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Abstract

The problems of LSP routing and capacity provisioning in MPLS networks were investigated in [1]. A new

minimum interference routing algorithm as well as a new mechanism of dynamic sizing of LSPs in MPLS networks

were proposed. Howerver, due to space limitations, only the routing algorithm will be presented in this work.

Informations regarding dynamic sizing of LSs can be found in [1], [2].

Minimum Interference Routing algorithms aim at reducing rejections of future requests for the establishment of

Label Switched Paths (LSPs) but make no assumption about specific patterns of arrival request. This paper introduces

a novel minimum interference routing algorithm, Light Minimum Interference Routing (LMIR), which is based on a

new approach to the identification of critical links. This approach reduces the computational complexity involved in

finding a path for the establishment of an LSP. The LMIR is shown to have the same precision as existing algorithms

but with less computational complexity.

I. INTRODUCTION

In spite of the increase of Internet link capacity, congestion is still common. One of the main reasons for this

is an unbalanced use of resources and Traffic Engineering if often employed to balance this use by mapping flows

into network links. MultiProtocol Label Switching (MPLS) is the key to Traffic Engineering, since it promotes path

establishment, thus guaranteeing the Quality of Service (QoS) required by networks flows.

The use of traditional internet routing algorithms based on the shortest path in MPLS networks leads to a rapid

saturation of network links. As a consequence, new alternative algorithms, among them the minimum interference

routing algorithms, have been proposed to promote a more balanced utilization of resources. The criteria for selecting

a path adopted by these algorithms, consider those paths which will result in the least impact on the rejection of future



requests. However, such criteria, with multiple independent QoS requirements, lead to NP-complete problems [3],

[4]. As a consequence, various heuristic algorithms have been proposed to deal with such criteria.

Most of minimum interference algorithms are based on the use of a maximum flow type of algorithm to identify

critical links, since these links, which belong to the minimum cut set of this pair of nodes, are what is responsible

for a reduction in the maximum flow between a pair of nodes. In such algorithms, a max-flow algorithm is typically

executed for all ingress/egress node pairs of a network domain for each LSP establishment request, although this

increases the computational complexity of these algorithms.

This paper introduces a new heuristic, the Light Minimum Interference Routing (LMIR) algorithm [1], [5], which

guarantees minimum interference without the need for the execution of repeated max-flow algorithms. Instead, this

algorithm uses a modified version of Dijkstra’s algorithm, which is less computationally complex than max-flow

algorithms, yet produces similar results. The LMIR algorithm is also independent of the pattern of arrival of LSP

establishment requests.

The rest of this paper is structured as follows. Section II introduces the definition of the minimum interference

routing problem and describes existing algorithms. Section III introduces the Light Minimum Interference Routing

(LMIR) algorithm. Section IV evaluates the performance of the algorithm proposed via simulations. Finally, Section

V presents the conclusions.

II. MINIMUM INTERFERENCE ROUTING ALGORITHMS

The central idea behind existing minimum interference routing algorithms is the choice of a path for the

establishment of an LSP which minimizes the reduction in maximum flow of other source-destination (SD) pairs.

The aim is to increase the number of available paths which can accommodate future LSP establishment requests.

Prior to the presentation of the minimum interference problem itself, certain relationships are defined. These are

determined as follows: Let the graph ���������
	�� represent a network, where � is the set of vertices (or nodes) and

	 the set of edges (or links). The flow is the amount of data transmitted between two nodes of � with a positive

capacity, 
���������� assigned to each link ������������� to denote the maximum amount of flow that can pass through

��������� . Each link has a certain residual capacity, which is defined as 
���������������
������������ ����������� where ���!�"�#�$� is

the amount of flow passing through ��������� . The residual graph, �&%'�����
	(%$� , is composed of the set of links, 	)% , for

which residual capacities are greater than zero.

A subset of the nodes, denoted by * , involves the ingress/egress nodes which are the end points of the LSPs. The

network topology needs to be known to determine the route between an source-destination pair and it is assumed

that a link state routing protocol is in place to diffuse the network topology, as well as a routing database for the

storing of the values of residual link capacities.

Each request arrival is specified by three variables: + , , and -/. , where + denotes the source node, , the egress

destination node, and -/. the bandwidth required to carry the traffic between + and , .

The minimum interference routing problem can be stated as follow: find a path for the establishment of an LSP

from a source node to a destination node such that each link along the path has a residual capacity value of at



least the requested amount of bandwidth. The chosen path should minimize the reduction of the maximum network

flow with the restriction that flow splitting is prohibited.

Two major algorithms are presented in this section: the Minimum Interference Routing Algorithm (MIRA) and

Wang, Su and Chen’s algorithm (WSC).

A. The Minimum Interference Routing Algorithm

The maximum flow of an SD pair is reduced whenever the available bandwidth of an link belonging to the

minimum cut set is reduced. The Minimum Interference Routing Algorithm (MIRA) [6] avoids links belonging

to the min-cut set of other SD pairs when establishing an LSP between a pair of nodes. MIRA assumes that the

network topology and the residual bandwidth of the links are known at the time of an LSP establishment.

MIRA consists of three steps, the first involving the computation of the maximum flow between all SD pairs,

and the second involving the identification of critical links and the assignment of weights representing priorities in

relation to other SD pairs. These weights are computed according to the following equation:

���������
	�� 
����� ����� ����� ���������! #" �!� � $%�����&�
	('*)+� (1)

where ,.-0/ is the weight of an �!1 �32 � pair and 45-�/ is its set of critical links. The third step of the algorithm involves

the execution of the Dijkstra algorithm using .��!�"�#�$� as weights.

Kodialam and Lakshman [6] showed that the number of rejections resulting from the use of MIRA is lower

than when such minimum interference criteria are not used. The improvement is due mainly to the avoidance of

links which would reduce the maximum flow of other pairs, thus, limiting the rejection of many future requests.

Evidence of the impact of a reduction in maximum flow on blocking probability was presented in their seminal

paper [6], which shows that their algorithm produces lower blocking probability than do algorithms which do not

take interference into account.

B. The Wang, Su and Chen Algorithm

The algorithm proposed by Wang, Su and Chen [7] is based on MIRA but adopts a different criterion for the

identification of critical links, in the computation of weights.

According to Wang et al. [7], the major drawback of MIRA is that critical links identification focuses on a single

SD pair and does not detect the critical nature of an link for a group of pairs. Such a drawback can potentially

lead to the denial of various requests, especially in networks with concentrating vertices.

In Figure 1, a graph with concentrating vertices is presented. Suppose that 687:9 requests arrive to the pairs

� +%;��#,*; � , � +�< �#,=< � ,..., � +?> �#,@> � . The first request demands an LSP with 6 bandwidth units, while all the rest require

LSPs with just one bandwidth unit.

When the first request arrives, MIRA computes the maximum flow and identifies the critical links for all other

source-destination pairs, i.e., � + < �
, < � ,..., ��+ > �#, > � . The critical links after the arrival of this first request and,

therefore, the only ones with . �������������BA�DC will be � +(< ��4 � ,..., � +?> �34 � since none of the other links are in the

minimum cut set of any source-destination pair. Thus, the weights for all the links of the four available paths
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Fig. 1. Graph with concentrating vertices.

connecting +%; to , ; will be the same. The chosen path would be the one passing through one of the black vertices

(C or D in the figure), since these involve fewest hops. Once an LSP using such path is established, the residual

link capacities for this path are updated to 0 and no subsequent request will be accepted.

In order to avoid paths through concentrating vertices, Wang et al., proposed an algorithm with a weight function

that takes the link contribution to the maximum flow into consideration. There are two cases to be considered. In

the first, the link contribution to the maximum flow is less than its residual capacity which means that the link

does not belong to the minimum cut set and will, therefore, receive smaller weighting. In the second case, the link

contribution is equal to its max-flow contribution. In this case, the link belongs to the min cut set. Higher weights

values are, then, assigned to those links.

In their algorithm, link weights are computed as

����� �&�
	?� 
� ����� ��� �����
� � � � ������ ���

� ��� ���
	��
� �������
	 � �����0�
	('*) � (2)

where:

� 
 ����������� is the residual link capacity,

��� - � / � represents the maximum flow between pair �!1��!�32�� � ,
� � - � / ������ ��� is the contribution of the link to the maximum flow of �!1�� � 2�� � .
Links with residual capacities smaller than the requested bandwidth are eliminated and the Dijkstra algorithm

is executed using weights ( .��!�"�#�$� ) as link costs [7]. Results derived via simulation indicate that the algorithm of

Wang et al. produces slightly fewer rejections than does MIRA although to avoids denials resulting from either

concentrating and distributing vertices.

The crucial step in relation to the efficiency of these algorithms is the use of max-flow algorithms in the

identification of critical links. MIRA [6] uses maximum flow in conjunction with the minimum cut set to identify



critical links whereas the WSC algorithm [7] detects critical links from their contribution to the maximum flow.

Executing such max-flow algorithms, however, is prohibitively expensive for large networks. The Edmonds-Karp

algorithm, which is the most well known implementation of the Ford-Fulkerson’s max-flow computation method

[8], uses a breadth search to find the augmenting paths it has a complexity of � � ���
	�� � . For networks such as the

Internet which has an average node degree of about 3.5 [9], the number of links is significantly greater than that

of vertices, so that the Edmonds-Karp algorithm performs very inefficiently in dense graphs.

Goldberg’s algorithm, which is the fastest known max-flow algorithm still involves a prohibitively high complexity

for problems involving large networks. It has a complexity of � �����
	���� ����
 �#	 < ��� ��� 	����
��� � � ��� 	 �����
��� ��� �#� for

networks with � ��� vertices and � 	�� links, with capacities in the interval [1,U] [10]. Other approaches that do not

use max-flow computation are thus necessary to reduce the complexity of minimum interference algorithms.

III. LIGHT MINIMUM INTERFERENCE ROUTING ALGORITHM

In this section, the Light Minimum Interference Routing (LMIR) algorithm is presented. The main characteristic

of this algorithm is that its computational complexity is lower than that of other existing minimum interference

algorithms. This reduced computational complexity is achieved by avoiding numerous executions of max-flow

algorithms for the identification of critical links.

The central idea of the LMIR algorithm is the selection of links for the establishment of LSPs which exert the

least impact on the maximum flow between other SD pairs by identifying the links with the smallest available

capacity as critical links. Such links are close to saturation and are likely to be included in any minimum cut set

of the network. To identify critical links, the LMIR algorithm identifies the paths of least capacity, since all critical

links belong to those paths, although a single least-capacity path may involve more than one critical link.

The first step in the LMIR algorithm involves the identification of � least capacity paths with the use of the

LowestCapacities algorithm, a variation of Dijkstra algorithm. This LowestCapacities algorithm, compares the flow

at a node � with the smaller of the two values represented by the possible flow of the link �!�"�#�$� and the actual

flow at the node � . The algorithm stores the information about the distance between a source node and any other

node as a function of the number of hops between these nodes ( 2�� � ! ), as well as the minimum capacity of all paths

between that source node and all other nodes ( "#� ! ), and the precedence vector involving in reaching a specific

destination ( $�� ! ).
Initially, all non-source nodes are attributed an infinitely large value for both flow and distance whereas these

values are considered to be zero at the source node; the node prior to the source node is not considered(Steps 2 to

4).

The first adjacent node � is then analyzed. The flow value at the node � ( "#� ��! ) is established to be the lower

of the two values representing either 1) the current value of "#� 1%! or 2) the flow value of the link (Step 11). The

distance (number of hops) is then increased by one (Step 12) with 1 becoming the new predecessor (Step 13).

Additional adjacent nodes are queued according to increasing distance values for future adjacency analysis (Step



14). As nodes are removed from the queue using procedure extract min(Q) and their adjacent nodes processed the

algorithm progresses.

For each step of the LowestCapacities algorithm, the metric values associated with the adjacent nodes of any

specific source node are updated; this updating occurs whenever the value of the flow which begins at the source

node ( 1 ) and ends at the adjacent node ( � ) and has passed through the target node ( � ) and is either smaller than

the value of "#� ��! or is the same, but located at distance at least one hop less than that between the source and

the destination distance, 2�� � � ! � 2 ��� � ! � 9 . Removing the links with the least capacity from the network makes it

possible to identify other paths with critical links so that paths with ever-increasing capacities will be identified.

Algorithm 1 LowestCapacities
1: for all ( � '�� ��� ) do

2: ��� �
	�����
 � �
	 ���
3: ��� �
	��������
4: F[s], di[s] = 0.0

5: �����
6: while � � 	 do

7: � �����! �"$# �  % 
'&?� � 	
8: for all � ')(+*-, � �.	 do

9: / � % 
'& � � �����0�
	 � ��� �!	0	
10: if � � /213��� �
	 	54=�&� / �5� ��� �
	 	56 �7��
 � �!	 1 ��
 � �
	 	&	8	 then

11: ��� �
	#� /
12: ��
 � �
	#�9��
 � �!	;:9<
13: �=� �
	#� �
14: �>���@? �

Once the paths with least capacity are identified, they are assigned weights according to the following formula

(Step 2):

�������0�
	?� 
������� ��� ��� �
� ��� � � � � �A��� �����&�
	 � ��� �0�
	.'*) � � (3)

where 
 ���!�"�#�$� is the residual capacity of link �!�"�#�$� and �
� - � � / � �B is the flow between 1 � and 2�� , the path with the

lowest capacity.

The weight values assigned to the links of the paths found in Step 1 are thus inversely proportional to the residual

capacity. The next step involves the removal of links with a residual capacity smaller than that required (Step 3).

Finally, the Dijkstra algorithm is executed using . ��������� as weights to select non-a-less critical links (Step 4). The

LMIR algorithm is presented as Algorithm 2.

The complexity of the LMIR algorithm can be analyzed as follows. Step 6 of LowestCapacities algorithm is

executed � ��� times, since all vertices are visited. Step 8 is also executed � ��� , times resulting in a complexity of

� � � � � . The function extract min(Q) involves a complexity of � �!	 %�� in the worst possible case, as would happen



Algorithm 2 LMIR
INPUT

A residual graph � � � � ���0) � 	 and " � � � �����3� 	 and a request for � � bandwidth units between pair � � � �
	 .
OUTPUT

A path (route) with �3� bandwidth units connecting � to � .

LMIR

1: Find � least capacity paths $%� ��� � � � 	('�� (applying LowestCapacities algorithm).

2: Compute weights according to equation (3) for all the links belonging to the paths identified.

3: Eliminate all links with residual capacity smaller than �3� .

4: Execute the Dijkstra algorithm using ����� �&�
	 as weights.

5: Create an LSP connecting � to � and update the capacity of the links.

when the queue of vertices with non-visited adjacent vertices is implemented as a linked list. Thus, the complexity

of the LMIR algorithm is, � ��� � 7 	(% ��� � � � � � [8].

Since each pair requires � executions of the LowestCapacities algorithm, the complexity of the LMIR algorithm

for identifying critical links is � � � ��� � � = � � � � � , whereas in the other existing minimum interference algorithms

the complexity involves the performance of a max-flow algorithm which has a complexity of � � � �
	"��� ����
��#	 < ���% � �
	 �%�
��� � � � � 	 % � � � � � ��� ��� . Thus, the following theorem can then be affirmed:

Theorem 1: The computational complexity of the LMIR algorithm is upperbounded by the complexity of the

MIRA algorithm.

Proof: See Appendix I.

The number of least capacity paths considered by the LMIR algorithm has a tremendous impact on its perfor-

mance. Although it is not possible to determine an optimum value for the number of least capacity paths to be

identified, an upper bound for that value can be established (Theorem 2).

Theorem 2: An upper bound, � � � � , for the number of least capacity paths to be identified by the LMIR algorithm

is given by:

� � � ��� 2 ��� � � if � ����� ��� �
�	�

� ����� 
 ����� � B � 
������ � � � (4)

or

� � � ��� 2 �!�$� � if � ����� ��� �
�	�
�� � 
 � ������� � B � 
����/����� � (5)

or

� � � ����� � ����� ���� ����� ������� (6)

where: � ����� ���� B � is the flow along the path of least capacity between � and � in � , and � ����� ���� B � is the maximum flow

between them.

Proof:

See Appendix II
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IV. A COMPARISON BETWEEN THE LMIR ALGORITHM AND OTHER EXISTING MINIMUM INTERFERENCE

ALGORITHMS

Simulation experiments were used to compare the performance of the LMIR algorithm with that of both the MIRA

and WSC algorithms. Although the Minimum Hop Algorithm (MHA) and the Widest Shortest Path algorithm (WSP)

do not take interference into account, they were also included in the simulation experiments so that the benefits of

a non-interference approach can be assessed. MHA is actually the Dijkstra algorithm; the WSP algorithm identifies

either the path with maximum capacity in the network or that with the least number of links.

Both, large and small networks were considered in this study. The small network used in both [6] and [7],

was utilized so that a comparison could be made to previously published results, while the topology for the large

networks was randomly generated.

The topology used in the small network experiments as well as the source-destination pairs are shown in Figure 2.

The lighter bi-directional links represent a capacity of 1,200 bandwidth units each, while darker ones have capacity of

4,800 bandwidth units each, corresponding to transmission rates of OC-12 and OC-48, respectively. Eight thousand

requests among the five SD pairs were randomly generated using a uniform distribution in the interval � 9�����! with

long-lived LSPs assumed so that once accepted, resources are held until the end of the experiments.

Figure 3 shows the reduction in total bandwidth available as a function of the number of requests. It can be

seen that the minimum interference routing algorithms produce lower reductions than do WSP and MHA algrithms,

since the latter two do not consider the criticality of link in choosing a paths.

Up to 3,000 requests, the results of the LMIR and MIRA algorithms are equivalent both resulting in less bandwidth

reduction than the WSC algorithm, but between 3,000and 5,000 requests, the decrease in reduction is greater for

the LMIR algorithm.

The importance of the non-interference approach can be seen in the large reduction resulting from the application

of the WSP and MHA algorithms. This reduction is a direct consequence of the unnecessary allocation of critical

links, greatly increasing the impact on the maximum flow.

Figure 4 shows the number of requests rejected as a function of the number of requests arriving. The WSP
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algorithm starts rejecting connections only after the arrival of 5,000 requests. However, since it does not take

link criticality into consideration, it may choose paths that include critical links of various pairs, thus leading to

saturation. The LMIR and MIRA algorithms result in the lowest number of requests rejected, which proves the

benefits of the non-interference approach.
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The two previous examples have illustrated the performance of different algorithms in relation to the total flow

in a network. Another interesting question is how these algorithms influence the flow of an individual SD pair. To

shed some light on this question, the pair � +59��#, 9 � was chosen as the object of this analysis. Figure 5 shows the

reduction in maximum flow of this source-destination pair as a function the other SD pairs. It can be observed that

the use of the MHA and WSP algorithms leads to a reduction in the maximum flow as soon as the first request

arrives. Network saturation when using the MHA algorithm, is reached immediately after the arrival of the ���3C
C C�� �

request. From there on, the path is saturated. The WSP algorithm takes a somewhat longer period to reach saturation

since when one path is approaching saturation it chooses other high-capacity.

The minimum interference algorithms do not provide any interference under low-load conditions (up to the

arrival of the � ���
C
C�� � request), but both the LMIR and MIRA algorithms produce less interference than the WSC
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algorithm for as many as � � C C
C requests, although in the long term the use of the WSC algorithm results in a less

of a reduction in the maximum flow of the pair than do the LMIR and MIRA algorithms which produce similar

interference up to the � � C C
C�� � request since they choose the same set of critical links. After the arrival of the

���3C
C C � � request, however, the MIRA algorithm identifies fewer paths not interfering with the maximum flow of

pair ��+ 9��
,89 � than does the LMIR algorithm.

The choice of the number of least capacity paths to be identified in Step 2 is the key to the performance of the

LMIR algorithm since the selection of a value for � which differs significantly from the number of links in the

minimum cut set, may lead to the misidentification of critical links and the attribution of high weight values to them..

Figure 6 shows the number of requests rejected as a function of the choice of � . This shows that the minimum

number of requests rejected are when � � � . Increasing the value of � does not lead to any improvement, yet

makes the identification of critical links difficult.
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Fig. 6. Influence of parameter � in the number of rejected connections.

For the speed of performance of an even large number of requests, the algorithms were tested for 8,000 requests

measured with the Linux time command in an Intel Celeron machines with a 1.2 GHz clock, and 256 MB of RAM.

Table I shows the values measured.



TABLE I

EXECUTION TIMES FOR 8,000 REQUESTS.

WSC MIRA LMIR � ��< LMIR � ��� LMIR � ��� LMIR � ��� LMIR � ��� LMIR � ���
Time 7.23s 7.24s 5.017s 5.67s 6.54s 6.94s 7.01s 7.14s

Both the WSP and MHA algorithms require execution times of aproximately 4 seconds. Although these are

the fastest results, the algorithms are not satisfactory because they lead to an excessive number of rejections. As

expected, the time required to the LMIR algorithm is less than that for both the WSC and MIRA algorithms,

although the numerical results produced are the same for all three. Actually, there is a trade off between precision

and execution time involving the number of least capacity paths chosen. The lower the value of � , the faster is

the execution time. However, the results tend to differ significantly from the optimum. Selecting a larger number

of least capacity paths than the optimum only increases the execution time.

Large networks simulations were also conducted with the LMIR algorithm using networks with 30, 40, and

50 vertices. For these large networks, both sparse and dense, only minimum interference algorithms were tested.

Networks are modeled as non-oriented graphs in which each link has a non-negative capacity. For this simulations,

network topologies were created using Waxman’s method [9], [11]. In this method, the probability of the existence

of link between � and � is given by

* �!�"�#�$��� ,	��
 / � �
��� � �
where C � , ����� 9 are model parameters, 2 is the Euclidean distance between � and � , and � is the maximum

Euclidean distance between any two vertices of the graph. Links are bidirectional and an equal number of choice

for each bandwidth size (1,200 or 4,800) was made.

LSPs are again assumed to be long-lived and 30,000 requests were and only generated among the five source-

destination pairs with the bandwidth requested uniformly distributed in the interval � 9�� � ! . Scenarios with low between

C and 9 C'� C
C C , mean between 9 C �3C
C
C and � C'� C
C C and high between � C'� C
C C and �
C'� C C
C loads were considered.

A. Dense 30-vertex networks

Figure 7 shows the maximum flow reduction for the selected source-destination pairs for dense 30-vertex networks,

with all algorithms evaluated performing at a similar level. This performance worsens under high loads, since links

belonging to the minimum cut set may be used to establish LSPs. With high loads, ��C�� of the requests are rejected

(Figure 8). Both LMIR and MIRA algorithms block roughly the same number of requests, fewer than those blocked

by the WSC algorithm. Only towards the end of the simulation does the LMIR algorithm produce slightly lower

blocking probabilities than does the MIRA algorithm.

Under high loads, only a small number of paths having available capacities are subject to allocation. The difference



in the performance of the algorithms can be attributed to the way they identify critical links, which leads to different

approachs to saturation.
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B. Sparse 30-vertex networks

Figure 9 illustrates the maximum flow reduction between source-destination pairs for sparse networks with 30

vertices. The behavior of the three algorithms (WSC, MIRA, and LMIR) is very similar whatever the load condition.

This happens because of the reduced number of paths existing for each source-destination pair, as this obviously

reduces the number of alternative paths for each algorithm. Moreover, the blocking probability values (Figure 10)

become almost indistinguishable under high loads. However, under low and medium loads, the LMIR algorithm

produces blocking probabilities which are 0.17 and 0.1 lower than those produced by the WSC and MIRA algorithms,

respectively.
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Fig. 9. Total bandwidth (sparse 30-vertex networks).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0  5000  10000  15000  20000  25000  30000

B
LO

C
K

IN
G

 P
R

O
B

A
B

IL
IT

Y

NUMBER OF REQUESTS

30 VERTEX SPARSE NETWORKS

MIRA
WSC
LMIR

Fig. 10. Blocking Probability (sparse 30-vertex networks).

C. Dense 50-vertex networks

The dense 50-vertex networks used here have 544 links which implies on a large number of paths to choose

from. As a consequence, saturation was not observed in the simulation experiments. To achieve saturation in such

networks, all of the links are assigned a capacity of 1,200 bandwidth units.

The behavior of the WSC, MIRA, and LMIR algorithms was found to be quite similar for up to 20,000 requests

(Figure 11). For medium loads the LMIR algorithm produced the lowest probability of blocking (Figure 12), whereas

for light loads the probability of blocking was null for all three algirihms, and for high loads their performance

were almost indistinguishable.

The number of rejections in these sparse 50-vertex networks is substantially lower than in the dense networks or

those with a smaller number of available links, due to the large number of paths available to establish LSPs.

D. Sparse 50-vertex networks

Sparse networks with 50 vertices (Figure 13)are subject to a slower reduction in the maximum flow when the

LMIR algorithm was used than when the WSC and MIRA. With 30 nodes, saturation is reached rapidly due to the
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Fig. 11. Total bandwidth (dense 50-vertex networks).
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Fig. 12. Blocking Probability (50 vertices dense networks).

saturation of critical links. This rapid saturation means that the maximum flow reduction is more intense in sparse

than in dense networks with the same number of nodes.

The use of links belonging to the minimum cut set implies the absence of alternative paths and consequently

leads to a high number of rejections (Figure 14). Nonetheless, the choice of paths pursued by the LMIR algorithm

produces the lowest number of rejections of requests, whereas the WSC algorithm produces the highest number.

Figure 14 shows the probability of blocking in sparse networks with 50 vertices. The critical links are used

intensively due to the lack of alternative paths, which leads to a high number of request rejection. The lowest

blocking probability is produced by the LMIR algorithm.

The relative gain in execution time for the minimum interference algorithms studied here was determined and

is shown in Table II. The highest value (produced by either the MIRA or WSC algorithms) is used as a standard

( C�� gain). These results show that the LMIR algorithm is the fastest, with reductions of up to ����� when five

least capacity paths were involved, although this performance deteriorates for a larger number of paths. In all the

simulations, the most propitious was five as this resulted in the fastest execution time while producing blocking

probability values similar to those obtained using the MIRA and WSC algorithm.
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V. CONCLUSIONS

In this paper, a new minimum interference routing algorithm which does not use max-flow algorithms for critical

link identification, was presented. This LMIR algorithm uses a modified Dijkstra algorithm to identify paths with

the least capacity and these paths are used to identify the critical links. Weights are then assigned to the links

of these paths, and the shortest path is identified. The number of critical paths to be identified when using the

LMIR algorithm impact on its performance. The best results in simulation experiments were obtained when this

was limited to five.

The results obtained using the LMIR algorithm are similar to those obtained with the MIRA and WSC algorithms.

Moreover, for large dense networks, it produced the lowest probability of blocking as well as minimal reductions

in maximum flow. Furthermore, the LMIR algorithm involves some ����� less computational time than the MIRA

and WSC algirithms. In general, this novel algorithm, thus, seems to be the best candidate for adoption in on-line

procedures for the establishment of LSP’s in MPLS networks.
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TABLE II

RELATIVE EXECUTION TIME GAINS FOR INDIVIDUAL CONNECTIONS

50 (D) 50 (E) 40 (D) 40 (E) 30 (D) 30 (E)

Standard 6.836 � <������ 5.683 � <������ 4.851 � <������ 5.740 � <������ 4.079 � <��	��� 6.477 � <��	���
MIRA 0.00 1% 1% 0.00 0.00 0.00

WSC 2% 0.0 0.00 0% 2% 20%

LMIR K =5 39% 17% 13% 36% 2% 28%

LMIR K =6 30% 12% 5% 23% -1% 22%

LMIR K =7 28% 5% -7% 18% -6% 19%

LMIR K =8 27% 3% -9% -1% -11% 11%

LMIR K =9 10% 0% -22% -6% -20% 4%

LMIR K =10 2% -6% -24% -6% -29% -2%
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APPENDIX I

This appendix furnishes proofs for the theorems presented in the paper.

Theorem 1: The computational complexity of the LMIR algorithm is upper bounded by the complexity of the

MIRA algorithm.

Proof:

Since Steps 2 through 5 of the LMIR algorithm (see Algorithm 2) are also the same a those executed by the

MIRA and WSC algorithms and since the complexity of these steps is a function of the procedure used to identify

the critical links, it is sufficient to show that the complexity of the LowestCapacities algorithm is less than that of

Goldberg’s algorithm, the least complex max-flow algorithm known.

The proof is carried out for both sparse and dense graphs. For dense graphs it is assumed that � 	 % � � � � � � .

Goldberg’s algorithm has the following complexity:

� ����� ����
 � � � � � �
��� � � � � � � � � � � � ��� ��� �

while the LowestCapacities algorithm has the complexity of � ��� � � . Assuming that some of the terms involved in

�
��� ��� � � � � � have been omitted (since the complexity cannot be zero), and given the fact that �
��� � �#� � � � � � � � � � � ���
9 , it follows that

Goldberg’s max-flow � � ��� ����
 � � � ��� � ��
 � , and

� � � ��
 � � � � � LowestCapacities algorithm.

Hence, � �(� � ��� � ��
 ��� LowestCapacities algorithm � � � Goldberg’s max-flow ��� .

For sparse graphs it is assumed that � 	)% � � � � � . In this case, � (the queue of non visited nodes) can be

implemented as a heap [8]. Therefore,

LowestCapacities algorithm � � � � � � � � ��� �

since the step of extract min(Q) evidences a complexity of � � � � � � � . Assuming that �
��� � ��� � 	 % � ���
��� ��� ��� 9 ,
using the first two factors of � �����
	"��� ����
 �#	 < ���% � � 	 % �%�
��� � � � � 	 % � � � � � ��� ��� , it can be shown that

Goldberg’s max-flow � � < ��� � � , and

LowestCapacities algorithm � � � � � � � � ��� �
Discarding � in both algorithms and taking the �
��� gives:

LowestCapacities algorithm � � � � ���
��� ��� , and

Goldberg’s max-flow � � � � � < ��� � 9 � � � �
��� � �
Hence, �
��� � � � � �����#��� � ��9 � � � � � � � �	� LowestCapacities algorithm � � � Goldberg’s max-flow � � �

This shows that the critical links detection with the LMIR algorithm has a lower computational complexity than

does any other minimum interference algorithm using max-flow algorithms.



APPENDIX II

Theorem 2: An upper bound, � � � � , for the number of least capacity paths identified by the LMIR algorithm

is given by:

� � � ��� 2 ��� � � if � ����� ��� �
�	�

� ����� 
 ����� � B � 
������ � � � (7)

or

� � � ��� 2 �!�$� � if � ����� ��� �
�	�
�� � 
 � ������� � B � 
����/����� � (8)

or

� � � ����� � ����� ���� ����� ��� ��� (9)

where: � ����� ���� B � is the flow along the path of least capacity between � and � in � , and � � � � ���� B � is the maximum flow

between � and � .
Proof: To find the lower bound for the number of links in the minimum cut set, it is necessary to identify the

minimum number of links which forms disconnected graphs. Before showing the proof for the lower bound value,

some definitions must be introduced.

Definition 1: Let � � �����
	�� be a graph and let � � � � and 	 �!� � be its vertex and edge sets, respectively.

A disconnecting set is a set "���	 � � � such that ��� " has more than one component. A graph is said to be
�

-edge-connected if every disconnecting set has at least
�

edges. The edge-connectivity, � ���!� � , is the minimum

size of a disconnecting set [12].

Definition 2: Two paths from � to � are internally disjointed if they have no common internal vertices (edges)

[12].

Theorem 3: Let � �!�"�#�$� be the number of ����� -internally disjointed paths (or just disjointed paths); then

� �!�"�#�$� ��� � 6���2 �!� � � 2 �����
	 �
where 2 ��� � and 2 ����� are the degrees of � and � , respectively.

Proof: Let * and * � be two internally disjointed paths between � and � . Now, suppose by contradiction that

�"��������� � � �
	���2 �!� � � 2 �����
	 . If � �!�"�#�$�������
	�� 2 ��� � �32 �!�$��	 , this implies that at least one edge incident to � or �
was included in both of the internally disjointed paths, * and * � . However, if * and * � have an edge in common

they are not internally disjointed thus contradicting the hypothesis.

The following theorem establishes a relationship between the cardinality of a set of disconnecting links and the

number of disjointed paths of a graph.

Menger’s theorem [12] uses these concepts of disconnecting sets and disjointed paths:

Theorem (Menger-1927) 4: Let � and � be two vertices of a graph � and ��������� �
 	 �!� � . Then, ����� ��� � �!� �#���
��� 	"���"����������� .

Proof: See [12].



The relation between Theorem 3 and Menger’s Theorem suggests an upper bound for � , since it indicates the

maximum number of edges a minimum size disconnecting set can have.

However, as we shall see, this is not true. Figure 15 illustrates a graph with only two disjointed paths but with four

edges in the minimum cut set. This graph can be transformed into an equivalent one to which Menger’s Theorem

can be applied. The transformation involves changing each edge with a capacity � into � edges with a capacity

one.
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Thus, a new theorem relating maximum flow and Menger’s theorem (Theorem 4) is presented:

Theorem 5:

� � � � � � � � � �����
	�4 � + ��� � � � � �!� � � �

where � � � � � is the number of internally disjointed paths between � and � , �
� �

is the maximum flow between �
and � , 
����"��+����)� represents the capacity of a cut (S,T) such that � 
 + and � 
 � , and � ���!� � is the minimum size

of a disconnecting set of � .

Proof: See [12].

Theorem 6: Let �
� � � ���
B be a flow passing through a path of least capacity between � and � in � , thus 6��

�
����� ���
B �	� >
�
 < � � � � ���B � .

Proof: In � � , each edge has a capacity of 1 unit of flow. Thus, in order to send 6 units of flow, we have to

use 6 distinct paths. Furthermore, the capacity of a path in � is limited by the flow of the edge of least capacity

on that path. Since � � is built from � , including an edge with a capacity of � in � is equivalent to using � edges

with the same endpoints in � � . Thus the equality holds.

Case 1:

� � � � ��� �
�	 
�� ����� 
 ����� � B � 
������ � � �

The Max-flow Min-cut theorem [12] implies that the maximum network flow is bounded by the minimum capacity

of a source/sink cut. Thus if

� � � � ��� �
�	 
�� ����� 
 ����� � B � 
������ � � �

the maximum network flow is bounded by the capacities of the edges incident to � .



Case 2:

� ����� ��� �
�	�
�� � 
 � ������� � B � 
����/����� �

This can be proved using reasoning analogous to that for Case 1.

Case 3:

Let

6 � � ����� ���� B � � � � ����� ���� B � �

It is known that all paths have capacity of 1 in � � . Therefore,

6 � � � � � ���� B � � 6 � �
����� ���
B � �

>� 
 
 < �
� � � ���
B � �

if � and � � � � are chosen so that � ��� � � � � 6 , then

6 � � ����� ���� B � � � � � � �
�� 
�
 < �

����� ���
B � � (10)

The application of Theorem 6 in Equation 10 gives the following:

� � � � � � ����� ���� B � � � ����� ���� B � � (11)

Since in � both � � � � ���� B � and � ����� ���� B � are known, we can define � � � � as

� � � ��� � � ����� ���� ����� ��� � �


