
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Designing a reference architecture for a collaborative

software production and learning environment
Juan Felipe Restrepo Naranjo

dept. de Computação e Sistemas

Digitais

Escola Politécnica da

Universidade de São Paulo

São Paulo, Brazil

felipe.restrepo@usp.br

Ana Claudia Rossi

Dept. de Computação e Sistemas

Digitais

Escola Politécnica da

Universidade de São Paulo

São Paulo, Brasil

ana.rossi@usp.br

Solange Nice Alvez-Souza

Dept. de Computação e Sistemas

Digitais

Escola Politécnica da

Universidade de São Paulo

São Paulo, Brasil

ssouza@usp.br

Jorge Luis Risco Becerra

Dept. de Computação e Sistemas

Digitais

Escola Politécnica da

Universidade de São Paulo

São Paulo, Brasil

jorge.becerra@usp.br

Abstract—Software engineering is both a body of knowledge

and a competence, thus its teaching requires students to get

involve in actual software development. For this purpose, a

teaching-learning controlled software production environment

can be designed. Typically, this environment has been designed

as a learning software factory whit focus on the processes, which

may lead to a narrowed understanding of the information

systems technology required for its successful implementation,

operation, and management. We present an ongoing design

science research aimed to improve the design of modern Collabo-

rative Software Production Teaching-Learning Environments

(CSPLE) by using a set of models to describe not only its pro-

cesses, but also the information generated by the processes, the

software applications used to support the processes execution and

the technological infrastructure required to run the applications.

These models describing a CSPLE correspond to a set of archi-

tectural views compounding an enterprise architecture that can

be used as a reference to design specific CSPLE in the context of

a practical software engineering course. A preliminary result

presented in this paper is a method to design an Enterprise

Reference Architecture (ERA) for a CSPLE. The proposed

method is also applied giving as empirical highlights about the

design of an ERA for a CSPLE.

Keywords— enterprise reference architecture, learning

software factory, design science research, RM-ODP

I. INTRODUCTION

Software engineering is both a body of knowledge and a
competence, so its teaching is split into theoretical and
practical lessons [1]. In this context, the software factory,
which emerged as an industry initiative aimed to gain producti-
vity and quality in software [2], is also used as a controlled
teaching-learning environment for practical lessons [3] [4].

For instance, a learning software factory has been used at
the “Software engineering lab II” (a.k.a. PCS38531), in which
senior computer engineering students apply their knowledge
and train technical and social skills while getting involved in
actual software development. For each offering of the
PCS3853 lab, the teaching team designs an updated version of
the learning software factory using historical data from the
lab’s operations and considering current both technical (related
with software production) and educational (related with
teaching-learning-evaluation) requirements.

1 https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=pcs3853

In “software process improvement” and “software process
engineering” literature, the software factory design focuses on
process definition and modeling [5]. The learning software
factory used at PCS3853 lab, as well as other described in
literature [2] [3] [6], has been designed with on-process-focus
and thus are described by a set of process models.

However, the technical and educational requirements of a
learning software factory refer not only to processes but to the
information generated by its processes, to the software appli-
cations supporting the processes execution and to the technolo-
gical infrastructure (hardware, software, and network) required
for running the applications that supports the processes [7] [8].
For example, a modern learning software factory should be
designed considering the software process automation discu-
ssed in DevOps [9], the use of cloud computing in the software
development processes [10], and the latest information
technology for the teaching-learning process [11] [12].

Therefore, describing a learning software factory focusing
on the processes can lead to a narrowed understanding of the
information systems and technology required for its successful
implementation, operation, and management. A more complete
understanding of the software factory can be achieved by
integrating its process description with the description of its
organizational structure, processes information, software
applications, and technological infrastructure [7] [8] [13].

That kind of enterprise descriptions considering viewpoints
beyond the process is also known as enterprise architecture
[13]. When an enterprise architecture is intended to describe a
generic solution for the parts of a class of enterprise, it is
known as Enterprise Reference Architecture (ERA) [14] [15].
ERAs are largely used to facilitate the design of concrete archi-
tectures for an enterprise class or a domain, e.g., e-commerce
[16], customer relationship management [17], banks [18] [19],
telecommunication [20], financial [21] and utilities [22].

 The ongoing research is twofold aimed: 1) to improve the
software factory understanding, previously designed focusing
on processes, by designing it as a Collaborative Software
Production and Learning Environment (CSPLE) which is
described by a set of architectural views composing an
enterprise architecture; and 2) to model an ERA for CSPLE so
its models can be used to guide and facilitate the design of
concrete modern CSPLEs. A research’s preliminary result
registered in this paper is the design and application of a
method to design an ERA for a CSPLE in the specific domain

https://uspdigital.usp.br/jupiterweb/obterDisciplina?sgldis=pcs

of an under-graduation software engineering lab. The rest of
this paper is organized as follows. Section II presents the
theoretical background of the learning software factory and
enterprise reference architecture. Section III explains how is in
here applied the design science research framework proposed
[23]. In section IV is proposed a method to design an ERA
which is then applied in section V to design an ERA for a
CSPLE used at PCS3853 lab. Finally, section VI resumes
initial findings from the ongoing research.

II. THEORETICAL BACKGROUND

A. The software factory in education

A software factory is a software production environment
defined from an organization’s business requirements with the
aim to gain productivity and quality in software development
[24]. The basic condition for obtaining these gains is the
existence of defined processes and information systems
allowing an effective operation and control of the software
production and software quality assurance [3].

The software factory is used in research as a test bed for
software development methods and technologies, in industrial
production as a mean to create marketable software products,
and in education as a practical lessons environment in which
students solve software engineering problems such as work
planning or quality attributes treatment [4]. The basic format of
practical lessons carried out in a learning software factory is
also studied as project or problem-based learning and requires
students to understand the software functioning and the process
applied by engineers to develop proper solutions [25] [26].

Two core characteristics of a learning software factory are
[3] [27] [28] [29]: 1) defined processes and information
systems considering both technical and managerial activities,
which smooths the understanding of what needs to be done in
software projects and facilitates teachers to guide
inexperienced students in solving problems with relevant
complexity; 2) students create, share, and apply their
knowledge in controlled environments, which allows the
teachers to follow up each student learning progress and to
reuse experience from previous projects.

B. From the learning software factory toward the CSPLE

Whether the software factory is used for research, industrial
or educational purposes, its products come out of the joint
effort of people with different roles. In other words, regardless
the use of a software factory it is needed a joint effort to reach
an objective not reachable by individuals, and this is the
essence of collaboration. Hence, a software factory should be
designed considering four key characteristics of any
collaborative environment: 1) information exchange
(communication); 2) activities coordination (planning); 3)
group memory (knowledge management); and 4) group
awareness (defined roles and interactions) [30] [31].

In this paper, a controlled learning software factory with
defined processes and information systems allowing students to
create, share, and apply their knowledge complying the
aforementioned four collaboration characteristics, and also
being described by a set of enterprise models, is hereinafter

referred to as a Collaborative Software Production and
Learning Environment (CSPLE). The CSPLE is modeled as an
enterprise by follow the integrated software factory model [32]
[8], through which a software production organization is
described by its processes, information, applications, and
technological infrastructure in an integrated manner. This
model combines the strategic, tactic and operational
hierarchical levels; the organization departments (specialties);
and the enterprise, information, computation, engineering, and
technological viewpoints suggested by the Reference Model of
Open Distributed Processing (RM-ODP) [33].

Furthermore, a CSPLE should be designed in such a way
that students train a set of knowledge, technical and soft skills
related with both technical (software production methods and
technologies) and educational (student profile and the teaching-
learning-evaluation methods and technologies) requirements
[27] [11, p. 23]. Moreover, the CSPLE design applies the
enterprise architecture concept discussed next.

C. Enterprise architecture

An enterprise is one or more organizations sharing a
defined mission, objectives, and goals stablished to offer some
value by means of products or services [34]. In other words, an
enterprise is a system with arranged components to perform
one, some or all the functions associated with their offered
products and services lifecycles [35]. Then, a CSPLE is an
enterprise missioned to enabling software engineering students
to learn as they collaborate developing a software product, and
the CSPLE processes and technology must be designed for it.

Enterprise design involves describe it by a set of models
abstracting the structure and behavior of their business
processes and technology, their relationships and
decompositions and detailing to the extent necessary to convey
how the enterprise should operates to accomplish its mission
and objectives [34]. In this context, enterprise architecture is
understood as a set of representations (each relevant to a target
audience) describing an enterprise so it can be produced and
maintained throughout its lifespan [36] and by doing this it is
possible to systematically ensure that organization strategy,
processes, and technology are all aligned.

However, the enterprise architecture is not just about align-
ment and is becoming an engineering discipline in which the
enterprise is approached as a system that can be designed and
adapted in a systematic way, like in civil engineering or
software engineering [21] [37, p. 3301] [20, p. 61] [13, p. 12].
A more up-to-date definition states that “enterprise architec-
ture is a coherent set of principles, methods, and models that
are used in the design and realization of the organizational
structure, business processes, information systems, and
infrastructure” [13]. So, the enterprise architecture can be
interpreted either as a product or a process [15].

D. Enterprise Reference Architecture (ERA)

Enterprise architecture, interpreted as a product, is a set of
work products expressing an enterprise-system architecture,
a.k.a. enterprise architectural description [38] [15]. Models in
an enterprise architectural description are characterized by their
level of aggregation, abstraction, and realization, and describe

at least one architectural view using a notation with a given
formalism level. Depending on these characteristics values, an
enterprise architecture can be referred to as a reference or
concrete enterprise architecture [15, p. 21] [39].

An Enterprise Reference Architecture (ERA) is a generic
solution model for the parts of a class of enterprise or domain.
An ERA includes principles, policies, architectural views,
requirements, ontologies, standards, conceptual reference
models and/or guidelines for designing enterprise concrete
architectures; i.e., an ERA is an enterprise architecture with
some architectural decision already made and others left open
[14] [40]. In other words, an ERA generalizes solutions by
abstracting and aggregating the available knowledge about a
specific class of enterprise or domain in order to improve the
quality and effectiveness of the architect’s work [15] [21] [41].

E. Enterprise reference architecture characteristics

ERA’s aggregation and abstraction levels define the detail
offered by its models. Aggregation defines the number of
architectural elements described while the abstraction defines
the number of attributes used to describe each architectural
element. ERA’s models describe the main architectural
elements using minimal attributes (i.e. abstracted and
aggregated) so they can be reused in the design of multiple
concrete architectures [42].

ERA’s realization level defines whether the models focus
on business or technology [15]. ERA’s models describe both
business and technology, nevertheless, a given focus will
depend on the current phase of the organization’s lifecycle and
on how much the technology support the business execution
for a specific enterprise class described by the ERA. ERA’s
architectural views define conventions for model construction,
interpretation, and use. Each ERA’s view frames specific
concerns about the organization being described [38].
Examples of architectural views used in enterprise architecture
are found in Zachman [36], TOGAF [43] and RM-ODP [33]
[27] [44] [45] architectural frameworks. ERA’s notation
formalism level defines the breadth of concepts and syntax
used to modeling. It can be used whether a set of general
graphs (informal), a generic notation with standardized graphs
and vocabulary (semi-formal), or a robust notation allowing
models compilation and simulation (formal) [39]. Enterprise
architecture descriptions generally use semi-formal notations
such as Archimate [46], UML or UML4ODP [47].

The level of aggregation, abstraction, and realization, as
well as the used architectural views and notation formalism are
related with ERA modeling. Yet, an ERA is also characterized
by its objective and usage context. ERA’s objective could be
whether standardize or facilitate the design of concrete
architectures. Prescriptive architectures are used in the former
case whereas descriptive architectures are used in the last one
[15]. ERA’s context defines who design it, when it is designed
and who uses it; an ERA can be designed whether by a standar-
dization organization, an independent organization, a research
group, or an enterprise stakeholders group; further, an ERA can
be designed to describe whether an existing or a foreseen
enterprise solution; and the ERA’s models can be intended to
be used whether by some single or multiple organizations [42].

F. Enterprise reference architecture design

Enterprise architecture, interpreted as a process, is a set of
“recipes” used by architects in enterprise design and realization
[15]. ERA design “recipes” use three main “ingredients” [20]:
1) a structure reference model guiding the identification,
organization, and description of the enterprise elements types,
2) one or many content reference models enlightening about an
enterprise class or domain processes, information, applications,
and infrastructure, and 3) methods for ERA design and use.

Two ERA design approaches are noticed in ERA design
“recipes” depending on the abstraction level of the content
model “ingredient”. In a top-down approach, one or many
abstract and aggregated content models are adapted according
to an enterprise class or domain requirements, whereas in
down-top approach many concrete and detailed content models
are abstracted into a single generic solution [15].

Top-down ERA design approach is found in [20]. These
authors used TOGAF as structure reference model and took the
eTOM, SID and TAM models from Framewox [48] as content
reference models and adapted them to propose a set of generic
enterprise architecture solutions for the current telecommu-
nication operator’s challenges. Otherwise, the down-top ERA
design approach is found in [17] for the customer management
domain and in [22] for public facility providers. In both cases,
the practical knowledge about an enterprise class or domain,
which is available in concrete solutions, specialist professionals
and the literature, was used as content reference model

Regardless the selected approach, whether it is a top-down,
down-top or a hybrid of the first two, an ERA design recipe
involves describing architectural views of an enterprise class or
domain and transforming architectural models from an initial
level of aggregation, abstraction, and realization to another
desired level. An architecture method must guide this model
transformation [15, p. 42]. A generic method to design an ERA
for any enterprise class is proposed by [49].

III. RESEARCH METHODOLOGY

Applying the [23] Design Science Research framework in
this ongoing research project is here shortened to the
identification of the research context, artifact, and treatment.
The research context is split into social and knowledge context.
The social context is the under-graduation PCS3853 lab and
the knowledge context is the theoretical background covering
the structure and content models as well as the methods needed
to design and use an ERA. The research artifact is an ERA for
a CSPLE (hereinafter referred to as an ERA4CSPLE) and the
treatment is the instantiation of the ERA4CSPLE in the design
and operation of a specific CSPLE for a PCS3853 lab offering.
Fig. 1 represents graphically the so-called research conceptual
model and highlights with gray-background the research
artifacts still under development and treated in oncoming
papers.

This research is inspired by solving a real-world problem
and its three main phases are: problem investigation, treatment
design and treatment validation. This paper presents the results
of the full first and partial second phase. Validation phase is
planned to be completed by applying a technical action

research still under development in which the proposed
reference architecture will be instantiated for a specific
PCS3853 lab’s offering.

Fig. 1. Research conceptual model

According to [23], a research problem can be broken down
into a set of related Analytical Knowledge Questions (AKQ),
Empirical Knowledge Questions (EKQ) and Design Problems
(DP). Fig. 2 presents a chronological sequence of this research
AKQ, EKQ and DP while classify them by the research phase
and points to its paper section discussing the answers.

Fig. 2. Research problem broken into a set of design problems and

knowledge questions

Early results of the ongoing research are presented as
follows. Section IV presents a solution for the DP2: “Design a
method to design the ERA4CSPLE that consider historical data
as the key input”. Since the DP2 method is analytically created
from prior validated researches and isn’t the main research
artifact, its validity will be shortly discussed at the end of the
section IV. Section V presents an ERA4CSPLE outputted from
the proposed method solving the DP2. The ERA4CSPLE
design method responds to the EKQ6: “What are the CSPLE
generic elements for the PCS3853 lab?”. The AKQ, EKQ and
DP related with ERA4CSPLE validation will be answered in
oncoming papers.

IV. ERA4CSPLE DESIGN METHOD

A. Overview of the ERA4CSPLE design method

The method phases were defined from [20]. Even an ERA
design method is not stated in [20], it is presented a sequence
of work products created out of the combination of conceptual
ingredients (structure and content). This work products were
mapped into activities and then grouped by the method phases.

Two conceptual ingredients were defined as initial
constraints for the ERA4CSPLE method definition: 1)
structure reference model: operational and tactical hierarchical
levels, software productions and teaching-learning departments
(or sub-domains as in [15] [17] [20]), and RM-ODP views,
according to the integrated software factory model; and 2)
content reference model: historical data from the operation of
the CSPLEs used at PCS3853 lab between 2012 and 2017. It
includes process models, student-generated artifacts in
software production and support-material produced and used in
teaching-learning activities.

The four method phases are: 1) Determining the
architecture domain: set of activities to determine the
enterprise class of interest as well as the architecture
envisioned goal and context; 2) Determining the architecture
structure: set of activities to determine the formalism,
aggregation, abstraction, and realization level of the
architecture models. 3) Abstracting the reference elements: set
of activities to abstract the roles, processes, information,
applications, and infrastructure of the CSPLE of interests; e 4)
Describing the architectural views: set of activities to describe
the RM-ODP architectural views, named enterprise,
information, computation, engineering, and technology views.

B. Definition of the ERA4CSPLE design method

The third phase, “abstracting the reference elements”, and
the forth phase, “describing the architectural views”, results
from mapping the description of the ERA proposed in [20] of
the main characteristics of the ERA’s class of enterprise of
interest. This phase operation detail is complemented by the
recommendations made in [42] to determine the architecture
objective and context. The second method phase, “determining
the architecture structure”, results from mapping the
architecture domains specification, architectural views
selection and architectural models specifications made in [20].
Since using the RM-ODP architectural framework was an
initial constrain, the related work in [20] is narrowed into
explaining, according to [15] and [42] what are the levels of
aggregation, abstraction, and realization of the models to be
constructed.

The third phase, “abstracting the reference elements”, and
the forth phase, “describing the architectural views”, results
from mapping the description of the ERA proposed in [20]. We
split this work product into two phases highlighting the
required analysis on the content model to abstract the CSPLE’s
reference elements. The abstraction analysis uses a matrix
(table I) adapted from [17] which is aimed to identify
architectural elements repeated in same class system concrete
architectures (historical data from CSPLE operation in our
case). Repeated elements in the matrix are expected to outcome

from the instantiation of an ERA4CSPLE’s reference element.
Final method phase is about using the RM-ODP views to
describe the already abstracted reference elements along with
its relations and views correspondences. The suggested
sequence for views description, according to [50], begins with
enterprise view, follows with information and computation
views, and ends with engineering and technology views.

C. Analytical validation of the ERA4CSPLE design method

The adopted strategy for the method analytical validation is
its comparison with the generic ERA design method proposed
by [49] and with the first five phases of the TOGAF ADM.
Even though ADM is not explicit for ERA, it has become a “de
facto” enterprise architecture framework and thus is here
consider as a basic fair reference. The first phase of the
proposed method achieves the definition of scope and desired
capabilities of the enterprise of interest, which are goals in the
“preliminary” and “architectural overview” phases of ADM. It
also achieves the identification of the class of enterprise to be
described by the ERA and the definitions of architecture goal,
which are goals in the “project objective” phase of the [49].
The second phase of the proposed method absorbs the
architectural framework selection in ADM “preliminary” phase
and achieves the goals of the “modeling approach” phase in
[49]. The “abstracting the reference elements” and “describing
the architectural views” phases of the proposed method achieve
the goal of the “reference modeling” phase in [49] which is
achieved in ADM by the “business architecture”, “information
systems architecture”, and “technology architecture” phases.

V. ERA4CSPLE

A. ERA4CSPLE domain

ERA4CSPLE’s main objective is to facilitate the design of
CSPLE concrete architectures. ERA4CSPLE’s usage context is
the PCS3853 lab theoretically described in section II. PCS3853
lab’s objective is to train advanced both technical and
managerial techniques to architect and develop distributed
software-intensive system. Since the lab lasts 16 weeks (4 in-
lab hrs/weeks), students only implement a minimal viable
product. Yet, solution analysis and design are scoped in the
systems context because a main educational requirement is
teaching how to deal with problems like the treatment of
quality attributes such as performance, availability, or security.
In PCS3853 lab’s operation, the students team them up into
independent productive cells, each one responsible for archi-
tecting and developing parts of the system. Students are guided
by scripts with recommendations on how to solve project
problems and by support material explaining needed concepts.

B. ERA4CSPLE structure

ERA’s aggregation and abstraction (detail) level: archi-
tectural views use only one aggregation level and two packages
to group architectural elements: 1) tactical package and 2)
operational package. Three sub-packages can further be used in
operational package: 2.1) software production sub-package,
2.2) teaching-learning sub-package, and 2.3) collaboration sub-
package. ERA’s notation formalism level: UML4ODP [47]
notation is used following the aforementioned package

structure. ERA’s realization level: processes, information and
application are prioritized over technological infrastructure
because PCS3853 lab should be open to use applications
regardless the vendor whenever specified standards are meet.

C. ERA4CSPLE reference elements

The CSPLE roles are abstracted by RM-ODP community
object composed by role objects. Table I exemplifies the use of
the abstraction analysis matrix when applied for certain role.
This matrix is similarly used for all the abstraction analysis.
Community object is modeled in Fig. 3 of the enterprise view.
The CSPLE processes are abstracted by RM-ODP process
objects composed by step objects. Processes abstraction
analysis was split in one matrix for each process object with
the intention of abstracting also generic steps that can be used
as recommendations for the CSPLE process instantiation.
Process objects are modeled in Fig. 4 of the enterprise view.
The CSPLE information is abstracted by RM-ODP infor-
mation objects and the CSPLE applications are abstracted by
computational objects. In both CSPLE information and CSPLE
applications abstraction analysis, the earlier defined packages
structures were used to group cohesive objects, which results in
four abstraction analysis matrices for each view: 1) tactical
objects, 2) operational software production objects, 3)
operational teaching-learning objects and 3) operational
collaboration objects. Information objects are modeled in Fig.
5 and computational objects are modeled in Fig. 6 in their
respective architectural views. The CSPLE infrastructure is
abstracted by RM-ODP engineering and technology objects,
and its analysis is split in two matrices, one for each related
view. Engineering objects are modeled in Fig. 7 and
technology objects are modeled in Fig. 8 in their respective
architectural views. Community object is modeled in Fig. 8 of
the enterprise view.

TABLE I. ABSTRACTION ANALYSIS MATRIX FOR CSPLE ROLES

RM-ODP

role object

Exists in PCS3853

20XX occurrence Abstraction analysis results
12 13 14 15 16 17

Software

engineer
X X X

Despite the name were different in

ocurrences, these two roles represent the

responsibility of the system analysis,
design, implementation, test and deploy.

Developer role is considered as the

reference one becouse a software engineer
has more duties related to other roles.

Develop

er
 X X X

D. ERA4CSPLE architectural description

Figs. 3 to 8 represent the ERA4CSPLE models and
highlights with a dotted line the objects involved in the next
general description of the PCS3853 lab CSPLE operation.
PCS3853 lab starts by the “teacher” role executing the “general
lab planning” and “CSPLE design” process objects. Next, for
each lesson are executed all the processes in the “teaching-
learning” package and, depending on the lesson objective,
some processes from the “software production” package are
invoked into “practical lesson execution” process. The
“software production” package processes follow an
architecture-centric approach started by the “architect” role

executing the “product engineering” process, which is aimed to
define an initial system architecture.

Fig. 3. Enterprise view: community model

According to the detailed educational requirements, the
“architect” role can be whether partially or fully fulfilled by the
person in the “student” role. Former case is more common and
requires the person in the “teacher assistants” role to fulfill the
“architect” role and define a system architecture’s first version
that later will be detailed by the “student-architect”.

Fig. 4. Enteprise view: process objects packages

Then, the “product engineering” object process produces
the “system architectural description” information object in
which the main system modules/services are overviewed. Next,
the “project leader” role executes the “software production
planning” process object. Later, the person responsible for each
system module fulfills the “developer” role and refines his/her
module by executing the “software design” process object that
produces the “module architectural description” information
object. “Quality attributes” are treated by the “architect” role
by defining scenarios and identifying “architectural tactics”
addressing the solutions to be later implemented by the role
“developer”. The information objects that are related with the
system architecture and module architectures are managed by
process objects being supported by the “UML editor”, “BPMN

editor” and “Collaborative content edition” computation
objects, which run on the “developer node” engineering object
physically located in the “developer computer” technology
object which is connected with the “ALM node”. A complete
explanation of the ERA4CSPLE models along with the views
correspondence is included in the full architectural description
here reduced for the sake of space restrictions. To access the
full ERA4CSPLE get in contact with the authors.

Fig. 5. Information view: information objects static schema

Fig. 6. Computation view: computation objects package

Fig. 7. Engineering view: engineering objects structure

Fig. 8. Technology view: tecnology objects structure

VI. CONCLUSIONS

The ERA4CSPLE models presented here came out of four
iterations between the ERA4CSPLE design method and
informal revisions. The first version of the ERA4CSPLE was
structured with three aggregation levels in which the models
were enforced to detail and relate the architecture objects more
than it was wanted and making the whole ERA4CSPLE look
like a concrete architecture. Then, we heuristically realized that
creating multiple aggregation levels in an ERA prompts to
create over-detailed models. It was qualified as a risk in
“plastering” the architecture, i.e., making it more “prescriptive-
like” rather than “descriptive-like”.

Thus, in a second version of the ERA4CSPLE, the one
aggregation level and two packages structure here presented
were determined. This structure can (and should for the sake of
organization) be broken into a more specific set of consistent
aggregation levels while the instantiation process.
Nevertheless, the second version of the ERA4CSPLE was
modeled strictly using the UML4ODP notation, which filled
the architectural description models with icons unknown by the
traditional UML user, making it needed to have a deeper
understanding of both RM-ODP and UML4ODP. It was
qualified as an “usability issue” because it is desirable that
ERA4CSPLE models could be understood and applied by non-
experts in RM-ODP. Thus, the information and computation
views were remodeled in the third version using basic UML
and letting UML4ODP icons smaller. A fourth iteration was
needed to improve an usability issue remained in the
engineering view in which the information systems were
modeled considering three computational layers: presentation,
business logic and data. Using these layers gave relevant
information about the distribution of the computation objects
but pollutes the model making it hard to understand so it was
simplified into node relations.

The ERA4CSPLE validation, not yet detailed here because
is still under development, will be fully presented in oncoming
papers. Preliminary results of the validation (in the context of
the PCS3853 lab executed in 2018) evidenced that
ERA4CSPLE models were useful to structure the supporting
material for the teaching-learning activities, and a future
publication will discuss how the ERA4CSPLE models can be
used to define an architecture of learning objects for a software
engineering course.

REFERENCES

[1] M. Jazayeri, “The education of a software engineer,” em Proceedings of
the 19th IEEE international conference on Automated software
engineering, 2004.

[2] A. Araújo, K. Borges, S. Andrade, E. Dias and W. Pereira, “Experience
and Innovation Factory: Adaptation of an Experience Factory Model for
a Research and Development Laboratory,” 2017.

[3] F. L. Siqueira, G. M. C. Barbarán e J. L. R. Becerra, “A Software
Factory for Education in Software Engineering,” em IEEE 21st
Conference on Software Engineering Education and Training, 2008.
CSEET'08. , 2008.

[4] P. Abrahamsson, P. Kettunen and E. Fagerholm, “The Set-Up of a
Software Engineering Research Infrastructure of the 2010s,” 2010.

[5] M. Kuhrmann, P. Diebold and J. Münch, “Software process
improvement: a systematic mapping study on the state of the art,” PeerJ
Computer Science , vol. 2, nº 62, 2016.

[6] M. Pariata and N. Montaño, “Software Factory, from professional
environment to academic environment proposal to build competences
through authentic activities in the context of software engineering,” em
XL Latin American Computing Conference (CLEI), 2014.

[7] M. Pesantes, C. Lemus, H. A. Mitre and J. Mejía, “Software Process
Architecture: Roadmap,” em Ninth Electronics, Robotics and
Automotive Mechanics Conference (CERMA), 2012.

[8] J. Naranjo, J. L. R. Becerra, A. Rossi and F. Lopes, “Utilización de la
técnica QFD en una arquitectura de procesos de software,” I+i
Investigación aplicada e innovación, pp. 50-59, 2016.

[9] A. Ravichandran, K. Taylor and P. Waterhouse, DevOps for Digital
Leaders: Reignite Business with a Modern DevOps-Enabled Software
Factory, CA, Ed., Springer , 2016.

[10] J. Cito, P. Leitner, T. Fritz and H. C. Gall, “The Making of Cloud
Applications: An Empirical Study on Software Development for the
Cloud,” em Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, 2015.

[11] L. Kavanagh, C. Reidsema, J. Mccredden and N. Smith, Design
Considerations, Singapore: Springer, 2017.

[12] D. A. Trippel, “Tools for Problem- and Project-based Learning in
Sustainability Science Education: A Case Study of Two Undergraduate
Classes,” Arizona State University, 2013.

[13] M. Lankhorst, Enterprise Architecture at Work: Modelling,
Communication and Analysis, 4 ed., Berlin Heidelberg: Springer-
Verlag, 2017.

[14] A. Fattah, “Enterprise reference architecture,” em In 22nd Enterprise
Architecture Practitioners Conference, London, UK, 2009.

[15] P. Grefen, Business information systems architecture, Eindhoven, The
Netherlands: Eindhoven University of Technology, 2016.

[16] F. Aulkemeier, M. Schramm, M. Iacob and J. Van hillegersberg, “A
Service-Oriented E-commerce Reference Architecture,” Journal of
theoretical and applied electronic commerce research, vol. 11, nº 1, pp.
26-45, 2016.

[17] A. G. B. Cruz, An Information Systems Reference Architecture for the,
Lisboa, Portugal: Técnico Lisboa, 2015.

[18] BIAN, “BIAN Standards Service Landscape 5.0,” 2017. [Online].
Available: https://bian.org/servicelandscape/.

[19] Microsoft, “Microsoft Industry Reference Architecture for Banking
(MIRA-B),” 2012. [Online]. Available:
https://news.microsoft.com/download/presskits/msfinancial/docs/MIRA
B.pdf .

[20] C. Czarnecki and C. Dietze, Reference Architecture for the
Telecommunications Industry, Springer, 2017.

[21] W. T. H. Van der Beek, J. Trienekens and P. Grefen, “The Application
of Enterprise Reference Architecture in the Financial Industry,” em
Trends in Enterprise Architecture Research and Practice-Driven
Research on Enterprise Transformation, Berlin Heidelberg, Springer,
2012, pp. 93-110.

[22] F. Timm, C. Köpp, K. Sandkuhl and M. Wißotzki, “Initial Experiences
in Developing a Reference Enterprise Architecture for Small and
Medium-Sized Utilities,” em Proceedings of Short and Doctoral
Consortium Papers Presented at the 8th IFIP WG 8.1 Working
Conference on the Practice of Enterprise Modelling (PoEM 2015),
Valencia, Spain, 2015.

[23] R. J. Wieringa, Design Science Methodology for Information Systems
and Software Engineering, Heidelberg New York Dordrecht London:
Springer, 2014.

[24] L. Dias, J. F. R. Naranjo, D. Marques and J. L. R. Becerra,
“Fundamentos de uma Fábrica de Software Orientada a Objetos
Processos,” Augusto Guzzo Revista Acadêmica, vol. 9, pp. 53-61, 2012.

[25] R. Noël, R. Munoz, C. Becerra and R. Villarroel, “Developing
competencies for software requirements analysis through project based
learning,” em 35th International Conference of the Chilean Computer
Science Society (SCCC), 2016.

[26] K. Gary, “Project-based learning,” Computer, vol. 48, nº 9, pp. 98-100,
2015.

[27] F. Fagerholm, N. Ozay and J. Munchz, “A Platform for Teaching
Applied Distributed Software Development The Ongoing Journey of the
Helsinki Software Factory,” em CTGDSD, San Francisco, 2013.

[28] M. Galster and S. Angelov, “What makes teaching software architecture
difficult?,” em Proceedings of the 38th International Conference on
Software Engineering Companion, 2016.

[29] A. Van deursen, M. Aniche, J. Aué, R. Slag, M. De jong, A. Nederlof
and Bouwers, “A Collaborative Approach to Teaching Software
Architecture,” em Proceedings of the 2017 ACM SIGCSE Technical
Symposium on Computer Science Education, 2017.

[30] G. Vreede and R. Briggs, “Collaboration Engineering: Designing
Repeatable Processes for High-Value Collaborative Tasks,” em Annual
Hawaii International Conference on System Sciences (HICSS), Hilton
Waikoloa Village, Hawaii, USA, 2005.

[31] A. M. Magdaleno, R. Mendes and C. M. Lima W, “A roadmap to the
Collaboration Maturity Model (CollabMM) evolution,” em 15th
International Conference on Computer Supported Cooperative Work in
Design (CSCWD), 2011.

[32] L. Dias, “Método de instanciação de uma arquitetura de processos
aplicado em fábrica de software,” 2010.

[33] ITU-T , “Rec. X.911 Information technology – Open distributed
processing – Reference model – Enterprise language,” ITU-T , 2014.

[34] S. Karadgi, A Reference Architecture for Real-Time Performance
Measurement, Springer, 2014.

[35] H. Kandjani, P. Bernus and S. Nielsen, “Enterprise Architecture
Cybernetics and the Edge of Chaos: Sustaining Enterprise as Complex
System in Complex Business Environments,” em 46th Hawaii
International Conference on System Sciences, Hawaii, 2013.

[36] J. Zachman, “Enterprise architecture: The issue of the century,”
Database Programming, vol. 10, p. 44–53, 1997.

[37] P. Bernus, O. Noran e A. Molina, “Enterprise architecture: twenty years
of the GERAM framework,” Annual Reviews in Control, pp. 83-93,
2014.

[38] ISO/IEC/IEEE, ISO/IEC/IEEE 42010 Systems and software engineering
- Architecture description, IEEE, 2011.

[39] D. Garlan, “Software architecture: a travelogue,” em Proceedings of the
on Future of Software Engineering, 2014.

[40] F. Sanchez-puchol and J. A. Pastor-collado, “A First Literature Review
On Enterprise Reference Architecture,” em The 11th Mediterranean
Conference on Information Systems (MCIS), Genoa, Italy, 2017.

[41] G. Muller and E. Hole, “Reference architectures; why, what and how,”
em White paper, 2007.

[42] S. Angelov, P. Grefen and D. Greefhorst, “A framework for analysis and
design of software reference architectures,” Information and Software
Technology, vol. 4, nº 54, pp. 417-431, Abril 2012.

[43] The Open Group, “TOGAF Version 9.1,” VanHaren Publiching, 2011.

[44] D. Hashimoto, A. Tanaka and M. Yokoyama, “Case study on RM-ODP
and Enterprise Architecture,” em Eleventh International IEEE EDOC
Conference Workshop (EDOCW'07), 2007.

[45] L. Kutvonen, “Using the ODP reference model for Enterprise
Architecture,” em Eleventh International IEEE EDOC Conference
Workshop, 2007.

[46] OMG, “ArchiMate® 3.0.1 Specification,” 08 2017. [Online]. Available:
http://pubs.opengroup.org/architecture/archimate3-doc/.

[47] ITU-T, ISO/IEC 19793 X.906 Information technology – Open
distributed processing – Use of UML for ODP system specifications,
2014.

[48] TMF, “Frameworx,” 2017. [Online]. Available:
https://www.tmforum.org/tm-forum-frameworx/.

[49] F. Timm, K. Sandkuhl and M. Fellmann, “Towards A Method for
Developing Reference Enterprise Architectures,” em 13th International
Conference on Wirtschaftsinformatik, St. Gallen, Suiza, 2017.

[50] P. Linington, Z. Milosevic, A. Tanaka and A. Vallecillo, Building
enterprise systems with ODP: an introduction to open distributed
processing, CRC Press, 2011.

