
 

The Volterra representation of an electronic device using the Neural 
Network parameters 

 
 

Georgina S. Stegmayer 
Politecnico di Torino, Dipartimento Elettronica, 

Torino, Italia, 10129 
georgina.stegmayer@polito.it 

 
and 

 
Omar Chiotti 

Universidad Tecnologica Nacional, GIDSATD, 
Santa Fe, Argentina, 3000 

chiotti@ceride.gov.ar 

Abstract 

Many electronic devices present nonlinear characteristics, which are often difficult to express analytically. Generally 
it is easier to perform measurements of the device parameters than to develop an analytical model of its behavior. As 
Neural Networks can be used to learn a system dynamics from input-output data only, we have developed a Neural 
Network model which reproduces the nonlinear behavior of an electronic device, in particular a Field-Effect 
Transistor (FET), using simulation data. However, electronic devices nonlinear analysis requires an analytical model 
(i.e. an equation representing the current-voltage relationship), described as a closed-form function, that allows to 
draw conclusions about the device, such as the Volterra series model. In this work, we want to show how the neural 
model and the analytical Volterra series model of the transistor are totally equivalent. Therefore, we show here how 
it is possible to build an analytical expression for a device nonlinearity, the Volterra series, with parameters of a 
standard Neural Network, trained with the device measurements or simulation data. 
Keywords: Neural Networks, nonlinear electronic devices, Volterra model. 
 



 

 

1. INTRODUCTION 
Electronic device models based on nonlinear equivalent circuit for commercial CAD programs, generally require 
current-voltage and charge-voltage mathematical models, described as a closed-form function of the intrinsic control 
voltages, to characterize the nonlinear circuit elements. This equation describes the input/output behavior of the 
device/element. One example of such a function is a generally known and widely accepted transistor model: the 
Curtice Model [3].  
One of the elements described by the Curtice Model is  the nonlinear characteristic of the current in a Field-Effect 
Transistor (FET) device. The Curtice model equivalent circuit is presented in Figure 1. This model reflects the 
input/output behavior of the drain to source current Ids, that is function of the intrinsic voltages of the FET, Vgs and 
Vds. This element accounts for most of the nonlinear behavior of the device. We have performed some simulations 
to show the I/V (current vs. voltage) curves of the model (Figure 2), for different voltages combinations, using the 
following values: Vgs = [-1…0], Vds = [0…5], β = 0, χ = 0.3.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The model only shows the input/output characteristic of the element, but does not allow doing a deeper analysis 
about the device behavior that could help an electronic designer. One of the approaches regarding this analysis is the 
approximation of the nonlinear behavior of the element under consideration with a numerical series such as the 
Volterra series [4][2]. This series has some terms named kernels that allow a deeper understanding of the device. Its 
main disadvantage, however, is the analytical expression or calculation of its kernels. Our proposal is to use a neural 
network and its parameters, to help in the building of the Volterra series and the calculation of its kernels. 
In Section 2 we present the Volterra series analysis and related work regarding the use of neural networks for 
Vo lterra kernels calculation. In Section 3 we present our neural network based model and how to calculate the 
kernels from parameters of the network. Simulations that confirm our proposal are shown in Section 4. The 
conclusions of the work can be found in Section 5. 
 
2. VOLTERRA SERIES ANALYSIS 
For a single-input, single-output (SISO) non-linear dynamical system, with an output time function, y(t), and an 
input time function, x(t), it can be represented exactly by a converging infinite series of the form 
 

  (1) 
 

 (2) 
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Figure 2.    I/V Curves for the Curtice model 
 

 

Figure 1.    Curtice FET model equivalent circuit 
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This system can be represented to any desired degree of accuracy by a finite series of the form (3). This equation is 
known as the Volterra series expansion. The h1, h2, …, hn are known as the Volterra kernels of the system [8]. The 
kernel h0 is called the impulse response of the system, h1 is the first order kernel, h2 is the second order kernel, and in 
general, hn is the nth order kernel of the series. The Fourier transform of the kernel functions yields the transfer 
functions of the system. The transform of h1 gives the linear transfer function and the transforms of the higher order 
kernels give the non-linear transfer functions. 
 

(3) 
 
 
 
 
If the continuous Volterra series model (3) is discretized, then it assumes the form 
 

(4) 
 
 
 
 
 
In nonlinear microwave analysis, in particular for small signal regime, the tool for excellence has been the Volterra-
series analysis  [8]. The Volterra description for an electronic device is based on Taylor-series expansions of the 
device nonlinearity around a fixed bias point, in the cas e of amplifiers or transistors, or around a time-varying 
waveform signal in the case of mixers. The nonlinear behavior in the device represented by the circuit of Figure 1, is 
particularly due to the drain to source current Ids. Its Volterra series expression truncated at the third order kernel is  
the following 

(5) 
 
 
 
 
 
where Vgs0  and Vds0 are the internal bias voltages, vgs = Vgs - Vgs0  and vds = Vds - Vds0  are the incremental 
intrinsic voltages respect to the bias voltages. The coefficients of the series are the first order (Gm1 and Gds), 
second order (Gm2, Gds2 and Gmd) and third order (Gm3, Gds3, Gm2d, Gmd2) derivatives of the current. If we 
compare (4) and (5) we can see that these coefficients happen to be the Volterra kernels of the series.  
These derivatives allow the inference of some device characteristics of great concern for the microwave designer, 
such as harmonic generation and inter-modulation phenomena in the case of a FET transistor, information that can 
be inferred from the derivatives of the model, which are  contained in the Volterra kernels. For example, the 
coefficient Gm1 is the first derivative of the current Ids with respect to the voltage vgs. It is an important parameter 
of the device called transconductance, which expresses the performance of the transistor 
However, kernels calculation, measurement or analytical expression is a  very complicated and time-consuming task 
[7] [1]. In the Biology field, these authors [13][12] have outlined a method for extracting the Volterra kernels of any 
order as a function of the weights and bias values of a feed-forward time delayed neural network with one hidden 
layer. Based on this idea, other works propose different strategies for kernels calculation with different neural 
networks topologies [11][9], also in the electronics field  [5] [6]. But all of these approaches deal with time series 
inputs and only one variable.  
However, in the case we are interested in, the function depends on two variables and the Volterra model is 
developed around two bias points , therefore the existing models cannot be used. We will propose a new model 
which can be used also in a multivariable case. 
We have chosen to use a feed-forward mu ltilayer perceptron (MLP) neural network, having the two intrinsic 
voltages as inputs, and the current as output. Differently from [4] where it is compared the use of two types of 
Radial Basis Function neural networks and an MLP to describe the current nonlinearity, where measurements of the 
current and all its derivatives are necessary for the model, which is a complex task; our approach, instead, only 
needs simple device measurements or simulations of the voltages and the output current, and the training of a very 
simple MLP neural network model. With only those elements, after performing some very simple calculation, the 
Volterra series and its kernels can be obtained. 
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3. NEURAL NETWORK BASED MODEL 
The topology of the MLP network that we propose is a very simple one. It has one input layer, one hidden layer with 
two hidden neurons, and an output layer with a single output (Figure 3).  
The input layer has two neurons, which are the controlled voltages vgs and vds. The inputs are multiplied by its 
corresponding weights wij (i,j=[1…2]) and propagated through the network. In the hidden layer there are two hidden 
neurons. As their activation function we have chosen the hyperbolic tangent (tanh). Each of them receives the sum 
of the weighted inputs, added to its corresponding bias value bk (k=[1…2]). The output neuron has a linear 
activation function and therefore the output of the network Ids is calculated as the sum of the weighted outputs of 
the two hidden neurons plus a bias (6).  
 
 
 
 
 
 
 
 
 
 
 

(6) 
 
We want to show the equivalence between the output of our neural network model (6), that learns the relationship 
between the voltages and the current of the Curtice model, and its Volterra series representation (5), and we will 
show how easy is to obtain, from the network parameters, the values of the Volterra kernels that form the series. 
Following the approach in [13], we expand the output of our network model (6) as a Taylor series around the bias 
values of the hidden nodes  
 

(7) 
 
 
 
where tanh(j) is the jth derivate of the hyperbolic tangent (tanh). 
Developing the brackets in (7) up to the second order derivatives and accommodating the common terms, yields 
 

(8) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comparing (5) and (8) it can be seen that our developed neural network model is equivalent to the Volterra model or  
power-series expression commonly used for the current-voltage relationship in a FET. Moreover, the Volterra 
kernels of the series can now be easily calculated in function of the neural network parameters (the terms between 
brackets). 
Equations (9) to (14) show how to calculate the kernels using the weights and bias values of the network. We only 
show the calculations for the impulse response, and the first and second order kernels , but the other formulas can be 
easily found. The corresponding first and second order derivatives have been developed. 
 
 

Figure 3.    Topology of the MLP studied 
 

 

 

 

 
 

w1
11 

w1
22 

w1
21 

w1
12 

w2
1 

w2
2 

Ids 

b1 

b2 

vgs 
 
 
 
vds 

b0 



 

 

∑

∑

∑

=

=

=

−==

−==

+==

2

1j
j

21
2j

2
j1

2

1j
j

21
1j

2
j1

2

1i
i

2
i00

))b(tanh1(ww)vds(hGds

))b(tanh1(ww)vgs(h1Gm

)btanh(wbh)0Vds,0Vgs(Ids

2

))b(tanh2)btanh(2(www
)vds,vgs(hGmd

2

))b(tanh2)btanh(2(www
)vds,vds(h2Gd

2

))b(tanh2)btanh(2(www
)vgs,vgs(h2Gm

j
3

2

1j
j

1
2j

1
1j

2
j

2

j
3

2

1j
j

1
2j

1
2j

2
j

2

j
3

2

1j
j

1
1j

1
1j

2
j

2

+−
==

+−
==

+−
==

∑

∑

∑

=

=

=

 
 (9) 

 
 

(10) 
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4. SIMULATION RESULTS 
We have performed some simulations to show the validity of our approach. We have used the Curtice model to 
generate the training data, with simulations performed with an electronics circuits analyzer, but also laboratory 
measurements could have been used, because only the input/output data is necessary. 
Once the neural network model was trained, using back-propagation and the Levenverg-Marquardt algorithms, to 
reproduce the nonlinear behavior of the system, we have extracted the weights and bias values from the neural 
network topology and have calculated the Volterra kernels of the system up to the third order, using the formulas 
shown above. Then we have built the Volterra approximation (8) with the calculated kernels , and we have plotted it 
against the original FET behavior.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results are reported in Figures 4 and 5. In Figure 4 we have trained the MLP model with the original 
input/output data, without normalizing the values . We can see  that the Volterra approximation to the original data, 
built with the kernels  calculated with the MLP model and including only up to the third order kernels, is quite 
accurate, but for the lower values of vgs there are some negative values which are not correct. However, in general, 
the form of the nonlinearity in this multivariable case is correct. 
We have decided to try normalizing the input/output values to train the MLP model, to improve approximation,  
between the extremes of the domain interval of the hidden nodes activation function, the hyperbolic tangent. This 
way, the data are normalized before being used for the training, and de-normalized afterwards. The results have been 
impressively improved, and are shown in Figure 5, reaching a Mean Square Error (MSE) of 1x10-7. 
 

Figure 4.    I/V Curves of the Curtice model (*) vs. I/V Curves of the Volterra-Neural Network based model (-), without 
normalized values 



 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These results show the validity of our approach  for the building of a multivariable Volterra series model of the 
nonlinearity in an electronic devices, and the results have shown also the importance of normalization for improving  
the Neural Networks training phase. 
 
5. CONCLUSIONS 
In this work, we have shown how a Neural Network model for a transistor nonlinearity and its analytical Volterra 
series model are totally equivalent. Therefore, we have explained here how it is possible to build the Volterra series 
analytical expression for an electronic device, even in the case of a multivariable nonlinearity, which is a difficult 
task, using parameters of a simple standard Neural Network model, trained only with voltage-current device 
measurements or simulation data.  
From our simulation results we conclude that our approach is valid and that even when we have built  a series having 
into account up to the third order kernels only, the approximation of the original function is quire accurate and fast. 
We have put in evidence also the importance of data normalization for the training phase on a neural network model, 
to improve accuracy in the final results  obtained. 
We want to highlight that our proposed approach implies and effective and concrete application of the neural 
networks models  in the Electronics Field, that allows the building of an analytical Volterra series representation for 
a device, in this particular case a FET transistor, with the help of a very simple neural network model that needs few 
data, and some algebra, saving precious time to the microwave engineer at the moment of device analysis and 
design.  
Our future work involves the implementation of this model inside a microwave circuit simulator. 
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