
A Genetic Instance-Based Collaborative 
Approach for Attribute Weighting 

 
 

Luciana De Nardin 
Pontifícia Universidade Católica de Minas Gerais, Dept. de Ciência da Computação, 

Poços de Caldas, Brasil, 37701-355 
luciana@pucpcaldas.br 

 
Maria do Carmo Nicoletti 

Universidade Federal de São Carlos, Dept. de Ciência da Computação, 
São Carlos, Brasil, 13565-905 

carmo@dc.ufscar.br 

Abstract 
This paper shows that genetic algorithms can be used as an optimization tool in conjunction with 
an instance-based learning method, to produce a combination which improves the performance 
the learning method could achieve on its own. Two instance-based methods are investigated in 
collaboration with genetic algorithms, namely k-NN and IB2. We conducted a few experiments 
using a genetic algorithm for finding a ‘good’ weight vector for either learning algorithms. 
Classification results on three knowledge domains obtained using k-NN and IB2 modified by a 
weight vector found by a genetic algorithm, exceeds the performance of the instance-based 
methods on their own. 
  
Keywords: instance-based methods, lazy learning, genetic instance-based collaboration, 
weighted NN, weighted IB2. 



1. Introduction 
Machine Learning is an area of research that provides a vast variety of learning models, algorithms, theoretical 
results and applications. Lately, a tendency in the development of new learning strategies based on the combination 
of well-established algorithms can be noticed in the area; the idea is that two learning algorithms can work together 
to outperform either individually. Among the many possible collaboration methods, one that seems promising is the 
use of genetic algorithms articulated to instance-based algorithms. 

This work focuses on two instance-based algorithms namely, k-NN and IB2 and it is about the use of a 
genetic algorithm as an optimization tool for finding a weight vector to be used either by k-NN or IB2 aiming at 
improving their performance when classifying new examples. This paper is organized along the following lines. In 
Section 2, a general review of instance-based methods and particularly the two algorithms is intended. In Section 3, 
we describe a few characteristics of genetic algorithms that are relevant to this work and describe how the genetic 
instance-based collaboration was implemented focusing mainly on the fitness function. In Section 4 we present the 
main characteristics of the knowledge domains used in the experiments and discuss the results obtained from the 
collaboration. In the Conclusion, we list the next steps for continuing this work. 

2. Instance-Based Learning – Considerations About the Algorithms K-NN and IB2 
In contrast to methods that, based on training examples, construct a general description of the concept, instance-
based learning methods simply store the training examples. Learning consists of storing the training examples in 
memory and never changing them. The concept description consists of the training set itself. For classifying a new 
instance, a distance (possibly weighted) is calculated between the new example and each stored training example 
and the new example is assigned the class of the nearest neighboring example. A generalization of this procedure 
takes into consideration the k nearest neighbors and the new example is assigned the class that is most frequent 
among these k neighbors [8]. The learning phase of these methods consists uniquely of storing; processing happens 
during classification time. 

As commented in [14 – pg. 230] “instance-based methods are sometimes referred to as ‘lazy’ learning 
methods because they delay processing until a new instance is classified. A key advantage of this kind of delayed, or 
lazy, learning is that instead of estimating the target function once for the entire instance space, these methods can 
estimate it locally and differently for each new instance to be classified.”  

The nearest neighbor algorithm (NN) [7] is the basis of many lazy learning algorithms. Basically NN 
techniques assume as the class of an instance x the class of the nearest instance from x. In order to determine the 
nearest instance, NN techniques adopt a distance metric that measures the proximity of instance x to all stored 
instances. Figure 1 presents the formal definition of the NN technique found in [9]. 

 
 

It assumes: 

 n-dimensional feature space. 
 M classes, numbered 1,2,…,M. 
 p training instances, each one expressed as a pair (xi, θi), for 1 ≤ i ≤ p where 

 

a) xi: training instance, expressed by a vector of pairs attribute-value )x...,,x,x(x
n121 iiii =  

b) θi ∈{1,2,…,M} expresses the correct class of the instance xi 
 

Let TNN = {(x1, θ1), (x2, θ2), …, (xp, θp)} be the nearest neighbor training set. Given an unknown 
instance x, the decision rule is to decide x is in class θj if 
  d(x,xj) ≤ d(x,xi), for 1≤ i ≤ p 

where d is some n-dimensional distance metric. 

Figure 1. 1-NN Algorithm  

 
The algorithm described in Figure 1 is more properly called the 1-NN algorithm since it uses only one 

nearest neighbor. As mentioned earlier, one of the variants of the 1-NN algorithm is the k-NN algorithm, which 
takes into consideration the k nearest instances {i1, i2, …, ik} and decides upon the most frequent class in the set {θi1

, 



θi2
, …, θik

}. Algorithms derived from the nearest neighbor are very popular, mainly due to their simplicity, easy 
implementation and efficient results. 

The k-NN algorithm treats all attributes in a similar way i.e., all the attributes are equally significant. There 
are situations, however, where the number of significant attributes (significant to the classification process) is small 
compared to the number of irrelevant attributes. When this happens the large number of irrelevant attributes will 
dominate the distance between neighbors and they will overcome the truly important attributes. As commented in 
[14, pg. 231], “…they (instance-based algorithms) typically consider all attributes of the instances when attempting 
to retrieve similar training examples from memory. If the target concept depends on only a few of the many 
available attributes, then the instances that are truly most ‘similar’ may well be a large distance apart.”  

Associating weights to attributes is a possible way to stress the relevance (or not) of attributes in the 
expression of the concept. A k-NN algorithm that implements a weight mechanism is generally referred to as Wk-
NN. 

Instance-based learning methods suffer from several problems and their main disadvantages are related to 
classification time and memory space, which are proportional to the number of stored examples. The two most 
relevant decisions to be made concerning these methods are: which training instances should be stored and which 
distance metric should be adopted in the classification phase, in order to ‘measure’ the distance of a new example to 
the stored instances that represent the concept.  

Aiming at exploring the limits of instance-based methods, Aha et. al. proposed the IBL (Instance-based 
Learning) family of algorithms in [1] , which is strongly based on the nearest neighbor algorithm. IBL family groups 
five algorithms (IB1, IB2, IB3, IB4 and IB5). The first member of the IBL family is IB1 which can be considered 
the 1-NN algorithm renamed. 

Because IB1 stores all training examples and each prediction of a new example involves calculating its 
distance to each of the stored examples, it becomes very inefficient when the training set becomes large. IB1’s 
storage requirement however, can be reduced without decreasing too much its prediction accuracy by using a storage 
reduction algorithm from the IBL family, the IB2, which is used in this work. IB2 pseudo code is described in 
Figure 2. 

 

 

 

 

 

Figure 2. The IB2 algorithm (CD – Concept Description) 

IB2 is identical to IB1 except that it only saves misclassified examples. As commented in [2], “The 
intuition in IB2’s design is that the vast majority of misclassified instances are near-boundary instances that are 
located in the ε-neighborhood and outside the ε-core of the target concept (for some reasonably small ε).” In spite of 
IB2 storage reduction capabilities, this algorithm is much more sensitive to the presence of noise in the training set. 
This sensitivity to noise is a consequence of the fact that during learning, this algorithm only adds to the concept 
description the training examples that are incorrectly classified. Generally, noisy examples are incorrectly classified 
and consequently, they tend to be included in the concept description. 

This paper is about combining both, k-NN and IB2 with a genetic algorithm aiming at improving the 
performance of either learning algorithm individually, by means of finding a suitable weight vector, which reflects 
the real contribution of each attribute that describes the concept. The GA will be used as a procedure that will carry 
out a search throughout an n-dimensional weight space ‘looking for’ suitable attribute weight vectors. The goal is to 
obtain a weight vector such that Wk-NN outperforms k-NN (and correspondently, the weighted version W-IB2 
outperforms IB2). 

CD ← ∅ 
for each x ∈ training set do 
   begin 
     for each y ∈ CD do  
        sim[y] ← similarity(x,y) 
        ymax ← some y ∈ CD with maximal sim[y] 
         if class(x) = class(ymax) 
             then classification ← correct 
             else begin 
                        classification ← incorrect 
                        CD ← CD ∪ {x} 
                     end 
   end 



3. Finding a ‘Good’ Weight Vector – A Contribution Given by a Genetic Algorithm 
 
Although a k-NN which implements a weight strategy tends to have better performance than that which does not, it 
is very difficult to find a good weight vector. There are a few ways to define a weight vector associated to attributes. 
The user can define it, based on his/her experience on the knowledge domain. Another possibility is to conduct an 
exhaustive search throughout the space of all possible weight vectors, trying them all. Depending on the dimension 
of this space, such a search can be computationally unfeasible. A third option is to use a mathematical tool that 
could obtain, if not the best, at least a good weight vector which would improve the k-NN (or IB2) performance. 

Finding a weight vector can be approached as an optimization problem which can be considered relatively 
difficult depending on the dimensions of the space to be searched. Several knowledge domains are described by as 
many as fifty attributes. The problem, in this situation, corresponds to a search for a vector in a 50-dimensional 
space, where the weight associated to each of the attributes is a real number. 
 A genetic algorithm (GA) is an adaptive general-purpose search algorithm, which has successfully been 
applied to many different problems in various areas. The basic principles of GA have been rigorously established by 
Holland in [12] and can be found in many references (see for instance [3], [4], [10] and [13]). 

In GA the term population is used for naming a set of potential solutions to the problem; each individual 
solution is called a chromosome. Each part of a chromosome (usually representing a variable of the problem) is 
called a gene. Generally, the initial population is initialized with a pre-defined number of chromosomes which are 
randomly created; usually the number of individuals per population remains constant during the whole process.  
Inspired by the biological natural selection process, the GA through selection operator chooses the chromosomes 
from the current population in order to determine which individual candidates will be part of the ‘reproduction’ 
process. 

As commented in [6], “Selection attempts to apply pressure upon the population in a manner similar to that 
of natural selection found in biological systems. Poorer performing individuals are weeded out and better 
performing, or fitter, individuals have a greater than average chance of promoting the information they contain 
within the next generation. Crossover allows solutions to exchange information in a way similar to that used by a 
natural organism undergoing sexual reproduction. Mutation is used to randomly change (flip) the value of single bits 
within individual strings.” The process of selection, crossover and mutation goes on until a convergence criterion 
has been satisfied. Although there are many different variations of GAs, there is a canonical version, described in 
Figure 3. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. Canonical GA 
 

For the problem at hand, the initialization process consists of randomly creating a population of 
chromosomes, each of them representing a weight vector candidate to be the solution. The dimension of the 
chromosome is the number of attributes in the domain being considered. In a domain described by N attributes, each 
chromosome is a vector of N positions, each of them represented by a real number in the interval [0,1]. If the 
population has been established with size M, then M of such N-dimensional real vectors are randomly created. 

The evaluation process uses either (k-NN or IB2) as the fitness function that ‘measures’ the quality of each 
chromosome in the population. In order to do that, a 10-fold cross-validation process was implemented; the fitness 
value of each chromosome is for the average values obtained using the ten learning-testing processes, as shown in 
Figure 4 and described as a pseudo code in Figure 5. 

procedure GA 
begin 
   t ← 0 
   initialize(p(t)) 
   evaluate(p(t)) 
   while not (termination_condition) do 
     begin 
         t ← t + 1 
         select p(t) from p(t-1) 
         crossover(p(t)) 
         mutation(p(t)) 
         evaluate(p(t)) 
      end 
end 



 
 
 
 
 
 
 
 
 
 
 

Figure 4. Using the accuracy of a learning algorithm as the fitness function. Each  
Wi (1 ≤ i ≤ N) is a weight vector and ai its corresponding fitness value 

 
 The stopping criteria used in the experiments described in the next section was the number of generations; 
the value of k for implementing the k-NN was 5 (number of neighbors taken into consideration when classifying 
new examples). The crossover operator implemented is the one-point crossover, which is one of the simplest 
crossover operators and mutation was implemented as the random operator, which consists in substituting a gene by 
a random value from its domain. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Pseudo code of the evaluation process of a population using k-NN 

 

procedure evaluate(P,CK,TK); 
{P: population (size M) to be evaluated. Chromosome WI ∈ P (1 ≤ I ≤ M) is a vector 
     w1I w2I … wNI , where N is the number of attributes in the domain 
 CK − concept description learnt from training set training_k (1 ≤ k ≤ 10) 
 TK − testing set (corresponding to training_k) to be classified  by CK, taking   
         into consideration each WI ∈ P. 
 Each tp ∈ TK is a vector described as: t1p, t2p, t3p … tNp, class(tp)                       } 
 
begin 
  for_all WI ∈ P do 
   begin  
    number_correct_classif(WI) ← 0 
    for_all tp = (t1p t2p t3p … tNp) ∈ TK do 
      begin 
       weighting(WI,tp,WItp) 
       classify(CK,WItp,R) 
       if R then number_correct_classif(WI) ← number_correct_classif(WI) + 1 
      end 
      aval(WI) ← number_correct_classif(WI)/|TK| 
   end 
end 

 
weighting(WI,tp,WItp) 
begin 
  for q ← 1 to N do WItp[q] ← WI[q]* tp[q] 
end 
 
classify(CK,WItp,R) 
begin 
  R ← false 
  k_NN(CK,WItp,Class)        {classifying with k-NN using a weight} 
  if Class = class(WItp) then R ← true 
end 

W1=w11 w21 …wN1 
W2=w12 w22 …wN2 

……….……………………. 
WM=w1M w2M…wNM 

FITNESS 

TRAINING_i 
(CONCEPT_i) 

TEST_i 

a1 = eval(W1) 
a2 = eval(W2) 
 
aM = eval(WM) 

Population (size M) 



4. Experiments and Results 
 
The experiments conducted and described in this work are based on data from three knowledge domains, all of them 
with real-valued attributes. The domains Iris and Wine are well known domains and have been downloaded from the 
UCI Repository [5] – their descriptions can also be downloaded from the same site. The third domain named 
Vestibular is a dataset with the results of fixed saccadic tests performed on patients who attended the Service of 
Otoneurology of the Clinical Hospital which is part of the Medical School of the University of São Paulo, in 
Ribeirão Preto. The main characteristics of the three domains are shown in Table 1. 
 The Vestibular System domain data was provided by a medical researcher. Each example is a record for 
one patient. The data represents the measurement data collected by electrodes which were placed next to the 
patient's left and right eyes. The movements of both eyes were monitored as they focused on a spotlight, that shone 
alternatively from one extremity to the other of a horizontal bar, at a constant frequency, during a certain period of 
time. The electrodes measured the electrical signals which were produced by the saccadic movements. These signals 
were amplified, filtered and recorded for further analysis. The goal of physicians using these measurements is to be 
able to detect problems with the Vestibular System of a patient. More information about this domain can be found in 
[15] and [17]. 

Table 1. Main characteristics of the domains 

Domain Total Number 
of Examples 

Total Number of 
Training 
Examples 

Total Number of 
Testing Examples

Number of 
Attributes 

 

Number 
of 

Classes 

Number of 
Examples per 

Class 

Iris 150 120 30 4 3 
50 (setosa) 

50 (virginica) 
50 (versicolor) 

Wine 178 143 35 13 3 
59 (Region 1) 
71 (Region 2) 
48 (Region 3) 

Vestibular 199 159 40 6 2 98 (Normal) 
101 (Abnormal)

 
4.1 The Collaboration GA and K-NN in Order to Obtain a WK-NN 

In the experiments conducted, we varied the size of the population (50 and 100 individuals) and the number of 
generations (20, 50, 100 and 500) in order to search for a set of genetic characteristics which would have the best 
performance. For all the experiments, we used the roulette selection operator, crossover rate of 0.8 and mutation rate 
of 0.01. The results shown in the next tables are for the best weight vector obtained in the last generation, 
considering the four different numbers of generations tried. 

Iris Domain 

Increasing the size of the population did not affect the results; the processing time, however, significantly increased. 
The significant performance of the population occurred between the 20th and 40th generation; the results of the Wk-
NN using GA (obtained using a population size of 50 and generations number of 50) and the k-NN are shown in 
Table 2. 

Table 2. Performance of k-NN versus Wk-NN using GA (Iris domain) 
 k-NN Wk-NN 

Correct Classifications (%) 95.94 98.00 
Standard deviation value 0.8498364548 0.0005900055 

 

Vestibular Domain 

The results in Table 3 showing the performances of both, k-NN and Wk-NN using GA are for size of population 50 
and number of generations 50.  

Table 3. Performance of k-NN versus Wk-NN using GA (Vestibular domain) 
 k-NN Wk-NN 

Correct Classifications (%) 87.00 87.35 
Standard deviation value 1.5491933384 0.0001399646 

 

 



Wine Domain 

Table 4 shows the performance values for the k-NN and Wk-NN using GA in the Wine domain, using a population 
and generation size each of 50. As can be seen in the table, the performance of Wk-NN is considerably inferior to 
that of the k-NN. In order to explore this domain more, we decided to eliminate the attributes considered less 
relevant because there was a chance of them interfering negatively in the search process. As suggested in [16], the 
fifth, sixth, eight and ninth attributes do not contribute much for characterizing the three classes in this domain. 
Based on this information, we reduced the domain to the nine attributes left and ran the experiments again. As can 
be seen in Table 5, both algorithms had their performances increased in the reduced domain; the improvement of the 
Wk-NN, however, was considerably higher compared to its performance on the complete domain. 

Table 4. Performance of k-NN versus Wk-NN using GA (Wine domain) 
 k-NN Wk-NN 

Correct Classifications (%) 78.88 71.77 
Standard deviation value 1.3165610506 0.0032039615 

Table 5. Performance of k-NN versus Wk-NN using GA (Reduced Wine domain) 
 k-NN Wk-NN  

Correct Classifications (%) 90.00 90.35 
Standard deviation value 1.2292725491 0.0012612338 

 

4.2 The Collaboration GA and IB2 for Obtaining a W-IB2 

We adopted the same procedure as described in the previous section i.e., in the experiments conducted, we varied 
the size of the population (50 and 100 individuals) and the number of generations (20, 50, 100 and 500) in order to 
search for a set of genetic characteristics which would have the best performance. For the experiments, we used the 
roulette selection operator, crossover rate of 0.8 and mutation rate of 0.01. The results shown in the next tables are 
for the best weight vector in the last generation, considering the four different numbers of generations tried. 

Iris and Vestibular Domains 

The results of the W-IB2 using GA (obtained using size of population 100 and 100 generations) and the IB2 are 
shown in Table 6 for Iris and Vestibular domains. Table 7 shows the best weight vector in the 100th generation for 
the Vestibular domain. 

Table 6. Performance of IB2 versus W-IB2 using GA (Iris & Vestibular domains) 
 IB2 W-IB2 

 Iris 
Correct Classifications (%) 92.67 95.74 
Standard deviation value 0.9944289818 0.0019296422 
 Vestibular 
Correct Classifications (%) 77.50 89.98 
Standard deviation value 1.7795131356 0.0037664172 

Table 7. Best weight vector in the last generation  
Number of Attribute Weight of Attribute 

1 0.9886000156 
2 0.0610000006 
3 0.9006999731 
4 0.0653000026 
5 0.0586999990 
6 0.9714999794 

 

Wine Domain 

A similar situation to the one described previously occurred with IB2 in this domain. Table 8, third line, shows the 
performance values for IB2 and W-IB2 using GA, using the best weight vector in the 100th population, considering 
the thirteen attributes that describe this domain. Table 8, sixth line, shows the results of both algorithms, using the 
Reduced Wine domain. As can be seen both algorithms had their performances increased; the improvement of the 
W-IB2, however, was considerably higher compared to its performance in the complete domain. 



Table 8. Performance of IB2 versus W-IB2 using GA (Wine & Reduced Wine domains) 
 IB2 W-IB2 
 Wine 

Correct Classifications (%) 71.66 66.29 
Standard deviation value 2.1317701564 0.0003683525 
 Reduced Wine 
Correct Classifications (%) 90.00 92.70 
Standard deviation value 1.2292722549 0.0000035762 

 

5. Conclusions 
This paper describes how two lazy learning algorithms and a genetic algorithm can collaborate to produce better 
solutions than either lazy learning algorithm could produce by itself. 

 Based on the results obtained, we can say that the instance-based learning algorithms have a better 
performance when they are weighted by a weight vector found with the help of a GA. Although a genetic algorithm 
does not find optimal weight vectors, it has been shown that it is capable of finding vectors that are good enough to 
improve the performance of both instance-based algorithms. 
 In this line of research there are a number of issues that can be addressed in future work, including: to 
explore more possibilities of the genetic characteristics, such as other selection operators and the creep mutation 
operator; to focus on class-based attribute weight vectors and to try alternative values for k (in the k-NN).  Different 
values for crossover and mutation rates should also be tried to determine to what extent they interfere in the results. 
A larger number of knowledge domains should also be considered in future experiments. 
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