
Hybrid Learning Systems Based on Support Vector Machines and
Radial Basis Function Neural Networks

Haydemar Núñez
Laboratorio de Inteligencia Artificial

Facultad de Ciencias. Universidad Central de Venezuela. Caracas, Venezuela
hnunez@strix.ciens.ucv.ve

Cecilio Angulo, Andreu Català,
ERIC – Engineering & Research in Computational Intelligence
Technical University of Catalonia. Vilanova i la Geltrú, Spain

cecilio.angulo@upc.es, andreu.catala@upc.es,

Abstract

Two methods are proposed for the symbolic interpretation of both Support Vector Machines (SVM) and Radial
Basis Function Neural Networks (RBFNN). These schemes, based on the combination of support vectors and
prototype vectors by means of geometry, produce rules in the form of ellipsoids and hyper-rectangles. Results
obtained from a certain number of experiments on artificial and real databases in different domains allow
conclusions to be drawn on the suitability of our proposal. Moreover, schemes that incorporate the available prior
domain knowledge expressed as symbolic rules into SVMs are explored, with excellent performances being
obtained.
Keywords: Artificial Intelligence, Support Vector Machines, Neural Networks, Hybrid Architectures

Resumen

En este trabajo se proponen dos métodos para la interpretación simbólica de máquinas de soporte vectorial (SVM) y
redes neuronales de función de base radial (RBFNN), respectivamente. Ambos esquemas se basan en la
combinación, mediante geometría, de los vectores de soporte generados por una SVM y vectores prototipos o
centros de una RBFNN, para producir descripciones en la forma de elipsoides e hiper-rectángulos. Los resultados de
los numerosos experimentos realizados sobre bases de datos artificiales y reales de diferentes dominios, nos
permiten concluir sobre la viabilidad de la propuesta. También, se exploran esquemas para la inserción, en máquinas
de soporte vectorial, del conocimiento previo disponible expresado como reglas simbólicas.
Palabras claves: Inteligencia Artificial, Máquinas de Soporte Vectorial, Redes Neuronales, Arquitecturas Híbridas

mailto:N��ez@strix.ciens.ucv.ve
mailto:cecilio.angulo@upc.es
mailto:Andreu.catala@upc.es

1. INTRODUCTION
When neural networks are used for constructing classifiers, black-box type models are generated, even if the
obtained performance is good. With the aim of facilitating the interpretation of the classifier system, over the last 10
years rule extraction methods for trained neural networks have been developed [1],[6],[14],[21] and [22]. In the case
of radial basis function neural networks (RBFNN) [11],[15],[19], the rule extraction algorithms proposed usually
impose restrictions over training in order to avoid overlapping between classes or categories and thus facilitate the
extraction process [4],[9],[10] and [13].
 On the other hand, over the last 7 years it has been demonstrated that the support vector machines (SVM)
[5],[7],[11] derived from V.N. Vapnik’s Statistical Learning Theory [23], have excellent classification and
approximation qualities for all kinds of problems. However, as in the case of the neural networks, the models
generated by these machines are difficult to understand from a user’s point of view.
 In order to interpret these models, the present work studies the classifier function structure of the SVM and the
RBFNN in depth [17]. Starting with the support vectors selected by a SVM and prototype vectors generated by any
clustering algorithm or by RBFNN, a rule extraction method for SVM is proposed. This method produces
descriptions in the form of ellipsoids and it is independent of the type of training used. Furthermore, the
interpretation of the rules is facilitated through a second derivation in the form of hyper-rectangles. As an original
contribution and extension of the work, the algorithm is modified for the exclusive use of the information supplied
by a SVM, thus achieving the elimination of the intrinsic variability in the classification made by clustering
algorithms or by RBFNN.
 Additionally, starting with the RBFNN centres and using support vectors as class delimiters, a rule extraction
method for RBFNN is proposed. As in the previous case, it produces descriptions in the form of ellipsoids and
hyper-rectangles. This method solves the overlapping between classes without imposing restrictions on the network
architecture or its training regime.
 Finally, since the final information will be expressed in the form of interpretable rules, a third contribution of
this work is the analysis of schemes for inserting knowledge into SVMs, when this knowledge is available in form
of rules. The alternatives studied allow us to conclude that access to this information by the SVM improves its final
performance.

This paper is organized as follows: the rule extraction method from trained SVMs is described in the next
section, along with the experimental results. Section 3 presents the rule extraction method for RBFNN. Section 4
describes prior knowledge integration methods into SVM. Finally, we present the conclusions and future work.

2. INTERPRETATION OF SUPPORT VECTOR MACHINES
The solution provided by a SVM is a summation of kernel functions constructed on the base of the support vectors

() () ⎟
⎠

⎞
⎜
⎝

⎛ += ∑
=

bKysignf
sv

i
iiia

1
, xxx α (1)

 The support vectors (sv) are the data nearest the separation limit between classes. They are the most informative
samples for the classification task. By using geometric methods, these vectors with prototype vectors (generated by
any clustering algorithm or by RBFNN) are combined in order to construct regions in the input space, which are
later translated to if-then rules. These regions can be of two types: ellipsoids and hyper-rectangles. Ellipsoids
generate rules whose antecedent is the mathematical equation of the ellipsoid. Hyper-rectangles (defined from
parallel ellipsoids to the axes) generate rules whose premise is a set of restrictions on the values of each variable
(Figure 1).

The ellipsoids must adjust to the form of the decision limit. In order to obtain one ellipsoid with these
characteristics, the support vectors are used to determine the axes and vertices as follows: first, the algorithm
determines one prototype vector per class by using a clustering algorithm. This vector will be the centre of the
ellipsoid. Then, a support vector of the same class with a value α smaller than parameter C and with the maximum
distance to the prototype is chosen. The straight line defined by these two points is the first axis of the ellipsoid. The
rest of the axes and the associated vertices are determined by simple geometry. To construct hyper-rectangles, a
similar procedure is followed. The only difference is that lines parallel to the axes are used to define the axes of the
associated ellipsoid.

The number of regions necessary to describe the SVM model will depend on the form of the decision limit. One
ellipsoid may not be sufficient to describe the data. Then, the rule base is determined by an iterative procedure that
begins with the construction of a general ellipsoid, which is divided into ellipsoids that adjust progressively to the
form of the surface decision determined by SVM. To determine when to divide an ellipsoid, a partition test is
applied. If the test result is positive for one ellipsoid, the latter is divided. We consider a partition test to be positive
if the generated prototype belongs to another class, if one of the vertices belongs to another class or if a support

Support vectors α parameters

RULE

EXTRACTION
METHOD

Clustering
algorithm

Prototype
vectors

Data IF X1 ∈ [a,b] ∧ X2 ∈ [c,d]
THEN CLASS

SVM
function

New
Model

Hyper-rectangles
Interval rules

Ellipsoids
Equation rules

Support vector
machine

IF AX1
2 + BX2

2 + CX1X2 + DX1
+ EX2 + F ≤ G
THEN CLASS

Figure 1. Rule extraction method for SVMs

vector from another class exits within the region. To determine the class label of the prototypes and the class label of
the vertices, the SVM function is used.

Then, in order to define the number of rules per class the algorithm proceeds as follows:
Beginning with a single prototype, the associated ellipsoid is generated. Next, the partition test is applied on this

region. If it is negative, the region is translated to a rule. Otherwise, new regions are generated. In this form, each
iteration produces m regions with a positive partition test and p regions with a negative partition test. The latter are
translated into rules. In the next iteration, the data of the m regions are used to determine m+1 new prototypes and to
generate m+1 new ellipsoids. This procedure is stopped once all partition tests are negative or the maximum number
of iterations has been reached. This process allows the number of rules generated to be controlled.

After the rules are extracted, the system classifies an example by assigning it to the class of the nearest rule in
the knowledge base (following the nearest-neighbour philosophy) by using the Euclidian distance. If an example is
covered by several rules, we choose the class of the most specific ellipsoid or hyper-rectangle containing the
example; that is, the one with the smallest volume. Figure 2 shows an example of regions generated for each
iteration.

2.1 Experiments
In order to evaluate the performance of the rule extraction algorithm, we carried out two kinds of experiments: with
artificial data sets and databases obtained from the UCI repository [3]. The algorithms associated to the extraction
method were developed on Matlab v5.3. The training of the SVMs on the artificial data sets was carried out with
“Matlab SVM/K-SVCR Toolbox” software [2]; for databases from the repository UCI we used “OSU Support
Vector Machines Toolbox v3.00” software [12]. We used the k-means clustering algorithm [8] to generate the
prototype vectors.

Because the space is limited, only the experiments on UCI databases are described. Table 1 shows the
characteristics of the databases that were used. The performance of the rules generated was quantified using the
following measures:

• Error (Err): This is the classification error provided by the rules on the test set.
• Consistency (Cn): This is the percentage of the test set for which the network and the rule base output agree.
• Coverage (Cv): This is the percentage of examples from the test set covered by the rule base.
• Overlapping (Ov): This is the percentage of examples from the test set covered by several rules.
• Number of extracted rules (NR).

 Table 2 shows the prediction error of the SVM and the performance values of the extracted rule base for each
problem. The results were obtained by averaging over stratified ten-fold cross-validation. It should be emphasized
that the consistency percentage between the rule base and the SVM is very high. These values indicate that the rule
base captures most of the information embedded in the SVM.

Third iteration Second iteration

First iteration SVM function

(b)
Third iteration Second iteration

First iteration SVM function

(a)

Figure 2. Regions generated by the rule extraction method
(a) Ellipsoids. (b) Hyper-rectangles

Table 1. Databases and their characteristics

ID Database Data Attributes Type of attributes Classes
1 IRIS 150 4 Real 3
2 WISCONSIN 699 9 Symbolic 2
3 WINE 178 13 Real 3
4 SOYBEAN 47 35 Integer 4
5 New-THYROID 215 5 Real 3
6 AUSTRALIAN 690 14 Real and symbolic 2
7 SPECT 267 23 Binary 2
8 MONK1 432 6 Symbolic 2
9 MONK2 432 6 Symbolic 2

10 MONK3 432 6 Symbolic 2
11 ZOO 101 16 Symbolic 7
12 HEART 270 13 Real, symbolic and binary 2

On the other hand, it was observed that the quality of the solution depends on the initial values for the centres;
the selection of prototypes affects the number and quality of the extracted rules. Therefore, it was necessary to apply
k-means several times, starting with different initial conditions and then choosing the best solution. Although the
dependency of the clustering final result on the random way the prototypes are selected is well known, this
characteristic is never desirable. The solution to this problem is an opened working area and a new proposal such as
the following one presented here means positive alternatives.

2.2 Overcoming the Randomness of Clustering Algorithms
In order to eliminate the sensitivity of the rule extraction method to the initial conditions of clustering, we proposed
the initial centres for the clustering algorithms from the support vectors should be determined. Thus, if m is the
number of necessary prototypes for iteration, then the m initial conditions for k-means are determined in the
following form:

By each class
• Select m support vectors with same class label.
• Assign examples to their closest support vector according to the Euclidean distance function.

Table 2. Performance values obtained for each database.

Equation rules Interval rules ID
database

Error
SVM Error Cn. Cv. Ov. NR Error Cn. Cv. Ovl. NR

1 0.033 0.040 98.00 72.00 0.67 7.0 0.040 99.33 68.00 0.00 4.7
2 0.031 0.034 98.52 89.15 0.30 4.0 0.037 98.24 93.26 0.73 5.1
3 0.022 0.017 98.30 67.49 0.55 5.9 0.023 96.07 69.89 2.28 8.2
4 0.000 0.000 100.00 33.00 0.00 6.3 0.020 98.00 75.00 0.00 6.4
5 0.032 0.032 97.21 80.07 0.00 7.1 0.032 96.30 70.58 2.72 9.2
6 0.127 0.133 93.60 65.70 2.86 18.4 0.137 93.20 87.66 3.18 21.6
7 0.102 0.117 96.26 21.39 0.53 14.0 0.112 96.26 40.11 0.00 22.0
8 0.051 0.091 85.18 33.56 0.00 24.0 0.056 92.59 59.49 0.00 33.0
9 0.178 0.211 76.38 32.87 0.46 60.0 0.219 75.95 63.19 5.78 84.0

10 0.023 0.034 97.45 27.55 0.00 7.0 0.027 99.07 100.00 0.00 4.0
11 0.045 0.045 99.09 31.45 0.74 9.8 0.052 97.07 74.97 0.00 9.4
12 0.159 0.137 97.04 56.67 0.74 4.5 0.163 96.67 60.01 0.00 20.4

• Once the initial partitions have been established, the mean of all instances in each partition is calculated.
• These points are the initial conditions for the clustering algorithm.

Three criteria were used to select the support vectors:
• Partition scheme 1: select those vectors with the smallest average dissimilarity with respect to the data.
• Partition scheme 2: select the support vectors nearest to each other.
• Partition scheme 3: organize the support vectors in descending order according to α parameter and select the m

first vectors.

In all cases, if more prototypes are required than there are support vectors available, the assembly of initial

partitions is completed using those points with the smallest average dissimilarity with respect to the data.
These schemes were evaluated on trained SVMs on the same databases from the UCI repository. Tables 3, 4 and

5 show the obtained results when these partition schemes were used. We can observe that the results are comparable
with those obtained by using k-means. Thus, it is possible to obtain a good rule base with a single application of the
rule extraction algorithm.

Table 3. Performance values for each database using partition scheme 1

Equation rules Interval rules ID
database

Error
SVM Error Cn. Cv. Ov. NR Error Con. Cub. Sol. NR

1 0.033 0.040 99.33 67.33 1.33 7.0 0.047 98.67 67.33 1.33 4.7
2 0.031 0.032 98.07 87.83 0.14 4.4 0.032 98.53 89.74 1.02 10.0
3 0.022 0.023 96.63 67.91 1.11 6.0 0.028 97.18 75.34 3.89 10.9
4 0.000 0.020 98.00 25.00 0.00 4.9 0.020 98.00 70.00 2.00 7.7
5 0.032 0.028 96.73 76.32 2.74 8.0 0.042 96.30 72.03 3.18 10.2
6 0.127 0.131 91.00 59.98 2.75 21.1 0.146 92.75 84.91 4.47 24.0
7 0.102 0.182 88.77 19.79 5.88 12.0 0.118 90.37 71.23 1.60 34.0
8 0.051 0.123 86.34 52.91 0.23 28.0 0.141 86.34 69.91 6.48 34.0
9 0.178 0.201 78.24 34.03 1.38 64.0 0.231 78.00 56.71 2.31 72.0

10 0.023 0.025 96.99 40.05 0.00 8.0 0.018 99.53 95.60 0.00 8.0
11 0.045 0.046 99.09 29.23 0.00 10.2 0.052 95.96 74.97 0.00 9.5
12 0.159 0.151 96.30 52.22 0.37 4.6 0.167 96.30 57.04 0.37 21.0

Table 4. Performance values for each database using partition scheme 2

Equation rules Interval rules ID
database

Error
SVM Error Cn. Cv. Ov. NR Error Con. Cub. Sol. NR

1 0.033 0.047 98.67 69.33 0.67 6.7 0.040 99.33 68.67 0.67 4.8
2 0.031 0.035 98.38 89.15 0.29 4.3 0.035 98.09 91.36 0.73 9.3
3 0.022 0.028 98.06 63.36 0.55 7.2 0.028 97.22 73.64 1.11 11.7
4 0.000 0.020 98.00 25.00 0.00 4.9 0.020 98.00 68.00 2.00 8.2
5 0.032 0.032 96.28 80.52 0.93 7.9 0.042 95.37 69.16 3.65 10.6
6 0.127 0.149 90.85 65.16 3.90 23.2 0.157 90.01 88.39 7.63 25.9
7 0.102 0.176 90.37 17.65 0.00 20.0 0.197 89.30 36.89 3.21 22.0
8 0.051 0.171 84.25 59.03 3.24 12.0 0.078 90.74 90.51 13.4 15.0
9 0.178 0.215 74.53 33.10 1.62 70.0 0.231 78.00 56.71 2.31 72.0

10 0.023 0.048 96.99 36.00 0.00 9.0 0.018 99.54 94.90 0.00 9.0
11 0.045 0.046 89.09 27.11 0.00 10.1 0.052 95.96 74.97 0.00 9.5
12 0.159 0.137 95.56 54.44 0.74 4.8 0.166 95.18 57.78 0.74 20.3

Table 5. Performance values for each database using partition scheme 3

Equation rules Interval rules ID
database

Error
SVM Error Cn. Cv. Ov. NR Error Con. Cub. Sol. NR

1 0.033 0.013 96.67 62.00 0.00 4.0 0.033 96.67 72.00 0.00 5.0
2 0.031 0.036 97.35 87.83 0.00 4.5 0.035 98.39 91.80 0.59 9.0
3 0.022 0.023 97.74 64.62 0.56 7.0 0.025 97.75 69.18 0.56 14.6
4 0.000 0.00 100.00 15.50 0.00 5.8 0.00 100.00 70.50 6.50 6.8
5 0.032 0.032 97.21 78.27 0.95 8.6 0.033 96.30 71.69 0.93 11.2
6 0.127 0.142 92.74 63.42 2.89 21.3 0.142 90.43 81.31 3.91 34.5
7 0.102 0.123 95.72 17.11 0.53 16.0 0.117 92.51 33.12 2.14 28.0
8 0.051 0.129 86.11 37.13 0.23 12.0 0.044 92.82 88.99 6.48 15.0
9 0.178 0.213 78.34 31.48 0.00 61.0 0.196 78.70 62.26 2.31 65.0

10 0.023 0.056 94.67 44.90 0.00 5.0 0.023 99.07 90.74 0.00 10.0
11 0.045 0.053 98.32 38.88 0.00 10.2 0.059 96.10 73.09 0.00 9.3
12 0.159 0.167 97.78 51.11 0.00 5.2 0.167 95.56 60.00 0.00 21.4

3. INTERPRETATION OF RADIAL BASIS FUNCTION NEURAL NETWORKS
The hypothesis space implanted by these learning machines is constituted by functions of the form

() ()∑
=

+=
m

k
kkk wwf

1
0,,, vxvwx φ (2)

 The nonlinear activation function φk expresses the similarity between any input pattern x and the centre vk by
means of a distance measure. Each function φk defines a region in the input space (receptive field) on which the
neuron produces an appreciable activation value. In the common case when the Gaussian function is used, the center
vk of the function φk defines the prototype of input cluster k and the variance σk the size of the covered region in the
input space.

The local nature of RBF networks makes them an interesting platform for performing rule extraction. However,
the basis functions overlap to some degree in order to give a relatively smooth representation of the distribution of
training data [11],[15]. This overlapping is a shortcoming for rule extraction.

Few rule extraction methods for RBFNN have been developed [4],[9],[10] and [13]. In order avoid the
overlapping, most of them use special training regimes or special architectures so as to guarantee that the RBF nodes
are assigned and used by a single class. Our proposal for rule extraction does not suppose any training methods or
special architecture; it extracts rules from an ordinary RBFNN. In order to solve the overlapping, a support vector
machine (SVM) is used as a frontier pattern selector.

The rule extraction method for RBFNN derives descriptions in the form of ellipsoids and hyper-rectangles.
Therefore, the algorithm for constructing an ellipsoid for SVM is used; the RBF centres replace the prototypes. In
this case, support vectors establish the boundaries between classes.

Initially, by assigning each input pattern to its closest centre of RBF node according to the Euclidean distance
function, a partition of the input space is made. When assigning a pattern to its closest centre, the former will be
assigned to the RBF node that will give the maximum activation value for that pattern. From these partitions the
ellipsoids are constructed.

Next, a class label is assigned for each centre of RBF units. The output value of the RBF network for each centre
is used in order to determine this class label.

Then, an ellipsoid with the associated partition data is constructed for each node. Once the ellipsoids have been
determined, they are transferred to rules.
 This procedure will generate a rule for each node. Nevertheless, other classes of data could be present in the
partition of the RBF unit. For these data we determine the mean of each class. Each mean is used as a centre of its
class in order to construct an ellipsoid with the associated data.

In order to eliminate or to reduce the overlapping that could exist between ellipsoids of different classes, an
overlapping test is applied. Overlapping tests verify whether a support vector from another class exits within the
ellipsoid. Because the support vectors are the points nearest to the decision limit, the presence of these vectors
within an ellipsoid of a different class is a good indicator of overlapping. If the overlapping test is positive, the
ellipsoid is divided.

This procedure will allow the rule base to be refined in order to reduce the overlapping between classes. When
the ellipsoids are divided, more specific rules are generated to exclude data from other classes. This procedure can
be executed in an iterative form; depending of the number of iterations, two or more partitions by ellipsoids can be
obtained. The user can establish the maximum number of iterations. Thus, it is possible to control the number of
rules generated by the RBF node.

3.1 Experiments
In order to evaluate the performance of the rule extraction algorithm, we carried out two kinds of experiments with
artificial data sets and databases obtained from the UCI repository. The algorithms associated to the extraction
method were developed on a Matlab v5.3. Again, only experiments on databases from the UCI repository are
described.

We used 6 databases from this repository and the same performance parameters. With the purpose of validating
the hypothesis of the rule extraction method independent of the training techniques used, two different training
procedures were used: the Netlab software [16], which uses the EM algorithm to determine the RBF centres, and the
Orr software [18], which uses forward selection.

Tables 6 and 7, show the prediction error of the RBF network and the performance values of the extracted rule
base. Results were obtained by averaging over stratified ten-fold cross-validation. We can observe a high agreement
between the results obtained from the rule base and those obtained from the RBF network. However, because the
Orr method needs to use more hidden units to obtain a better performance, it produces a greater rule base.

Table 6. Results obtained from data sets (with Netlab software)

Equation rules Interval rules ID RBF
nodes

RBF
error Err Cn. Cv. Ov. NR Err Cn. Cv Ov NR

1 4.5 0.040 0.033 96.67 64.67 0.00 6.8 0.040 97.33 70.67 0.00 6.5
2 2.2 0.029 0.032 98.24 91.21 1.76 5.7 0.041 96.78 95.01 2.93 14.5
3 3.0 0.011 0.038 97.78 66.43 2.75 9.7 0.046 95.38 81.30 7.32 10.7
4 5.4 0.020 0.020 96.00 17.00 0.00 6.9 0.060 91.50 62.50 4.00 10.2
5 9.3 0.065 0.060 94.91 80.99 2.29 16.3 0.056 94.44 79.07 6.06 16.5

10 6.0 0.048 0.060 95.14 63.19 0.93 14.0 0.027 97.91 100.0 0.00 11.0

Table 7. Results obtained from data sets (with Orr software)

Equation rules Interval rules ID RBF
nodes

RBF
error Err Cn. Cv Ov. NR Err Cn. Cv. Ov. NR

1 5.1 0.033 0.027 96.67 72.00 0.00 9.2 0.033 94.67 74.67 0.00 8.9
2 21.5 0.034 0.035 97.22 83.41 0.43 26.4 0.049 96.19 95.31 3.95 28.2
3 15.2 0.039 0.039 93.26 63.20 0.62 38.1 0.062 93.30 85.38 7.26 86.2
4 12.4 0.000 0.040 96.00 30.00 0.00 14.7 0.085 91.50 91.00 30.50 19.6
5 29.2 0.062 0.064 88.87 61.41 0.45 33.0 0.054 88.87 72.23 0.90 33.0

10 12.0 0.050 0.069 90.97 63.19 3.93 23.0 0.064 92.36 100.0 57.40 33.0

4. INSERTING PRIOR KNOWLEDGE IN SUPPORT VECTOR MACHINES
To insert prior knowledge into the support vector machines, different techniques have been used: by means of
generated virtual examples from transformation functions applied to the data [26] or the support vectors [20],
designing kernel functions that adapt to the problems [7], [24], and adding new restrictions of the optimization
problem [25]. Nevertheless, sometimes the prior knowledge is difficult to formalize as a transformation or kernel
function; this knowledge can be expressed as a set of symbolic rules, which experts give as follows:

IF [] [] []mmm baxbaxbax ,...,, 222111 ∈∧∧∈∧∈ THEN class

How could we integrate this knowledge in a SVM in this case? We propose doing it by means of a strategy

similar to the virtual example method.
The prior knowledge expressed as a rule defines a convex region in the input space (in the form of a hyper-

rectangle). This convex region is defined by a set of vertices, which provide information on the limits of the
associated rule. These vertices can be used as virtual examples and added to the learning set. However, these
samples would be treated specially because the knowledg that they provide is correct. Then, given the training set

 and the virtual example set

e

}(){ niyD ii ..1, == x (){ }m
jj ddjy 2,..1, === xV , three schemes are proposed

for incorporating this knowledge into a SVM.

• Insertion method 1: A new restriction is added to the optimization problem, which supposes that the virtual
examples can be classified without error:

 Minimize ∑
=

+
n

i
iC

1

2
2
1 ξw

() iii by ξ−≥+⋅ 1xw () niDyii ..1,, =∈x Subject to

() djVy jj ..1,, =∈x () 1≥+⋅ by jj xw ← New restriction

0≥iξ ∀i

• Insertion method 2: Two different parameters for error control are defined

 Minimize ∑∑
==

++
d

j

v
jv

n

i

d
id CC

11

2
2
1 ξξw

 Subject to () d
iii by ξ−≥+⋅ 1xw () niDyii ..1,, =∈x

 () v ()jjj by ξ−≥+⋅ 1xw djVy jj ..1,, =∈x ← New restriction

 ∀i 0≥d
iξ
v ∀i 0≥jξ

 The Cd y Cv parameters determine a balance between the information from the training data and the prior
knowledge.

• Insertion method 3: Train a SVM with the vertices of the rules of one class and the data from other classes. This

pre-processing generates a set of virtual supports by class. Next, train a SVM with all the learning sets and the
generated virtual support vectors from this pre-processing. In this form, the part of the prior knowledge that
would be more informative for the classification task is added to the data (the vertices nearest to the surface
limit).

4.1 Experiments
In order to evaluate the rule insertion methods, we applied them to the three MONK problems from the UCI
repository, because they have a defined domain theory. To verify whether it is possible to improve the SVM
performance when inserting the domain knowledge, the following procedure was carried out: first, a SVM without
added knowledge was trained. We then trained a SVM using the rule insertion methods. This procedure was
repeated 50 times and we determined the average values on the following parameters:

• Training set error (ErrEnt)
• Test set error (ErrTest)
• Number of support vectors from MONK class (Sv1)
• Number of support vectors from NO-MONK class (Sv2)

 The used values of the Cd and Cv parameters guarantee a greater weight to the errors associated to the virtual
examples. Table 8 shows the results obtained. We can observe that the rule insertion methods improve the original
SVM performance.

Table 8. Results obtained by applying the insertion methods on MONK databases.

MONK1 MONK2 MONK3
Strategy Err

Ent
Err
Test

SV1 SV2 Err
Ent

Err
Test

SV1 SV2 Err
Ent

Err
Test

SV1 SV2

Within knowledge 0 0.059 28.24 23.22 0.008 0.146 34.22 29.74 0.023 0.054 14.04 14.44
Method 1 0 0.032 40.08 23.80 0.003 0.088 47.52 30.80 0.021 0.034 14.00 13.36
Method 2 0 0.032 40.08 23.80 0.003 0.088 47.84 30.72 0.020 0.033 13.04 13.70
Method 3 0 0.029 38.44 23.96 0.003 0.086 44.20 30.90 0.021 0.029 13.52 13.28

5. CONCLUSIONS AND FUTURE WORK
With the aim of providing SVMs with explanation power, a method that converts the knowledge embedded in a
trained SVM into a representation based on rules was developed. The experiments with the rule extraction method
on artificial data sets and with databases of different domains, show high levels of equivalence between the SVM
and the extracted rule base.
 Additionally, a rule extraction method for RBFNN was developed, which uses the algorithm for constructing an
ellipsoid proposed for SVM as a core. Based on the results obtained, it can be concluded that the extraction
technique derives consistent models with the RBFNN without any previous requirement from either the used
training regime or its architecture.
 The possibility of adding prior knowledge expressed as symbolic rules in a SVM was established using schemes
based on virtual examples, which are generated from the associated vertices with hyper-rectangles related with the
rules.
 Given the achievements of this work, it is possible to raise new problems. For example, it would be interesting to
study ways of extending the rule extraction methods to regression problems. If this were achieved, a more versatile
technique would be available for a larger number of cases. Another question currently emerging is the study of the
possibility of using another representation language to express the new model, such as fuzzy rules generated by
ellipsoids.

References

[1] Andrews R., Diederich J. and Tickle A. (1995). A survey and Critique of Techniques for Extracting Rules from

Trained Artificial Neural Networks. Knowledge-Based Systems. 8(6):373-389.
[2] Angulo, C. (2001). Matlab SVM/K-SVCR Toolbox. http://webesaii.upc.es/usr/cecilio/software.htm.
[3] Blake, C.L. and Merz, C.J. (1998). UCI Repository of Machine Learning Data-Bases. University of California,

Irvine. http://www.ics.uci.edu/~mlearn/MLRepository.html.
[4] Brotherton, T., Chadderdon, G. and Grabill, P. (1999). Automated Rule Extraction for Engine Vibration

Analysis. Proc. IEEE Aerospace Conference. 3:29-38.
[5] Cortes C. and Vapnik V. (1995). Support-Vector Networks. Machine Learning. 20:273-297.
[6] Craven M. and Shavlik J. (1997). Using Neural Networks for Data Mining. Future Generation Computer

Systems. 13:211-229.
[7] Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and other kernel-based

learning methods. Cambridge University Press.
[8] Duda, R., Hart, P. and Stork, D. (2001). Pattern Recognition. Second Edition. John Wiley & Sons, Inc.
[9] Fu, X. and Wang, L. (2001). Rule Extraction by Genetic Algorithms Based on a simplified RBF Neural

Network. Proc. of the Congress on Evolutionary Computation. 2:753-758.
[10] Huber, K. and Berthold, M. (1995). Building Precise Classifiers with Automatic Rule Extraction. Proc. IEEE

International Conference on Neural Networks. 3:1263-1268
[11] Kecman, V. (2001). Learning and Soft Computing. Support Vector Machines, Neural Networks and Fuzzy Logic

Models. MIT Press.
[12] Ma, J. and Zhao, Y. (2002). OSU Support Vector Machines Toolbox, version 3.0.

http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[13] McGarry, K., Wermter, S. and MacIntyre, J. (2001). Knowledge Extraction from Local Function Networks.

Proc. International Joint Conference on Neural Networks. 765-770
[14] Mitra, S., Pal, S. K. and Mitra, P. (2002). Data Mining in Soft Computing Framework: A survey. IEEE

Transactions on Neural Networks. 13 (1):3-14.
[15] Moody, J. and Darken, C.J. (1989). Fast Learning in Networks of Locally-Tuned Processing Units. Neural

Computation. 1:281-294.
[16] Nabney, I. and Bishop, C. Netlab Neural Networks Software. http://www.ncrg.aston.ac.uk/netlab.
[17] Núñez, H. (2003). Hybrid Learning Systems based on Support Vector Machines and Radial Basis Function

Neural Networks. Ph.D dissertation. Technical University of Catalonia. Spain.
[18] Orr, M. Radial Basis Function Networks. http://www.anc.ed.ac.uk/~mjo/rbf.html.
[19] Poggio, T. and Girosi, F. (1990). Networks for Approximation and Learning. Proceedings of the IEEE.

78:1481-1497.
[20] Schölkopf, B., Burges, C. and Vapnik, V. (1996). Incorporating Invariances in Support Vector Learning

Machine. Lecture Notes in Computer Science. 1112:47-52.
[21] Setiono, R., Leow, W. and Zurada, J. (2002). Extraction Rules from Artificial Neural Networks for Nonlinear

Regression. IEEE Transactions on Neural Networks. 13(3):564-577.
[22] Tickle, A., Maire, F., Bologna, G., Andrews, R.; Diederich, J.: Lessons from Past, Current Issues, and Future

Research Directions in Extracting the Knowledge Embedded Artificial Neural Networks. In: Wermter, S. and
Sun, R. (Eds): Hybrid Neural Systems. Springer-Verlag.

[23] Vapnik, V. (1998). Statistical Learning Theory. John Wiley & Sons, Inc.
[24] Zien, A., Rätsch, G., Mika, S., Schölkopf, B., Lengauer, T. and Müller, K.-R. (2000). Engineering Support

Vector Machine kernels that Recognize Translation Initiation Sites. Bioinformatics. 16(9):799-807.
[25] Zhang, X. (1999). Using Class-Center vectors to build Support Vector Machines. Proc. IEEE Conference on

Neural Networks for Signal Processing. 3-11.
[26] Zhao, Q. and Principe, J.C. (1999). Improving ATR Performance by Incorporating Virtual negative examples.

Proc. International Joint Conference on Neural Networks. 5:3198-3203.

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.ncrg.aston.ac.uk/netlab

	Facultad de Ciencias. Universidad Central de Venezuela. Cara
	References

