

Process Modeling Architectures with Namespace and XML
Technology

Tiago Lopes Telecken, José Valdeni de Lima
Universidade Federal do Rio Grande do Sul, Instituto de Informática

Porto Alegre – RS, Brazil, Av. Bento Conçalves, 9500 Campus do Vale - Bloco IV
CEP 91591-970, Caixa Postal 15064

{telecken, valdeni} @inf.ufrgs.br

Montgomery Barroso França
Universidade Federal do Rio Grande do Sul, Instituto de Informática

Banco Central do Brasil

Brasília – DF, Brazil, CEP 70074-900, SBS Quadra 3 Bloco B - Ed. Sede
Caixa Postal 08670
mont@bcb.gov.br

Abstract

The necessity of productivity and quality in workflow systems demands the use of several process modeling

architectures. However, in the workflow area, there is few information about optional architectures of relationships
among models and documents used in the process modeling phase. To attend the demand for information about
optional architectures, this paper presents a survey about many-one architecture and a comparative study about
process modeling architectures. The many-one architecture uses namespace and XML technology to insert elements
of many XML models in only one process definition. Such characteristic allows a workflow technology
development be more modular and reusable.

Keywords: Process Definitions, Process modeling, Namespace, Workflow, XML

1 Introduction

In the document structuring area the most traditional architecture of relationships among models and documents
is formed by one document that contains all information used in an application and by one model that defines all
structure of referred document. This is the one-one architecture.

But, some applications need architectures that contain many models. Two optional architectures were developed
for these applications. The first one is formed by many documents. Its respective model defines the structure of each
document. This is the many-many architecture. The second one is formed by one document, but the structure of this
document is defined in many models. This is the many-one architecture.

The necessity of productivity and quality in workflow systems and the application of workflow technology in
more and more complex environments demand the use of all process modeling architectures.

However, there are few information, developments and researches about architectures of relationships among
models and documents used in the process modeling phase. And, this few information is concentrated in the one-one
architecture. For helping developers and researches to choose the best architecture in process definitions, this paper
presents a survey about many-one architecture and a comparative study about the process modeling architectures.

2 Overview -Workflow Systems Architecture

In agreement with the Workflow Management Coalition (WfMC) [20][18], the generic architecture of a
workflow system should follow the model shown in the figure 1. Concisely this model determines that: the
workflow designers can generate a process definition through a definition tool. The process definition should
contain (i) all the information that the workflow engine needs to manage, control and execute a workflow; and (ii)
all the information that the definition tool needs to facilitate the process definition edition. After, the process
definition can be sent to a workflow engine. The workflow engine will interpret the process definition. After, it will
control, manage and execute the workflow described in the process definition.

 Fig. 1. Workflow Systems

The elements and attributes contained in a process definition are defined in one model called process definition

model. The process definitions are of two types. The first one is the internal representations. Internal representations
were projected to be the internal data representation of a specific definition tool. The second one is the interchange
patterns. The interchange patterns allow the compatibility among the systems evolved in a workflow process.

Process definitions are complex documents that have a rigid syntax. So, in the process modeling phase, the use
of a definition tool is essential. The referred tool facilitates the analysis, modeling and codification of a process
definition.

The main components and functionalities of the definition tool are [15]:

• Internal representation: It is a process definition which structure is defined by the process definition model
adopted by the definition tool.

• Internal representation control: It is the internal representation edition resources.
• Visions: They are functionalities that supply the users with one vision of the internal representation. Graphic

and textual visions can be supplied.

Users

 Definition Tool

Workflow Engine

Process Definition

Process
modeling

Process
execution

Interactions

Applications

Generates

Interpreted by

Workflow Designers

• Export/Import process definitions: Export is the resource that converts the internal representation of a
workflow process to an external format. Import is the resource that converts a process definition of an external
format to the internal representation.

• Nesting: They are functionalities that allow the process definition hierarchy modeling and navigation.
• Error verification: It is a functionality that allows the automatic error verification in process definitions.

Syntax and semantic errors are verified.
• Analysis and simulation: They are functionalities that facilitate the analysis and simulation of modeled

workflow behavior.

3 Overview - Using XML in Process Definitions

Extensible Markup Language (XML) technology [4] is a vast and growing set of modules that offer services,

tools and standards used in a wide range of areas. Its use in document structuring is largely divulged and offers a
growing number of tools.

XML document structuring is largely used in process definition. The XML Process Definition Language
(XPDL) [19] is an important XML interchange pattern defined by WfMC (entity created for developing workflow
standards). Other important XML interchange patterns are [1]: XLang [17] from Microsoft, Web Services Flow
Language (WSFL) [11] from IBM, Business Process Modeling Language (BPML) from Business Process Modeling
Language Initiative (BPMI) [2], Web Service Choreography Interface (WSCI) [23] from Sun/BEA and Business
Process Execution Language for Web Services (BPEL4WS) [12] (the evolution of XLang and WSFL in the web
services context).

Many internal representations of process definitions are XML languages. This is the case of Biztalk
Orchestration Designer that uses the XLang [17] and of IBM's MQ Series Workflow that has an internal
representation based on WSFL [9].

Most definition tools export and/or import their internal representations for one or several XML formats. The
most common exportations and importations are for the following formats: XPDL, XLang, WSFL, BPML, WSCI
and BPEL4WS.

The main advantages of XML application in process definitions are:

• A great interoperability with workflow systems (workflow management systems, definition tools, simulation
programs, etc). The most important workflow systems are enabled to import, export or interpret XML
languages.

• A great interoperability with systems from other areas. XML documents are a standard data exchange format.
With XML the process definition and the definition tools become compatible with many tools, protocols,
applications and resources such as Extensible Stylesheet Language Transformations (XSLT), XML Schema,
Simple API for XML (SAX), Document Object Model (DOM) API, and much more.

The use of XML in process definitions is growing. The main entities and organizations of workflow area

already use XML representations. For this reason, the focus of this paper is XML solutions.

3.1 Using Namespace in Process Definition

The specification Namespace [3] is a XML standard that defines how two or more XML representations can be

inserted in the same document. This specification is an official recommendation of the World Wide Web
Consortium (W3C).

The namespace is used to insert external XML representation into process definitions. This is the case of
Resource Description Framework (RDF) elements and attributes inserted in PSL [14]. RDF elements in Process
Specification Language (PSL) documents define resources used in workflow systems.

The namespace is also used to put elements of a process definition language in external XML documents. This
is the case of XLang elements that are put in Web Services Description Language (WSDL) documents. According to
Thatte [17], the WSDL is a net service description protocol. Among other services, the WSDL describes Web
Services by XLang elements and attributes.

3.2 Using SVG, XLink, and RDF in Process Definition

The Scalable Vector Graphics (SVG) [22], XML Linking Language (XLink) [6] and RDF [21] specifications

are XML vocabularies that describe respectively 2D graphics, links and resources. These languages are official
recommendations of World Wide Web Consortium (W3C) and are cited in the cases of this paper. Definition tools
such as ILOG [10] export the graphic representation of workflow process to SVG formats. The XLink is used by
some definition tools and is proposed by some authors [7] as a good standard to link elements of process definitions
localized in different documents.

4 Related works - The Process Modeling Architectures

The approached area of this paper is the architectures of relationships among models and documents used in the

process modeling phase. In these architectures, the entities that are relevant for process execution or process
modeling are defined in models. The models are applied in domain areas. The entities of a domain that are defined
in one model are called entity domains. The entity domains are represented in documents by elements and attributes.
The structure of documents used in these architectures is defined in the referred models. There are three possible
architectures.

 In the first architecture, each process definition is formed by one document. The structure of process definition
is defined in only one model. This is the one-one architecture. In the current process definition and definition tools,
this is the most used architecture. An example of this architecture is XPDL [19]. In this standard, all elements used
in the process modeling phase and in the process execution phase are defined in one model and represented in one
document.

In the second architecture, each process definition is formed by more than one document. The structure of each
document is defined in one different model. The elements of each document may make mutual references. So, the
documents that form one process definition need resources to maintain the mutual synchronization. This is the
many-many architecture. An example is the internal representation of definition tool FORO process designer [8],
that is formed by two documents. One document contains elements defined in the process model. The other contains
elements defined in the informational model. There are two models and the process definition is formed by two
documents.

In the third architecture, each process definition is formed by one document. And the structure of process
definition is defined in different models. This is the many-one architecture. An example is the PSL [14], an
interchange pattern that defines external resources by RDF elements inserted by namespace standard. There are two
models, PSL and RDF. The PSL is the main model and RDF is the secondary model.

Each column of table 1 shows the characteristics of one researched architecture and the figure 2 shows the
architecture of the three referred examples.

Table 1 - Architecture’s characteristics
1- One-One 2- Many-Many 3- Many-One
Process definition structure defined
in one model

Process definition structure defined
in many models

Process definition structure defined in
many models

Process definition is formed by one
document

Process definition is formed by
many documents

Process definition is formed by one
document

Fig. 2. Architecture’s samples

4.1 XML Implementation

For implementing the process modeling architectures with XML technology it is necessary: (i) to define the models
with a document type definition (DTD) or a XML Schema; and (ii) to implement applications for interpretation and
manipulation of XML files.

In the one-one architecture, the process definition is a XML file that is in conformance with the only defined model.
In the many-many architecture, each document of a process definition is a XML file that is in conformance with the

correspondent defined model. Another important implementation in this kind of architecture is the implementation of
resources that make the document synchronizations. The document synchronizations are necessary for relationship
maintenance that exists between elements of different documents.

In the many-one architecture, the definition of the integration rules of involved models is needed. An integration
model can make the integration rules. To define the integration model in XML, a DTD or a XML Schema can be used.
In the integration model, one of the integrated models is the main model and the others are the secondary models. The
main model elements can be inserted normally in the integration DTD and the elements of the other models are inserted
by namespace’s standard (Generally, the integration model is an adaptation of main model). In the many-one
architecture, the process definition is a XML file that is in conformance with the integration model. The figure 3 shows
a more detailed many-one architecture.

Fig. 3. Detailed many-one architecture

5 Many-One Case Study I - The Amaya Workflow Prototype

This many-one case study is presented to show more details about the many-one architecture application. The

Amaya Workflow (AW)[16] [13] is a definition tool developed in Universidade Federal do Rio Grande do Sul
(UFRGS). The AW was developed as an extension of Amaya [24] XML. The Amaya is a XML editor and browser,
developed in Institut National de Recherche en Informatique et en Automatique (INRIA). The internal representation
model of AW is similar to the model proposed by Casati et al. [5]. Following, some elements of AW model are
described:

Workflow: It represents a process. It is the root element.
Task: It represents a workflow task.
Connector: It represents the connections between workflow elements.
MultiActivity and SuperActivity: They represent tasks that can be expanded.
The other elements are different types of joins and forks.

The internal representation of AW includes some SVG and Xlink attributes in the AW elements. In the beginning

of internal representation, the namespaces of XLink, SVG and AW model need to be defined. The AW is the main
model. XLink and SVG are secondary models. An example is shown following:

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE AW PUBLIC http://www.inf.ufrgs/~telecken/AW/AW.dtd">

<workflow xmlns=" http://www.inf.ufrgs/~telecken/AW/"
xmlns:svg="http://www.w3.org/2000/svg" xmlns:xlink="http://www.w3.org/1999/xlink" version="1.0">

5.1 The Graphic Vision

Associated with each element of AW there is one graphic representation used in one AW graphic vision. The

graphic representation is equivalent to the representation proposed in WIDE project [5]. The AW graphic vision is a
functionality that helps the workflow designers in the workflow edition and workflow analysis.

The SVG attributes are used for storing of entities about the workflow graphic appearance. Each AW element
contains SVG attributes that describe the correspondent graphic representation. For example, into the Task element of
AW, the stroke, fill, x, y, width, Stroke-width and height attributes of element rect need to be inserted. The rect is an
SVG element. To inform that these attributes belong to rect element, the type attribute with the value "rect" needs to be
inserted. The type attribute is not a SVG attribute but it is used in this research. The table 2 shows what each inserted
attribute represents. Each column contains information about the attribute informed in the table header. All attributes
describe a rectangle.

Table 2 - The attributes of rect.
Stroke stroke-width fill X Y width height
Stroke
color

Stroke width Internal
color

Coordinate X of left
superior corner

Coordinate Y of left
superior corner

Width Height

An example of Task element is shown following.

<Task name="Fill document" ID="1234" application="WebForm" description="The manager fill the document"
svg:type=”rect” svg:stroke="black" svg:fill="white" svg:y="31px" svg:x="40px" svg:width="90px" svg:height="40px"
svg:stroke-width="2"/>

The SVG attributes are prefixed by "svg:". The other attributes are workflow attributes of AW model. The same

procedure is applied on the other elements until all workflow graphic representation is defined by SVG attributes.

5.2 The Nesting

The AW has nesting functionality. The SuperTask and MultiTask elements aim to external process definitions. The
process definition aimed by SuperTask or MultiTask describes the activities of these elements. The link of these
documents is made by XLink attributes. Into the MultiTask or SuperTask elements of AW model, the type and href
attributes of XLink simple element need to be inserted. To inform that these attributes belong to simple element, the
type attribute with the value "simple" need to be filled. The value of href is a valid Uniform Resource Locator (URL)
that aims to one process definition. An example of SuperTask element is shown following:

<SuperTask name="Fill document" ID="1234" application="WebForm" description="The manager fill the document"
svg:type=”rect” svg:stroke="black" svg:fill="white" svg:y="31px" svg:x="40px" svg:width="90px" svg:height="40px"
svg:stroke-width="10" xlink:type= “simple” xlink:href=”./exec.xml”/>

The two XLink attributes are prefixed by "xlink:".

5.3 Other Functionalities and the Namespace

Other functionalities of AW are: error verification; exportation to the XPDL, SVG and PDF formats; textual visions
synchronized with graphic visions; internal representation controls; cooperation resources; etc. All AW functionalities
use XML resources and the process definitions. The use of namespace standard does not disturb these functionalities.
Basically, an attribute added by namespace is accessed in the same way as other attributes. The difference is the name
of the attributes. The namespace attributes are prefixed by the model name and a colon sign (for example: xlink:href,
svg:x). The elements of main model have only the attribute name. The figure 4 shows a screenshot of AW. The
screenshot shows a graphic vision, a textual vision, a modeled workflow and a palette of workflow symbols.

Fig. 4. The AW Screenshot

5.4 The Many-One Architecture of AW

The AW process definition can be divided into

three distinct domains: workflow domain, graphic
domain and link domain. These domains have many
mutual relationships and, during the process definition
edition, much synchronization is needed. The
workflow, graphic and link domains are represented
respectively by elements and attributes of AW, SVG
and Xlink models.

An integration model was developed to integrate
the models. In the integration model, the AW is the
main model and the others are the secondary models.
The secondary model attributes were inserted into main
model elements by namespace standards. The AW
process definition is formed by only one document.
Into this document there are elements of AW model
and attributes of AW, SVG and Xlink models. The
figure 5 shows the many-one architecture of AW.

Fig. 5. The AW many-one architecture.

5.5 The Benefits of Many-One Architecture in the AW Project

The namespace divides more cleanly the elements of different domains. The elements that represent graphic entities
are prefixed by "svg:". The elements that represent links are prefixed by "xlink:". The other elements are elements that
represent workflow entities.

XLink and SVG are very diffused official W3C recommendations. In the AW project, documentation and several
services available for these models (discussion lists, consultantship, etc) are used. These documentations and services
facilitate the model learning, qualify the project and decrease the project costs.

Many applications and tools were developed for SVG and XLink. The AW is compatible and based in these
applications and tools. Some features of Amaya system were used and extended in the AW development. The Amaya

system has the following components: a structured document editor that can edit XML document; a SVG viewer and
editor; a namespace support and a XLink support. All these components were reused into AW system. Few adaptations
were necessary. These reuses decrease the development cost and grow the compatibility of AW with XML, SVG and
XLink applications.

The AW development is modular. It is possible to change any model (AW, SVG or XLink) and maintain the others.
Also it is possible to add new XML models.

6 Many-One Case Study II - Adding Entities in XPDL Representations

In the case study I, an application of many-one architecture in one internal representation was described. In this case

study, an application of many-one architecture in one interchange pattern is described. In this application, SVG
attributes are added in XPDL documents.

Following, some XPDL elements are shown:

Package: It is a package that contains several processes.
ExternalPackage: It references to an external package.
WorkflowProcess: It represents a workflow process.
Activity: It represents a workflow process activity.
Transition: It represents a transition or a connector between other elements.

6.1 Instructions to Add SVG Attributes in XPDL Elements by the Namespace Standard

In the beginning of internal representation, the namespaces of SVG and AW model need to be defined. The AW is

the main model and SVG is the secondary model. An example is shown following:

<?xml version="1.0" encoding="iso-8859-1"?>
<Package xmlns="http://www.wfmc.org/2002/XPDL1.0"
xmlns:svg="http://www.w3.org/2000/svg"
version="1.0" Id="0" Name="Sample">

In the graphic representation of this case, icons represent the Activity elements. There are many types of Activity

and for each type there is a correspondent icon. The Transition elements are represented by polylines.
Into the XPDL Activity elements, the following SVG attributes need to be inserted: href, width, height, x and y of

element image. The value of href attribute is a URL of a file. The referred file contains an image that represents one
type of activity in the graphic vision. The width, height, x and y elements define respectively the width, height and
position of the icon in the graphic vision.

To inform that these attributes belong to image element, the type attribute with the value " image " needs to be
filled. An example of Activity element is shown following:

<Activity Id="5" Name="Email Confirmation" svg:type=”image” svg:width =”90” svg:height = “40”
svg:x="100" svg:y="100" svg:href=”../activity.jpg”>
 <Implementation>
 <No/>
 </Implementation>
</Activity>

Into the XPDL Transition elements, the following SVG attributes need to be inserted: stroke, stroke-width and

points of element polyline.
To inform that these attributes belong to polyline element, the type attribute with the value " polyline " needs to be

filled. An example is shown following:

<Transition Id="22" From="1" To="12" svg:type="polyline" svg:stroke="black" svg:points="326,158 320,234
328,221 320,234 313,220" svg:stroke-width="2" >
 <Condition>status == "Valid Data"</Condition>
</Transition>

6.2 Adding other entities

An XPDL model can be divided into two distinct domains: the workflow domain and the simulation domain. The
elements of simulation domain describe data used by workflow simulation software. The elements of workflow domain
describe a workflow and are used mainly by workflow engines.

The simulation elements could be removed from XPDL model. A new model that defines only simulation elements
could be created. And the new model elements could be inserted into XPDL documents by namespace standard.

In several XPDL points there are references from URLs. These references are links. The links could be removed
from XPDL model and XLink attributes could be inserted into XPDL documents by namespace standard.

 The PSL [14] proposes the use of RDF attributes to describe resources used in activities. These attributes could be
inserted into XPDL documents by namespace.

An example of Activity code that contain elements and attributes of referred models (XPDL, SVG, XLink, RDF
and simulation model) is shown following. The attributes and elements are inserted by namespace standard.

<Activity Id="5" Name="Email Confirmation"

svg:type=”image” svg:width =”90” svg:height = “40” svg:x="100" svg:y="100"
xlink:type="simple" xlink:href=”../activity.jpg”
rdf:resource="email.rdf#confirmation">

 <simulation:SimulationTransformation Instantiation="ONCE">
 <Cost>12<Cost/>
 <simulation:SimulationTransformation/>
 <Implementation>
 <No/>
 </Implementation>
</Activity>

The figure 6 shows the architecture of this case.

Fig. 6. Case II architecture

The objective of this example was to show the modularity, flexibility and possibility of many-one architectures. It is

possible to make many other model combinations. Defining the best or more necessary model combination is not
approached in this paper but it is an important future work.

7 Comparing the Architectures

The main advantage of the one-one architecture is that it is simpler to use because it implements and develops only

one model and only one document. However, the current process definitions are very complex documents. There are
great demands for inclusion of new elements in the process definition models. For each element that is inserted in the
process definition, the model complexity grows. The complexity is propagated for all workflow components directly or
indirectly involved with the process definition models (development, implementation, learning and use of workflow
technology). And the cost of workflow technology grows too.

In some cases, separating the elements into many models can decrease the workflow technology costs. This is
recommended mainly when the elements of model can be divided into distinct domains. The separation is possible in
the many-many and in the many-one architecture. The main advantages of these architectures are:

• The developing of models in an independent way. With an independent development it is possible to divide a big

problem into several smaller ones. The big problem is the developing of one model that has elements of several
domains. The smaller problems are many models that can be developed in a more independent way and that can be
separated into different domains. This independent development also includes all that is developed around the
models (application, tools, patterns, learning, training, etc).

• Existent models can be used and reused in a more modular way. The structure of process definition can be formed
by elements of different domains, and for each domain the developers can choose to use an existent model or to
create a new one. If there are problems with one model, only this model needs to be changed.

The advantages of many-many and many-one architecture are similar. But the disadvantages are different. The

disadvantage of many-many architecture is the need to develop resources for document synchronization. The
disadvantage of many-one architecture is the need to develop an integration model. The table 4 shows the disadvantages
and advantages of related architectures.

Table 4 – Architecture’s advantages and disadvantages
Architecture Advantages Disadvantages
One-One To use one document and one model (it is the simplest

architecture).
To develop in one monolithic
way.

Many-Many To develop models and all technology involved with the models in
one independent way.
To reuse existent models and technologies in a more modular way.

To develop resources for
document synchronization.

Many-One The same as many-many To develop an integration model.

For choosing architecture, it is important to know two characteristics of the process definition: the domain areas

involved and the necessary synchronization among elements from different domains.
The domain areas and the distinction of domain areas are the characteristics that define if it is more appropriate to

use an architecture with one model or with many models.
 The necessary synchronization among elements of different domains is the characteristic that defines if it is more

appropriate to use an architecture with one document or with many documents.
The following recommendations were defined by a comparison among these process definition characteristics and

the presented process modeling architecture characteristics:

• If the distinction of domain areas involved in one process definition decreases, the use of one-one architecture
is more appropriated. It is coherent to maintain entities of the same domain in a same model.

• If the distinction of domain areas involved in one process definition grows, the use of many-many or many-one
architecture is more appropriated. It is coherent to maintain entities of different domains in different models.

• If the need of synchronization among elements of different domains grows, the use of one-one or many-one
architecture is more appropriated. The costs of synchronization are greater when there are elements among different
documents.

• If the need of synchronization among elements of different domains decreases, the use of many-many
architecture is more appropriated. The costs of synchronization are greater when there are elements among different
documents.

The table 5 shows the application of these recommendations. In the first column the architectures are shown. In the
second column the characteristics of process definition appropriated for the associated architecture are shown.

Table 5 – Architecture’s recommendations
Architecture Characteristics of process definition appropriated
One-One The entity domains are from the same domain
Many-Many The entity domains are from different domains and few synchronizations are necessary
Many-One The entity domains are from different domains and many synchronizations are necessary

8 Applying the Recommendations on Complex Process Definition Models

Many current complex process definitions contain the conditions for many-one architecture recommendation. These

process definitions contain entity domains from different domains and many synchronizations are necessary in the
process definition edition. This is the situation of the case studies shown in this paper. The process definition of the first
case study can contain elements or attributes of workflow, graphic and link domain. The process definition of the
second case study can contain elements or attributes of workflow, graphic, link, resources and simulation domain. In
both case studies, many synchronizations are needed during the process definition edition.

For such situations, the many-many is the most onerous architecture. In the process definition edition, the
synchronization and maintenance costs are very great for so much relationship among different documents. For using
many-many architecture it is needed to have no synchronization or few synchronization.

Using the one-one architecture provides a more monolithic development. This type of development provides a
solution more exact and specific for each application. However the reuse is low. For each application one exact, specific
and monolithic solution is needed. It is more difficult to reuse just a part of model or just a part of solution.

If the complexity and the quantity of entities grow very much, a monolithic solution can be very onerous or
unviable. In this case, modular solutions such as many-one architecture can be more efficient. Modular solutions can
divide a great problem into several little ones.

The many-one architecture provides a more modular and reusable workflow technology development. For example,
in the second case study shown in this paper, groups of developers and researches could work exclusively in the XPDL
model. Other groups could work exclusively in each one of other technologies (SVG , XLink, RDF and simulation).

 The technology developed by groups dedicated to the SVG, Xlink, RDF and simultation can be reused by: (i)
other interchange patterns, such as BPML and BPEL4WS;(ii) other internal representations, such as Biztalk
Orchestration Designer internal representation; and (iii) any other application inside or outside of workflow area, such
as SVG viewers and Extensible Hypertext Markup Language (XHTML) links.

 Integration groups also are important. These groups make the integration of different modules and technologies. In
the first case study, a group that make the integration of AW, SVG and XLink is needed. In other projects, other groups
can integrate BPEL4WS with XLink, PSL with RDF (this is the case of PSL [14]), XPDL with SVG , XLink, RDF and
simulation (this is the situation of second case study), etc.

9 Conclusion

Following, some many-one recommendations are presented. These recommendations are a summarization of the

main contributions of this paper:

1. It is recommendable to use the many-one architecture in a complex process definition application that contains
entity domains from different domains and when much synchronization among elements from different domains is
necessary. Many current process definitions have these characteristics. Many complex environments need process
definition with such characteristics.

2. When a more modular and independent development is needed, it is recommendable to use or to consider the
many-one architecture.

3. For optimizing the many-one architecture benefits it is recommendable to reuse current XML models and reuse all
technology developed around these models (application, tools, APIs, services, documentation, resources,
researches, involved community, implementation, technologies, etc).

4. As the use of many-one architecture (mainly using these recommendations) grows, the many-one architecture
benefits grow too. In an ideal scenario there are many models for different domains. There are many integration
developers and researches that can group and regroup the available models (and the involved technology) in
according with the specific application needs.

The ideal proposed scenario is not a distant scenario. In the current days, there are many XML models available.
The model integration technology is available too. Some applications using namespace architecture already were
implemented.

 But it is necessary to organize and to optimize this scenario. This can be made by more researches about model
integration technologies, the use of XML models in process modeling phase and process modeling architectures.

Finally, it is expected that this paper: (i) have presented the main ideas, fundaments and recommendations about
many-one architecture; and (ii) make developers, researches and organizations, such as WfMC and BPMI, aware about
the importance of optional process modeling architectures. In complex environments, the three solutions (one-one,
many-one and many-many) need to be considered.

Acknowledgements

The authors want to tank the support of CNPq, UFRGS, INRIA and Banco Central do Brasil.

References

[1] van der Aalst, W.M.P. Don't go with the flow: Web services composition standards exposed, IEEE Intelligent
Systems, 18(1):72-76, 2003.

[2] BPMI, Business Process Management Initiative Home Page. http://www.bpmi.org
[3] Bray, T.; Hollander, D. and Layman, A. Namespace in XML, W3C Recommendations, 1999.

http://www.w3.org/TR/REC-xml-names.
[4] Bray, T.; Paoli, J.; Sperberg-McQueem, C.M. and Maler, E. eXtensible Markup Language (XML) 1.0 (Second

Edition), 2000. http://www.w3.org/TR/REC-xml.
[5] Casati, F.; Grefen, P.; Pernici, B.; Pozzi, G. and Sanchez, G. WIDE Workflow Model and Architecture, Technical

Report 96-19, Centre for Telematics and Information Technology (CTIT), University of Twente, Netherlands,
1996.

[6] DeRose, S.; Maler, E. and Orchard, D. XML Linking Language (XLink) Version 1.0. W3C Recommendation, 2001.
http://www.w3.org/TR/xlink/

[7] Dodds, D.; Watt, A.; Birbeck, M.; Cousins, J.; Moore, D.R.; Worden, R. ; Nic, M.; Ayers, D.; Ahmed, K.;
Wrightson, A. and Lubell, J. Professional XML Meta Data, Wrox press, Birmingham, AL, 2001.

[8] FORO, Models Designer Manual, 2001. http://www.foro-wf.com/docs/english/ModelDesigner2.1.3.pdf
[9] IBM. IBM MQ series Workflow Programming Guide Version 3.3, IBM Corporation, Armonk, USA, 2001.
[10] ILOG Inc, Ilog components for business process management solutions, 2001.

http://www.ilog.com/products/jviews/workflow/workflow_wp.pdf
[11] Leymann, F. Web Services Flow Language (WSFL), Technical report, IBM, 2001.
[12] Leymann, F. and Roller, D. A quick overview of BPEL4WS, IBM DeveloperWorks, August 2002.
[13] Pinheiro, M.K.; Telecken, T.L.; Lima, J.V.; Zeve, C.M.D. and Edelweis, N. A Cooperative Environment for E-

Learning Authoring. Document Numérique, França, v.5, n. 3-4, p. 89-114, 2002.
[14] Schlenoff, C.; Gruninger, M.; Tissot, F.; Valois, J.; Lubell, J. and Lee, J. The Process Specification Language

(PSL): Overview and version 1.0 specification, NISTIR 6459, National Institute of Standards and Technology,
Gaithersburg, MD, 2000.

[15] Sheth, A.P.; Georgakopoulos, D.; Joosten, S.; Rusinkiewicz, M.; Scacchi, W.; Wileden, J.C. and Wolf, A.L. Report
from the NSF Workshop on Workflow and Process Automation in Information Systems, SIGMOD Record 25(4)
(1996) 55-67.

[16] Telecken, T.L.; Lima, J.V.; Zeve, C.M.D.; Maciel, C. and Borges, T. Modeling of Courses through Workflow
using the standard SVG/XML. In Proceedings of EDMEDIA'2002 World Conference on Educational Multimidia,
Hipermidia & Telecomunications, Denver, USA, 2000, 24-29

[17] Thatte, S. XLANG. Web Services for Business Process Design, Technical report, Microsoft Corporation, 2001.
[18] Workflow Management Coalition Home Page. http://www.wfmc.org
[19] Workflow Management Coalition. Interface 1 - Process Definition Interchange. Technical report WFMC-TC-1025,

2002.
[20] Workflow Management Coalition. Terminology and Glossary, Technical report, WFMCTC-1011, Brussels, 1996.
[21] World Wide Web Consortium. Resource Description Framework (RDF), W3C Recommendation, 1999.

http://www.w3.org/TR/REC-rdf-syntax
[22] World Wide Web Consortium. Scalable Vector Graphics (SVG) 1.0 Specification. W3C recommendation, 2001.

http://www.w3.org/TR/SVG/
[23] World Wide Web Consortium. Web Service Choreography Interface 1.0, 2002. http://www.w3.org/TR/wsci/
[24] World Wide Web Consortium. Welcome to Amaya. http://www.w3.org/Amaya/

