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Abstract

Ant Colony Optimization (ACO) is a metaheuristic inspired by the foraging behavior of ant colonies that
has been successful in the resolution of hard combinatorial optimization problems like the TSP. This paper
proposes the Omicron ACO (OA), a novel population-based ACO alternative designed as an analytical tool.
To experimentally prove OA advantages, this work compares the behavior between the OA and the MMAS
as a function of time in two well-known TSP problems. A simple study of the behavior of the OA as a
function of its parameters proves its robustness.
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1 Introduction

Ant Colony Optimization (ACO) is a metaheuristic proposed by Dorigo et al. that has been inspired by the
foraging behavior of ant colonies [3]. In the last few years ACO has empirically shown its effectiveness in
the resolution of several different NP-hard combinatorial optimization problems; however, still little theory
is available to explain the reasons underlying ACO’s success. Birattari et al. developed a formal framework
of ant programming with the goal of gaining deeper understanding on ACO [1], while Meuleau and Dorigo
studied the relationship between ACO and Stochastic Gradient Descent [10]. Gutjahr presented a conver-
gence proof for a particular ACO algorithm called Graph-based Ant System (GBAS) that has an unknown
empirical performance [7]. He proved that the GBAS converges, with a probability that could be made
arbitrarily close to 1, to the optimal solution of a given problem instance. Later, Gutjahr demonstrated for
a time-dependent modification of the GBAS that its current solutions converge to an optimal solution with
probability exactly equal to 1 [8]. Stützle and Dorigo presented a short convergence proof for a class of ACO
algorithms called ACOgb,τmin [11], where gb indicates that the global best pheromone update is used, while
τmin indicates that a lower limit on the range of the feasible pheromone trail is forced. They proved that
the probability of finding the optimal solution could be made arbitrarily close to 1 if the algorithm is run
for a sufficiently large number of iterations.

In search of new ACO analytical tools, a simple algorithm preserving certain characteristics of ACO was
developed. This is how the Omicron ACO (OA) was conceived and its name comes from the main parameter
used, which is Omicron (O). OA was motivated by the ideas behind ACO, i.e. the search for nearby good
solutions. OA was first designed with theoretical motivations to study convergence properties [4], but proved
to be very useful also in practical applications. Therefore, this paper compares OA with respect to one of
the best-known ACO algorithms, the MAX -MIN Ant System (MMAS) proposed by Stützle and Hoos
[12]. OA is a more straightforward utilization of the successful reasons of ACO. As a consequence, OA
outperforms MMAS in the preliminary experimental results shown in this work. Besides, its simplicity and
decreased sensibility to input parameters make it easy to configure.

This paper is organized as follows. In Section 2 the test problem and the definitions are presented. The
standard ACO approach, the ideas that motivated OA and its pseudocode are given in Section 3. In Section
4, a performance comparison between MMAS and OA, and a simple study of the OA as a function of its
parameters are made. Experimental results are explained in Section 5. Finally, the conclusions and future
work are presented in Section 6 .

2 Test Problem

In this paper the symmetric Traveling Salesman Problem (TSP) is used as a test problem for comparing the
analyzed algorithms. The TSP is a hard combinatorial optimization problem, easy to understand, which
has been considerably studied by the scientific community. Researchers have applied ACO successfully to
this problem [3, 12]. To make performance comparisons, standard TSP instances extracted from TSPLIB1

library have been used in this work. The TSP can be represented by a complete graph G = (N, A) with N
being the set of nodes, also called cities, and A being the set of arcs fully connecting the nodes. Each arc
(i, j) is assigned a value d(i, j) which represents the distance between cities i and j. The TSP is the problem
of finding the shortest closed tour visiting each of the n = |N | nodes of G exactly once. For symmetric TSPs,
the distances between the cities are independent of the direction of traversing the arcs, that is d(i, j) = d(j, i)
for every pair of nodes. Suppose that rx and ry are TSP tours or solutions over the same set of n cities. For
this work, l(rx) denotes the length of tour rx. The distance between rx and ry is defined as n minus the
number of edges contained in both rx and ry.

3 Ant Colony Optimization

Ant Colony Optimization (ACO) is a metaheuristic inspired by the behavior of ant colonies [3]. In the last
few years, ACO has received increased attention by the scientific community as can be seen by the growing
number of publications and the different fields of application [12]. Even though there exist several ACO
variants, what can be considered a standard approach is next presented [5].

3.1 Standard Approach

ACO uses a pheromone matrix τ = {τij} for the construction of potential good solutions. The initial values
of τ are set τij = τinit ∀(i, j), where τinit > 0. It also takes advantage of heuristic information using

1Accessible at http://www.iwr.uni-heidelberg.de/iwr/comopt/software/TSPLIB95/



ηij = 1/d(i, j). Parameters α and β define the relative influence between the heuristic information and the
pheromone levels. While visiting city i, Ni represents the set of cities not yet visited. The probability of
choosing a city j at city i is defined as

Pij =


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ij∑
∀g∈Ni
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·ηβ

ig

if j ∈ Ni

0 otherwise

(1)

At every generation of the algorithm, each ant of a colony constructs a complete tour using (1), starting
at a randomly chosen city. Pheromone evaporation is applied for all (i, j) according to τij = (1 − ρ) · τij ,
where parameter ρ ∈ (0, 1] determines the evaporation rate. Considering an elitist strategy, the best solution
found so far rbest updates τ according to τij = τij + ∆τ , where ∆τ = 1/l(rbest) if (i, j) ∈ rbest and ∆τ = 0
if (i, j) /∈ rbest. For one of the best performing ACO algorithms, the MAX -MIN Ant System (MMAS)
[12], minimum and maximum values are imposed to τ (τmin and τmax).

3.2 Omicron ACO

OA was initially inspired by MMAS, an ACO currently considered among the best performing ACOs for
the TSP [12]. It is based on the hypothesis that it is convenient to search for nearby good solutions [2, 12].

The main difference between MMAS and OA is the way the algorithms update the pheromone matrix.
In OA, a constant pheromone matrix τ0 with τ0

ij = 1, ∀i, j is defined. OA maintains a population P = {Px}
of m individuals or solutions, the best unique ones found so far. The best individual of P at any moment is
called P ∗, while the worst individual Pworst.

In OA the first population is chosen using τ0. At every iteration a new individual Pnew is generated,
replacing Pworst ∈ P if Pnew is better than Pworst and different from any other Px ∈ P . After K iterations,
τ is recalculated. First, τ = τ0; then, O/m is added to each element τij for each time an arc (i, j) appears
in any of the m individuals present in P . The above process is repeated every K iterations until an end
condition is reached (see pseudocode for details). Note that 1 ≤ τij ≤ (1 + O), where τij = 1 if arc (i, j) is
not present in any Px, while τij = (1 + O) if arc (i, j) is in every Px ∈ P .

Similar population-based ACO algorithms (P-ACO) [5, 6] were designed by Guntsch and Middendorf
for dynamic combinatorial optimization problems. The main difference between the OA and the Quality
Strategy of P-ACO is that OA does not allow identical individuals in its population. Also, OA updates τ
every K iterations, while P-ACO updates τ every iteration.

Next, the pseudocode of the OA considering a TSP with n cities is presented.

Pseudocode of the main Omicron ACO

Input parameters: n, matrix D = {dij}, O, K, m, α, β
Output parameter: P (m best found solutions)

τ = Initialize the pheromone matrix ()
P = Initialize the population (τ)
Repeat until end condition

Repeat K times
Pnew = Construct a solution (τ)
If (length(Pnew) < length(P[0])) and (Pnew 6= all elements of P)

P = Update population (Pnew , P )
τ = Update pheromone matrix (P)

Pseudocode of the function Initialize the pheromone matrix ()

Repeat for every arc (i,j)
τ[i,j] = 1

Pseudocode of the function Initialize the population (τ)

x = 0
While x < m

Pnew = Construct a solution (τ)
If Pnew 6= all chosen elements of P

P[x] = Pnew

x = x + 1
P = Sort P from worst to best considering the tour length /* Pworst = P[0] */



Pseudocode of the function Construct a solution (τ)

Pnew[0] = Select a city randomly
x = 1
While x < n

Pnew[x] = Select a city randomly considering equation (1)
x = x + 1

Pseudocode of the function Update population (Pnew , P )

P[0] = Pnew

P = Sort P efficiently from worst to best considering the tour length
/* Pworst = P[0] */

Pseudocode of the function Update pheromone matrix (P)

τ = Initialize the pheromone matrix ()
x = 0
While x < m

Repeat for every arc (i,j) of P[x]
τ[i,j] = τ[i,j] + O/m

x = x + 1

4 Experimental Results

For the following experimental results, a 2 GHz computer with 256 MB of RAM was used. The programming
language chosen was C and the operating system was Linux. First, a comparative study between MMAS
and OA is presented. Then, the behavior of OA as a function of its parameters is studied.

4.1 Comparative Study Between OA and MMAS
As a performance reference, the parameters for the MMAS algorithm were extracted from [12], where
α = 1 and β = 2 were always used and the same problems were solved. To make a fair comparison, the same
parameters α = 1 and β = 2 were also used for the OA. The rest of the parameters were found empirically,
searching for a balanced behavior between the speed of convergence and the quality of the final solution,
choosing O = 600, m = 25 and K = 1, 000. Because no attempt was done to optimize OA parameters or to
make them time-dependent, MMAS with pheromone trail smooth was not chosen for comparison.

Empirical observations were done as a function of time given that the concept of iteration or generation
is not the same for both algorithms. In general, OA produces better solutions than MMAS from the very
beginning and converges to a slightly better result. As an example, for the problem eil51 with 51 cities
studied in [12], the behavior of the best solution found for each algorithm was studied. The mean of the
evolution of both algorithms in 25 runs can be seen in Figure 1. In Figure 2 the ranges are modified to show
the clear advantage of OA at the convergence stage.

The OA results are promising considering two reasons. First, the minimum tuning work made in the
algorithm parameters and second, the fact that partial results show an increased robustness, since using
exactly the same parameters similar results are observed in the 100 cities problem kroA100.

In Figure 3 we observe the mean in 25 runs of the evolution of the best length of both algorithms for a
larger problem, the well known kroA100 [12]. In Figure 4 the ranges are modified, as in Figure 2, to show
the advantage of OA over MMAS, considering convergence. Once more, considering mean behavior in 25
runs, OA outperforms MMAS.

Note that best results were obtained and bigger instances were solved using MMAS with local search
[12]. In these preliminary tests, only little instances of the TSP were solved (because no local search was
implemented) to make a comparison between both algorithms without any interference.

4.2 Simple Study of the Behavior of OA as a Function of its Parameters

To verify the robustness of OA, its behavior has been observed as a function of its parameters. In Figure 5
(a) the evolution of the mean of the best individual’s length is observed; 25 runs were made using m = 25,
K = 1, 000 and O = 300, O = 600 and O = 1, 200. In Figure 5 (b), the 25 runs were made using O = 600,
K = 1, 000 and m = 13, m = 25 and m = 50, while in Figure 5 (c) using O = 600, m = 25 and K = 500,
K = 1, 000 and K = 2, 000.

Clearly, a significant variation of the parameters used in Section 4.1 did not alter considerably the behavior
of the algorithm. Using a greater value of O, the behavior is almost identical, while a smaller value shows a
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Figure 1: Comparison between the mean behavior of the proposed OA and the MMAS
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Figure 2: Comparison between the mean behavior of the proposed OA and the MMAS using different
ranges, allowing a detailed observation of the convergence characteristics
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Figure 3: Comparison between the mean behavior of the proposed OA and the MMAS
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Figure 4: Comparison between the mean behavior of the proposed OA and the MMAS using different
ranges, allowing a detailed observation of the convergence characteristics

slight fall in its performance. This is due to the diminished strength of the search for nearby good solutions.
Using a larger m, the search was slower at the beginning but resulted in a slightly better solution at the end.
A smaller m did the opposite. This can be seen as if the increase of the number of individuals delays the
search, but ensures a good final search zone. By increasing the parameter K, a slower initial progress was
observed, while decreasing it did the opposite. This can be understood because the more frequent update of
the pheromone matrix allows to search for nearby better solutions in advance.

5 Explaining Experimental Results

To explain the reasons why OA outperforms MMAS, one of the best-known ACO algorithms [12], it
is useful to remember two main reasons why ACO is a good algorithm for a TSP with globally convex
structure [2, 4, 9].

1. Given a population of good enough solutions, better solutions may be found with larger probability
closer (considering the distance concept explained in Section 2) to good solutions than to bad ones.
All ACO algorithms, including OA and MMAS are based on this known property.

2. Because the existence of local optimal solutions, it is better to search within a region defined by a whole
population of good solutions than only close to the best-known one. Even though all ACO algorithms
use this property in one way or another, OA is the one that best exploits this property in an explicit
way, looking for good solutions mainly in the subspace spanned by the best m known solutions, without
concentrating its search mainly around the best current solution which usually is only a local optimum.

Therefore, the main reason OA outperforms MMAS is its ability to search explicitly in a whole subspace
Ω spanned by m good solutions, instead of mainly increasing the amount of pheromone of only one good
solution. At the beginning, this property makes OA converge faster to a good region, given that it uses more
information of each cycle (up to m pheromone updates, instead of just one). At the end, OA searches for the
best solution close to a whole subspace Ω, without giving more importance to any of the m individuals of
population P . On the contrary, other ACOs as MMAS look for new solutions mainly near the best-known
solution, which usually is only a local optimum.

Finally, it may be noticed that OA completely forgets old solutions that are not members of the popu-
lation, while MMAS evaporates the pheromone very slowly at the arcs of these old bad solutions, slowing
down its convergence.

6 Conclusions and Future Work

This paper presents Omicron ACO (OA), a new algorithm inspired by one of the best ACO algorithms, the
MMAS [12]. OA uses one of the principles of the MMAS success more directly, the search for nearby
good solutions in problems of combinatorial optimization like the TSP with globally convex structure of its
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Figure 5: Comparison among the mean behavior of the proposed OA for the problem eil51, for different
values of the parameters O, m and K



search space [2]. This new OA algorithm outperforms MMAS for these preliminary tests and it is also
more robust with relation to its initial parameters; therefore, it is easier to configure.

Finally, its conceptual simplicity and the fact that it uses the same foundations as ACO allow a deeper
study of the reasons of ACO’s success.

After these encouraging preliminary results, the authors are working on the comparison of OA for TSPLIB
problems to other ACO algorithms as P-ACO and MMAS with pheromone trail smooth and local search.
Future work may concentrate on a deeper theoretical study of OA and its application to other combinatorial
optimization problems in comparison with other world-class metaheuristics.
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