
Towards Conceptual Modelling Interoperability
in a Web Tool for Ontology Engineering

Germán Braun1,2,3, Christian Gimenez1, Pablo Fillottrani3,4, and
Laura Cecchi1

1Grupo de Investigación en Lenguajes e Inteligencia Artificial
Departamento de Teoŕıa de la Computación - Facultad de Informática

Universidad Nacional del Comahue
2Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET)
3Laboratorio de I&D en Ingenieŕıa de Software y Sistemas de Información

Departamento de Ciencias e Ingenieŕıa de la Computación
Universidad Nacional del Sur

4Comisión de Investigaciones Cient́ıficas de la Prov. Bs.As (CIC)

Abstract The definition of suitable visual paradigms for ontology mo-
delling is still an open issue. Despite obvious differences between the
expressiveness of conceptual modelling (CM) languages and ontologies,
many proposed tools have been based on UML, EER and ORM. Addi-
tionally, all of these tools support only one CM as visual language, redu-
cing even more their modelling capabilities. In previous works, we have
presented crowd as a Web architecture for graphical ontology design-
ing in UML and logical reasoning to verify the relevant properties of
these models. The aim of this tool is to extend the reasoning capabilities
on top of visual representations as much as possible. In this paper, we
present an extended crowd architecture and a new prototype focusing on
an ontology-driven metamodel to enable different CMs visual languages
for ontology modelling. Thus facilitating inter-model assertions across
models represented in different languages, converting between modelling
languages and reasoning on them. Finally, we detail the new architecture
and demonstrate the usage of the prototype with simple examples.

1 Introduction and Motivation

The definition of suitable visual paradigms for ontology modelling is still an open
issue [1]. Despite obvious differences between the expressiveness of conceptual
modelling (CM) languages and ontologies languages, many proposed modell-
ing tools have been based on Unified Modeling Language (UML) [2], Extended
Entity-Relationship (EER) [3] and Object-Role Modeling (ORM) [4]. Addition-
ally, all of these tools support only one CM as visual language, reducing even
more their modelling capabilities.

Ontologies are conceptualisations of domains, often shared by a community
of users. One of the most commonly used ontology modelling languages is the
Web Ontology Language (OWL) [5]. OWL formal underpinning is provided by

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 25



description logics (DLs) [6], which is a family of knowledge representation form-
alisms with well-understood formal properties. Particularly, there exist import-
ant applications of DLs such as expressing the ontology of data sources and
integrating multiple sources [7]. Both topics have been highlighted again in [8],
whose authors have emphasised the needs for multi-models, which arises when
semantically related data is organised under different schemes. Linking differ-
ent ontologies into the Semantic Web or ontology-based systems emphasises the
importance of the interoperability amongst conceptual data models. Based on
previous results [9, 10, 11], each model can be logically reconstructed so as to
automatically reason over them using the standard DL properties. Thus, ontol-
ogies can be expressed at a level closer to that of human conceptualisation (e.g.,
representing conceptual schemas), determining consistency and automatically
classifying descriptions. In this direction, we have started the formalisation of
an novel approach integrating visualisations to this multi-model proposal [12, 13].
Aiming at developing user-friendly paradigms for presenting knowledge of the
data in a way that helps in formulating queries, we expect understanding and
defining what the relevant information in a given context is, and representing it
in an appropriated way.

Based on this motivation, an ontology-driven metamodel, known as Keet-
Fillottrani (KF), has been designed and formalised in OWL 2 [14] to enable
different domains views by means of logic-based reconstructions and inter-model
assertions. Currently, its specification unifies UML v2.4.1, EER and ORM2.
While such languages seem similar, they are known to be distinct and no unifying
framework exists respecting all of their language features. Few approaches have
been partially proposed, where the strengths and weaknesses of the languages
are highlighted and some formal procedures are given to derive “well-formed”
input diagrams into “well-formed” output ones [15, 16]. Nevertheless, linking and
converting between graphical modelling languages are not considered in depth.

crowd [17, 18] is a graphical modelling tool being supported by both Uni-
versidad Nacional del Comahue and Universidad Nacional del Sur of Argentina.
The intention behinds the tool is to assist users to design ontologies and concep-
tual models adopting standard CM languages and employing complete logical
reasoning to verify the satisfiability of specifications, infer implicit constraints
and suggest new ones. Despite obvious differences between the expressiveness of
conceptual modelling (CM) languages and ontologies languages, many tools have
partially validated this claim [19, 20, 21]. Nevertheless, the aim of crowd is going
towards a multi-model support in order to reason on top of visual representations
of ontologies as much as possible. Empowered by Web technologies, crowd has
been designed as a scalable and maintainable architecture for adapting new en-
gines, graphical languages, design methodologies and back-end reasoners. It has
been conceived from scratch as a graphical-centric tool for ontology modelling,
supporting standard CM languages and considering the possibility to expand its
graphical primitives for more expressiveness. Currently, it supports a subset of
UML and is connected to the RACER logic-based reasoner [22]. A prototype

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 26



is available at http://crowd.fi.uncoma.edu.ar, while its source code is to be
available for downloading after releasing the first beta version.

Particularly, in this work we present an extended crowd architecture and a
prototype focusing on the metamodelling approach previously described. Fur-
thermore, we provide more mature support of the UML language and the cap-
ability of incorporate ORM2 and EER required for the KF metamodel. From
an implementation point of view, the transitions amongst these languages is
achieved by creating a corresponding metamodel expressing the input model by
means of the formalisation in [14, 23]. After that, we unify concepts in common
of each graphical language considering their discrepancies applying mapping
rules as defined in [24]. The current prototype supports a subset of static entit-
ies composes by Object Types, Subsumption and Attributes and only converts
graphically from UML to EER models.

This work is structured as follows. Section 2 gives a summary of the KF
metamodel and explains its main objectives. Section 3 includes a review of the
first architecture of crowd and introduces a new one integrating multi-model
support based on the KF metamodel. A metamodelling prototype together with
some examples of use are presented in section 4. To conclude the paper, section
5 details some related works, while section 6 elaborates on final considerations
and directions for future works.

2 An Overview of the KF Metamodel

The intention behinds the ontology-driven KF metamodel is to provide inter-
operability, integration and conversion of conceptual data models represented
in different languages. For this purpose, the metamodel specifies an approach
for transforming a model in one language into another in order to be able to
assert semantically proper links between them. It unifies all main static entities
and hierarchy of constraints. The first one details entities as Object Types, Re-
lationships (such as Attributes and Subsumptions) and Roles, amongst others.
The second one reconciles mandatory and uniqueness constraints, which are the
most basic ones common to all CM languages, as well as cardinality, identifiers
and relationship constraints. In this way, the metamodel covers all the native
features of the CM languages. Fig. 1 depicts the available static entities as a
UML Class Diagram (only for facilitating its readability). A white fill of a class
icon means that that entity is not present in any of the languages, a light gray
fill means that it is present in one language, dark gray that it is present in two,
and a black fill that it is present in all three families of languages. An example
of the use of the metamodel for integration of conceptual data models has been
extracted from [25] and is shown in Fig. 2. The EER diagram depicts a generic
termbank while the UML specifies aspects of a specific termbank as the isiZulu1,
which is the most widely spoken home language in South Africa. The example
shows how the integration can be done asserting links between entities in the

1 http://africanlanguages.com/zulu/

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 27

http://crowd.fi.uncoma.edu.ar
http://africanlanguages.com/zulu/


two models. Some of them are obvious as the subsumption between isiZuluTerm

and Term, although others are not, such as the mapping between the Morphinfo

EER relationship and the UML association relating MorphologicalSyntaxInfo

and isiZuluTerm. This case seems to be more complicated since they define
different cardinalities so that modellers should be asked to accept or not such a
relation.

Figure 1. Metamodel static entities as depicted in [25]. Disjointness axioms amongst
the subclasses of Relationship are: {PartWhole, Attributive property, Subsumption }
and {Qualified relationship, Attributive property, Subsumption}

In the same direction, the KF metamodel also defines four groups of map-
ping rules divided in: 1:1 mappings, transformations, approximations, and no
alternatives. 1:1 mappings are those where the elements are the same from an
ontological point of view and as a consequence, the conversions are in simple
steps. One of the simplest case is Subsumption. Secondly, transformations in-
volve elements which are essentially the same but not from a syntax point of
view. Such transformations take place, for instance, from ORM2 value types to
UML and EER attributes. Approximations are special kinds of rules where mod-
ellers are required to accept or reject the conversions or links. These rules are
based on patterns which could lead to different outcomes. Finally, since these
languages do not have the same expressiveness, some of their features can not
be neither represented nor approximated in a target language. As an example,
the conversion from ORM2 compound cardinality to UML is not possible.

To depict these mapping rules and conversion capabilities, we present in Fig.
3 another example where a new EER model is generated from an initial UML
by executing three 1:1 mappings and six transformations. The 1:1 mappings
are executed for both UML classes (Person and Student) generating the cor-
responding EER entities and the subsumption between these classes generating

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 28



Figure 2. Example extracted from [25]. It shows an integration scenario in which the
metamodel could help us to map their entities.

also the corresponding subsumption in the EER model. On the other hand, one
transformation is run for each attribute to model the same attributes in EER
changing the graphical syntax but keeping the very same meaning.

Figure 3. This conversion scenario depicts another possible application of the meta-
model. In this case, the first UML model is converted to the EER one through 1:1
mappings for classes and subsumption and transformations for attributes.

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 29



3 Conceptual Modelling Interoperability in crowd

In this section, we review the first crowd architecture and give an overview
of its main features. After that, we show the new crowd architecture for the
metamodel-driven interoperability support.

3.1 crowd Overview

The intention behinds crowd is to assist users to design ontologies and concep-
tual models adopting standard CM languages and providing graphical support
for developers. Complete logical reasoning is employed by the tool to verify the
satisfiability of specifications, infer implicit constraints and suggest new ones.
The leverage of automated reasoning is enabled by a precise semantic definition
of all the elements of the diagrams. Hence, diagrams constraints are internally
translated into a logic-based formalism capturing typical features of models. To
this end, the tool is fully integrated with a powerful logic-based reasoning server
acting as a background inference engine. Moreover, since crowd is based on a
deduction-complete notion of reasoning support relative to the diagram graph-
ical syntax, users will see the original model graphically completed with all the
deductions and expressed in the graphical language itself. This includes check-
ing class and relationship consistency, discovering implied class and cardinality
constraints. crowd only focuses on graphical modelling of schemes, while it does
not consider individuals.

As presented in [17], crowd allows graphically creating and editing simple
UML class diagrams, although more expressive OWL 2 [26] constraints can be
appended to models by inserting OWL statements. The communication between
the front-end with the reasoner is by means of the OWLlink protocol [27].
Moreover, it supports satisfiability checking on simple UML graphical diagrams
encoded in ALCQI Description Logics (DL) [6], as demonstrated in [9]. Finally,
the tool continues being developed with updated and scalable graphical libraries
and technologies and recently support to users sessions is at phase of alpha-
testing. The background visualisation process of crowd has been also presented
in [13]. Such a process integrates the theoretical foundations of the tool with
logic-based reasoning and metamodelling capabilities. We claim that crowd is a
tool to evaluate the integration of graphical languages with reasoning systems
and thus assisting users by means of methodologies for conceptual modelling and
ontology design.

3.2 A New Architecture for Metamodelling Support

Aiming to support multi-model capabilities, crowd needs to provide EER and
ORM2 both in the back and in the front-end. Users should visualise and edit
these graphical models and, on demand, send them to the back-end for mapping
them into a metamodel instance and convert them into another desirable model
(if possible). As a consequence, interface feature will be also set-up according to
the corresponding target model.

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 30



Client. Models must be rendered accordingly with its own interface setting up
also for editing. For that matter, the crowd architecture provides a multi-model
front-end for UML, ORM2, and EER, which enables to switch amongst them. To
this end, the client side has been totally refactored. As the Fig. 4 depicts, crowd
client has been designed to support a view-model for each interface matching
the structure of the underlying JointJS2 and BackboneJS libraries.

Figure 4. Extended crowd client-server architecture integrating metamodelling cap-
abilities. The sub-modules in Reasoning Support implement features detailed in [17].

Server. The extended crowd back-end now provides a set of modules to en-
able metamodelling support, which have been fully integrated with the previous
ones because of reasoning capabilities. Such modules are Metamodel Validator,
Metamodel Instance and Mapping Rules. The first one supplies the metamodel
itself for identifying and validating the different primitives of each model and the
relationships amongst them. Particularly, this module implements the classes for
generating an object-oriented representation of the input model in a metamodel
instance. The second one starts the conversion process from any input model to
the corresponding metamodel and vice versa. This process is also supported by
a set of mapping rules provided by the Mapping Rules module and explained
in section 2: 1:1 mapping, transformations and approximations. The resulting
intermediate representation is a set of object instances of the metamodel static
entities for the provided conceptual model. A schematic view of this approach

2 http://www.jointjs.com/

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 31

http://www.jointjs.com/


is illustrated in the example of the Fig. 5 showing a metamodel instance from
a UML class diagram together with its internal JSON codification in Fig. 6.
After this step, the tool is able to express the underlying model in any target
modelling language and thus be sent to the Reasoning Support sub-modules.

Figure 5. A graphical representation of the metamodel instance generated for the
input UML subsumption.

{"classes": [
{"name":"Phone", "attrs":[], "methods":[]},
{"name":"CellPhone", "attrs":[], "methods":[]},
{"name":"FixedPhone", "attrs":[], "methods":[]}],

"links": [
{"classes" : ["CellPhone", "FixedPhone"],
"multiplicity" : null,
"name" : "r1",
"type" : "generalisation",
"parent" : "Phone",
"constraint" : [] }] }

⇒

{"Object type" : [
{"name" : "Phone"},
{"name" : "CellPhone"},
{"name" : "FixedPhone"}],

"Subsumption" : [{"name" : "r1",
"parent" : "Phone",
"children" : ["CellPhone",

"FixedPhone"]}],
"Association" : [],
"Object type cardinality" : [],
"Attribute" : [] }

Figure 6. A transformation between an UML JSON representation into a Metamodel
one.

The set of modules in Reasoning Support have been already detailed in [17].
Briefly, they provide the complete support for automatic reasoning by translating
conceptual models to the OWL 2 language together with a set of queries to
retrieve their properties. These queries are executed by an off-the-shelf inference
engine before returning to the front-end.

Particularly, the core of this support is a graphical-logical mapping [12],
which is a complementary formalisation to coordinate them in the context of a
graphical-centric tool. There, we coordinate different ways to encode graphical
primitives of a language into a decidable logical formalism, as also depicted in
Fig. 7. Formally, we have identified a set of graphical elements independent of
any language and introduced a mapping function Θ. This function is defined as
the union of the logical representations encoding each graphical element. There-
fore, Ω is a consistent graphical model if O is a consistent ontology generated
through Θ in a target logic. Likewise, Θ(O) is a new consistent graphical model
if the ontology O′ is also consistent. From Ω and Ω′, and their respective un-

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 32



derlying ontologies O and O′ through Θ and Θ−1, we define the integration
of the graphical support with reasoning by rendering reasoning results in the
same visual notation. The mapping function should then be reversible in order
to visualise in the same original graphical formalism the results of the reasoning.
At conceptual level, this mapping closes the diagram, however, its validation
requires establishing a correspondence between the graphical models.

Finally, the integration between metamodelling, visualisations and reasoning
support keeps the previous crowd capabilities in order to reason on top of visual
representations using any of the conceptual modelling languages.

Figure 7. Θ(Ω) is the DL definition for the graphical primitive Ω. These primitives
map to many DL expressions and vice versa.

4 crowd Metamodelling Prototype and Example of Use

crowd prototype front-end has been developed in JavaScript, while its back-end
runs in an Apache server and has been developed in PHP. Currently, this first
prototype supports the conversion from UML to EER, which requires both an
UML to Metamodel and a Metamodel to EER transformation. Such a conver-
sion is done from simple UML diagrams including only classes, attributes and
subsumption (without constraints) to a new EER diagram going through an
internal metamodel and applying the mapping rules from Table 1. The EER
diagram generated also depicts entities, their attributes and the corresponding
subsumption in its own graphical representation. Once the conversion is done,
the crowd interface remains in an EER mode together with all the front-end
features in order to continue editing the new model.

Metamodel UML EER ORM2

Entity Type
Object Type Class Entity Object Type
Data Type Data Type Not Apply Data Type

Relationship

Relationship Association Relationship Fact Type
Subsumption Subsumption Subsumption Subsumption

Attribute
Attribute Attribute

Not Apply
(With datatype) (Without datatype)

Table 1. This table shows how primitives of the models are converted to others.

To show the use of the prototype, we revisit the conversion example dia-
grams from Fig. 3 but now rendered in crowd. The Fig. 8 depicts the initial

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 33



UML Class Diagram modelling Person and Student classes, their attributes and
datatypes dni:String, firstname:String, surname:String, birthdate:Date,
id:String, enrolldate:Data and a subsumption relationship. The resulting
EER diagram is shown in the Fig. 9.

Before ending this section, it is important to remark that even though data-
types in UML are not converted, they are saved in the metamodel representation.
However, restoring the original model is not necessarily aimed by this approach.

Figure 8. An initial UML model as visualised in the current crowd prototype.

Figure 9. The converted EER model as visualised in the current crowd prototype.

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 34



5 Comparison with other Tools

From a formal point of view, there is a variety of intents to transforms concep-
tual models from a graphical language into another without considering valid-
ating inter-model assertions. One of the most relevant work is presented in [28]
by Boy and McBrien. They support ER, UML and ORM schemes and include
transformation rules, but the expressiveness of models is limited since they omit
roles, aggregation, weak entity types and several constraints. Halpin [29, 16] ana-
lyses mappings from ORM to UML and from ORM to ER. However, these are
only theoretical and both mappings are presented as separated approaches as
well.

On the other hand, some aspects related to the transformation between CM
languages have been undertaken. In this respect, the tool astah3 allows to convert
from UML models to EER and vice versa but mapping mainly UML classes to
ER entities and keeping the UML attributes in the same entity. No ORM nor
reasoning support is provided. Visual Paradigm4 is another commercial tool
suite for software development for generating Class diagrams from ER ones.
The tool maps classes, associations and attributes into entities, associations and
attributes maintaining a Baker-like syntax [30] between both models. Similar
to the previous suite, no automatic reasoning is provided as well as linking and
interoperability capabilities either.

With reference to visualisation process of crowd, we have surveyed many re-
lated tools with graphical ontological representation, such as ICOM [31], NORMA
[20], the well-known Protégé [32], OWLGrED [21], Menthor5 (OntoUML [33]),
amongst others. However, although all of them present different degrees of graph-
ical support, multi-modelling capabilities are missing. Ontologies and conceptual
models are depicted using EER, UML or ORM but neither conversion nor linking
is provided between these models.

As a conclusion, despite the theoretical or practical achievements, these re-
lated works show the needs for an integrated and ontological analysis of UML,
EER and ORM together with linking and converting purposes. As far as we
know, our new multi-model crowd architecture is the only one that proposes
this approach to be completely implemented in a graphic-centric Web tool for
ontology modelling dealing with back-end reasoning systems.

6 Conclusions and Future Works

Interoperability amongst different CM languages for ontology modelling is key
for graphical tools because allows modellers to choose the one of their preference
in order to develop complex systems. Furthermore, linking different ontologies
or ontology-based models also requires interoperability amongst conceptual data

3 http://astah.net/features/convert-diagrams-and-models
4 https://www.visual-paradigm.com/tutorials/generatecdfromerd.jsp
5 http://www.menthor.net

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 35

http://astah.net/features/convert-diagrams-and-models
https://www.visual-paradigm.com/tutorials/generatecdfromerd.jsp
http://www.menthor.net


models. Thus, the definition and implementation of the KF metamodel provides
this dimension intended for UML v2.4.1, ORM2 and EER CM languages.

In this work, we have introduced an extended Web architecture for our tool
crowd by adding metamodelling support. The crowd architecture also provides
a multi-model front-end for UML, ORM2, and EER, which enables switching
amongst them. Additionally, we have implemented a new crowd prototype for
managing the conversion from UML to EER going through an internal meta-
model representation and applying only 1:1 mappings between UML classes and
EER entities, subsumptions and attributes transformations. This prototype sup-
ports the main primitives of UML and EER entities, attributes and subsumption.
In this respect, we are currently developing the modules for full support of EER
and ORM2 languages together with the corresponding DL representations for
taking advantages of automatic reasoning.

In future, we plan to complete the implementation of crowd as has been de-
scribed in this paper and evaluate the whole approach in depth. Finally, it would
be worth considering to expand the metamodel for supporting other visual form-
alisms different from the already defined ones and thus going towards suitable
visualisations in tools.

Acknowledgements

The authors would like to thank the anonymous referees for their comments and
suggestions. This work is based upon research partially supported by the Univer-
sidad Nacional del Comahue (Project ID: 04/F014), the Universidad Nacional del
Sur (Project ID: 24/N038), the Consejo Nacional de Investigaciones Cient́ıficas
y Técnicas (CONICET), the Consejo Interuniversitario Nacional (CIN) and the
Comisión de Investigaciones Cient́ıficas de la prov. de Buenos Aires (CIC).

References

1. Ivanova, V., Lambrix, P., Lohmann, S., Pesquita, C., eds.: Proceedings of the
Second International Workshop on Visualization and Interaction for Ontologies
and Linked Data co-located with the 15th International Semantic Web Conference,
VOILA@ISWC 2016. Volume 1704 of CEUR Workshop Proceedings., CEUR-
WS.org (2016)

2. Booch, G., Rumbaugh, J., Jacobson, I.: Unified Modeling Language User Guide.
Addison-Wesley Professional (2005)

3. Gogolla, M.: Extended Entity-Relationship Model: Fundamentals and Pragmatics.
Springer-Verlag (1994)

4. Halpin, T., Morgan, T.: Information Modeling and Relational Databases. 2 edn.
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA (2008)

5. Motik, B., Grau, B.C., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C., eds.: OWL 2 Web
Ontology Language Profiles. Second edition edn. World Wide Web Consortium
(December 2012) https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/.

6. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.,
eds.: The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, New York, NY, USA (2003)

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 36

https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/


7. Borgida, A., Lenzerini, M., Rosati, R.: The description logic handbook. Cambridge
University Press, New York, NY, USA (2003)

8. Abiteboul, S., Arenas, M., Barceló, P., Bienvenu, M., Calvanese, D., David, C.,
Hull, R., Hüllermeier, E., Kimelfeld, B., Libkin, L., Martens, W., Milo, T., Murlak,
F., Neven, F., Ortiz, M., Schwentick, T., Stoyanovich, J., Su, J., Suciu, D., Vianu,
V., Yi, K.: Research directions for principles of data management (abridged).
SIGMOD Record (2016)

9. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1-2) (2005) 70–118

10. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in
OWL2. In: On the Move to Meaningful Internet Systems: OTM 2012 Workshops,
Confederated International Workshops: OTM Academy, Industry Case Studies
Program, EI2N, INBAST, META4eS, OnToContent, ORM, SeDeS, SINCOM, and
SOMOCO 2012. (2012)

11. Artale, A., Calvanese, D., Kontchakov, R., Ryzhikov, V., Zakharyaschev, M.: Com-
plexity of reasoning in entity relationship models. In: Proceedings of the 2007
International Workshop on Description Logics (DL). (2007)

12. GILIA: Integrating Graphical Support with Reasoning in a Methodology for Ontol-
ogy Evolution. Technical report (2015) available at http://tinyurl.com/nm4nos2
from Jun 7, 2015.

13. Braun, G., Gimenez, C., Cecchi, L., Fillottrani, P.: Towards a visualisation process
for ontology-based conceptual modelling. In Baracho, R.M.A., Isotani, S., Almeida,
M.B., eds.: ONTOBRAS – Brazilian Ontology Research Seminar (ONTOBRAS).
Number 1862 in CEUR Workshop Proceedings, Aachen (2016) 107–118

14. Keet, C.M., Fillottrani, P.R.: An ontology-driven unifying metamodel of UML
Class Diagrams, EER, and ORM2. Data & Knowledge Engineering (2015)

15. Bollen, P.: A formal ORM-to-UML mapping algorithm. Technical report, MET-
EOR, Maastricht University School of Business and Economics (2002)

16. Halpin, T.A.: Information analysis in UML and ORM: A comparison. In: Advanced
Topics in Database Research, Vol. 1. (2002)

17. Gimenez, C., Braun, G., Cecchi, L., Fillottrani, L.: crowd: A Tool for Conceptual
Modelling assisted by Automated Reasoning - Preliminary Report. In: the 2nd
Simposio Argentino de Ontoloǵıas y sus Aplicaciones SAOA ’16 JAIIO ’16. (2016)

18. Gimenez, C., Braun, G., Cecchi, L., Fillottrani, P.: Una Arquitectura Cliente-
Servidor para Modelado Conceptual Asistido por Razonamiento Automático. In:
XVIII Workshop de Investigadores en Ciencias de la Computación. (2016)

19. Fillottrani, P., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web (2012)

20. Curland, M., Halpin, T.A.: The NORMA Software Tool for ORM 2. In: CAiSE
Forum. Lecture Notes in Business Information Processing, Springer (2010)

21. Cerans, K., Ovcinnikova, J., Liepins, R., Sprogis, A.: Advanced owl 2.0 ontol-
ogy visualization in owlgred. In: DB&IS. Frontiers in Artificial Intelligence and
Applications, IOS Press (2012)

22. Haarslev, V., Möller, R.: Racer system description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: International Joint Conference on Automated Reasoning, IJ-
CAR’2001, June 18-23, Siena, Italy, Springer-Verlag (2001) 701–705

23. Fillottrani, P.R., Keet, C.M.: KF metamodel formalization. CoRR
abs/1412.6545 (2014)

24. Fillottrani, P.R., Keet, C.M.: Conceptual model interoperability: A metamodel-
driven approach. In: Rules on the Web. From Theory to Applications - 8th Interna-
tional Symposium, RuleML 2014, Co-located with the 21st European Conference

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 37

http://tinyurl.com/nm4nos2


on Artificial Intelligence, ECAI 2014, Prague, Czech Republic, August 18-20, 2014.
Proceedings. (2014)

25. Keet, C.M., Fillottrani, P.R.: Toward an ontology-driven unifying metamodel for
UML class diagrams, EER, and ORM2. In: Conceptual Modeling - 32th Interna-
tional Conference, ER 2013, Hong-Kong, China, November 11-13, 2013. Proceed-
ings. (2013)

26. Grau, B.C., Horrocks, I., Motik, B., Parsia, B., Patel-Schneider, P., Sattler, U.:
OWL 2: The Next Step for OWL. Web Semant. (2008)

27. Liebig, T., Luther, M., Noppens, O., Wessel, M.: Owllink. Semantic Web 2(1)
(2011) 23–32

28. Boyd, M., McBrien, P. In: Comparing and Transforming Between Data Models
Via an Intermediate Hypergraph Data Model. Springer Berlin Heidelberg (2005)

29. Halpin, T.A.: Comparing metamodels for er, ORM and UML data models. In:
Advanced Topics in Database Research, Vol. 3. (2004)

30. Barker, R.: CASE Method - Entity Relationship Modellierung. Addison-Wesley
(1992)

31. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semantic Web (2012)

32. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An
open development environment for semantic web applications. (2004)

33. Guizzardi, G.: Ontological foundations for structural conceptual models. PhD
thesis, University of Twente, Enschede, The Netherlands, Enschede (October 2005)

SAOA, Simposio Argentino de OntologÝas y sus Aplicaciones

46JAIIO - SAOA - ISSN: 2451-7518 - Página 38


	Towards Conceptual Modelling Interoperability in a Web Tool for Ontology Engineering

