60–67, Nov. 2009. [Online]. Available:
URLhttp://doi.acm.org/10.1145/1592761.1592779

[13] L. de Oliveira Brandão, R. da Silva Ribeiro, and A. A.
Brandão, “A system to help teaching and learning al-
gorithms,” in Frontiers in Education Conference (FIE),
2012. IEEE, 2012, pp. 1–6.

[14] R. R. Kamiya and L. de Oliveira Brandão, “ivprog -
um sistema para introdução à programação através de
um modelo visual na internet,” Anais do XX Simpósio
Brasileiro de Informática na Educação. Florianópolis,
SC, 2009.



[15] L. de Oliveira Brandão, Brandão, A. A. Franco, and
R. da Silva Ribeiro, “ivprog – uma ferramenta de
programaçao visual para o ensino de algoritmos,” in
Anais dos Workshops do Congresso Brasileiro de In-
formática na Educação, vol. 1, 2012.

[16] B. Broll, A. Lédeczi, P. Volgyesi, J. Sallai,
M. Maroti, A. Carrillo, S. L. Weeden-Wright,
C. Vanags, J. D. Swartz, and M. Lu, “A visual
programming environment for learning distributed
programming,” in Proceedings of the 2017 ACM
SIGCSE Technical Symposium on Computer Science
Education, ser. SIGCSE ’17. New York, NY,
USA: ACM, 2017, pp. 81–86. [Online]. Available:
URLhttp://doi.acm.org/10.1145/3017680.3017741

[17] P. A. Rodrigues, L. de Oliveira Brandão, and A. A.
F. B. ao, “Interactive assignment: A Moodle component
to enrich the learning process,” in 2010 IEEE Frontiers
in Education Conference (FIE), Oct 2010, pp. T4F–1–
T4F–6.

[18] L. de Oliveira Brandão, S. Isotani, and J. G. Moura,
“A plug-in based adaptive system: Saaw,” in Interna-
tional Conference on Intelligent Tutoring Systems, Au-
gust 2004, pp. 791–793.

[19] S. Isotani and L. de Oliveira Brandão, “Ferramenta de
avaliação automática no igeom,” in Brazilian Symposium
on Computers in Education (Simpósio Brasileiro de
Informática na Educação-SBIE, vol. 1, no. 1, November
2004, pp. 319–328.

[20] J. G. Moura, L. de Oliveira Brandão, and A. A. F. B.
ao, “A web-based learning management system with
automatic assessment resources,” in 2007 IEEE Frontiers
in Education Conference (FIE), October 2007, pp. F2D–
1.

[21] D. L. Dalmon and L. de Oliveira Brandão, “Uma linha de
produto de software para módulos de aprendizagem inter-
ativa,” Simpósio Brasileiro de Informática na Educação
(SBIE), 2012.

[22] R. da Silva Ribeiro, “Construção e uso de ambiente
visual para o ensino de programação introdutória,” Ph.D.
dissertation, Master dissertation, Universidade de São
Paulo, 2015.

[23] R. McGreal, “Learning objects: a practical definition,”
International Journal of Instructional Technology & Dis-
tance Learning, vol. 1, no. 9, 2004. [Online]. Available:
URLhttp://www.itdl.org/journal/sep 04/index.htm

[24] J. Braga, Objetos de aprendizagem: Introdução e funda-
mentos. UFABC, 2015, vol. 1.


