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Abstract

In this paper a method for the scheduling of real-time tasks on heterogeneous multiprocessor systems-on-
a-chip for embedded applications is presented. It is based on the partition of tasks in subtasks related by
precedence and executed in different processors. The processors are linked by a common bus and therefore
no delays due to interprocessors network communications are present. An extensive experimental evaluation
is presented and the method is compared to other solutions recently proposed.
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Resumen

En este trabajo se presenta un método para la planificacién de tareas de tiempo real en sistemas
multitarea-multiprocesador integrados para aplicaciones embebidas. Se basa en la particiéon de subtareas
relacionadas por precedencias que ejecutan en distintos procesadores. Los procesadores estan comunica-
dos por un canal comin y por lo tanto no hay demoréas en la transmisién de mensajes asociadas a la red.
Se presenta una evaluacién experimental comparativa con otras soluciones propuestas recientemente en la
literatura.

Palabras Claves: Sistemas de Tiempo Real, Planificacion, Sistemas embebidos

1 INTRODUCTION

The development of new chips, often called system chips because they contain full systems, has been made
possible by increased integrated circuit yields [11]. As a consequence, the last decade has seen important
advances in the development of specialized multiprocessor systems-on-a-chip used in embedded applications
in cars, trains, space probes, alternative energy sources, networks, mobile computing, appliances, etc. The
increased integration and speed of hardware and the low consumption of energy make these kind of devices
very attractive. On top of that, they can be reconfigured very easily making the design process more efficient.



Field Programmable Gate Arrays (FPGA) can be used in the implementation of embedded systems since
they allow the incorporation of many functions in quite a simple way. However, their use is limited by some
inherent characteristics like the cost per unit, the speed of operation, the energy consumption, the interface
with the external world, etc. Another problem with FPGA is that their reuse in other applications different
from the original one is not as simple as changing the flash ROM of a microprocessor.

Traditional micro-controllers have improved their performance through the use of increased number of
pipelines, increased number of stages within the pipeline, bigger and faster cache memories or simply by
speeding up their frequencies. The first two possibilities are not very appropriate in certain cases of hard
real-time systems because they introduce an important degree of uncertainty in the determination of the
worst case execution times. The last one implies more energy consumption, a fact very often not acceptable.

Very Large Instruction Word (VLIW) processors, used for instance by Texas Instruments, are another
option for embedded systems. The main idea in this architecture is to process several instructions in parallel.
To do this, the processors have specialized ALUs, each one connected to a data bus and a program bus.
Some algorithms, e.g. Fast Fourier Transform (FFT), are well suited for this kind of parallelism. However,
since they are very specialized, more general applications require their combination with general purpose
microprocessors. This leads to the integration on a chip of multiple microprocessors linked by a common bus
with access to shared RAM, ROM and I/0O peripherals. An example of this kind of chips is the SMJ320C80
from Texas instruments. It has a 32-bit RISC processor with four 32 bits Digital Signals Processors (DSP)
in parallel [2]. This chip was developed to work as a dedicated DSP in video and sound applications, for
example noise cancellation in sonar systems. Another example is the Janus system [9]. It has two processors
and it was designed to work in the power train systems of internal combustion engines. Its development
was guided by the need to provide an efficient control of the fuel injection to maximize torque, minimize
pollution from combustions emissions and reduce fuel consumption.

The challenge to the real-time application designer is how to exploit the increased capabilities of those
systems. In this search, the scheduling of sets of real-time tasks plays a central role. The system can be
analyzed in a traditional way with tasks assigned to processors following some heuristic restricted by the
system constraints [13]. This assignation problem is NP-complete an has no solution in polynomial time.
However, in embedded systems, the tasks are usually constrained to execute in the processors in a certain
order. In fact, they can be seen as composed of several subtasks related by precedence. These subtasks,
can be scheduled in the processors according to different scheduling policies like Earliest Deadline First,
Rate Monotonic, Deadline Monotonic and even Round Robin. In general, the execution of subtasks in DSPs
is non-preemptable so the DSP looks like a critical section in the sense used in [14]. In [3, 4] Rajkumar
introduced the Multiple Priority Ceiling Protocol (MPCP) and the Distributed Priority Ceiling Protocol
(DPCP) for the scheduling of tasks with shared resources in generic multiprocessors systems. Because of its
generality that does not take into account the particularities of the considered architecture, the method is
sometimes quite pessimistic.

In [5] a co-scheduling approach is introduced. Many tasks share multiple resources. The basic idea
consists in dividing the tasks in chunks and to assign to them partial deadlines in such a way that the whole
system is schedulable. In the paper, the authors propose this mechanism for the scheduling of a processor
and its disk controller.

In [1], the authors improve the analysis proposed by Rajkumar by assembling two queues. In one of
them, the tasks that use the dedicated processor wait till they have the opportunity to execute. In the other
one, tasks that do not use the dedicated processor are enqueued until they gain access to it. They use the
Hyperbolic Bound to test the schedulability of the system [6].

In this paper, a method based on the partition of the tasks in subtasks related by precedence is presented.
Successive subtasks are executed in different processors. The release times and deadlines are adjusted in
such a way that the release of each subtask precedes its deadline and this, in turn, precedes the release of its
successor. The Earliest Deadline First policy, EDF, is used for the schedulability of the main processor and
the Deadline Monotonic policy, DM, for the auxiliary ones. The method is compartively evaluated against
other scheduling methods.

The rest of the paper is organized in the following way. In Section 2 the model of the two processors system
is presented. In Section 3 related work is discussed. In Section 4 the Precedences Method is introduced and
formalized. In Section 5 the extension for more than two processors is presented. In Section 6 the method
is compared to previous solutions and finally in Section 7 conclusions are drawn.



GPP

Figure 1: Architecture of the system

2 SYSTEM MODEL

In this paper, an architecture of heterogeneous multiprocessors on-a-chip is considered. The processors
share the memories and the I/O devices and are linked by a common bus so that no network delays due to
interprocessor communications are present.

Only two processors are considered first. One of them will be a General Purpose Processor (GPP) and
the other one a dedicated processor, for instance a Digital Signal processor (DSP). Later this limitation will
be relaxed and the general scheduling policy will be stated for more than two processors. Tasks running on
the DSP are non-preemptable. A Remote Procedure Call (RPC) paradigm will be used to implement the
communications among subtasks running on different processors. The RPC is issued by the GPP. Since its
real-time kernel has to prevent a task from making an RPC if the DSP is busy, a waiting queue for the DSP
is generated by the kernel to hold the tasks while they wait to execute in the DSP.

Tasks are periodic and independent. S(m) = {r;} = {C;,T;, D;}Denotes the set of tasks 7;, i =
1,2,...,m.

Each task 7; can be partitioned in subtasks 7;;. S*(m) = {7;} denotes the set of subtasks 7;;, i =
1,2,...,m, j = 1,2,3, in the case of a two processors system. The subtasks are ordered by precedence
relation, 751 > T2 > Ti3. Cj; denotes the worst case execution time of the subtask j of task 7. If Cj3 = 0, the
task is said to be GPP-only, which means that it doesn "t make any RPC to the DSP and can be executed
without being blocked by it. If C;2 > 0, the task is said to be a DSP task.

The utilization factors for the main processor and the auxiliary one are computed in the following way:

< Cq + C; " C;
Uspp =Y % Upsp = T (1)
i=1 ¢ i=1 "

In Figure 1 the architecture of a two processors system with three tasks is depicted. Nodes in the graph
represent the subtasks, notated 7;;, and the directed arcs represent precedence relations. Two of the tasks
are DSP and one is GPP-only

3 PREVIOUS WORK

The problem of scheduling multiprocessors on different chips has been studied in many papers. When tasks
constrained by precedence relations are executed in different processors, the communication delays and the
schedulability of the interprocessor network, a real-time subsystem itself, have to be taken into consideration.
In the case of processors integrated on a chip, this problem does not exist because the different processors
sharing the RAM have immediate access to data produced by other processors.

Since the subtask running in the DSP is non preemptable, the processor can be considered as a critical
section in the sense use in [14]. The system can be analyzed following the proposal of Rajkumar et al with
the DPCP in [3, 4]. In this case, the schedulability test is:

i—1
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where B; is computed as:
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This approximation is not convenient because the execution time in the DSP affects every task, even
those that do not use the DSP. The bound is therefore quite pessimistic and many feasible systems are
deemed to be non-schedulable by this method.

In [1], the proposal of Rajkumar is improved by assembling two scheduling queues, one for the DSP
tasks and the other one for the GPP-only ones. The requests to use the DSP are implemented by means
of a blocking primitive that suspends the task in a waiting queue. The waiting task with higher priority is
activated by the DSP once it finishes the execution of the current task. GPP-only tasks run independently
of the DSP whenever they are ready and have priority enough to access the GPP. In this way, only the tasks
that use the auxiliary processor can be blocked by lower priority tasks that use it too.

The blocking time of a task can be computed considering the longest execution time of the lower priority
tasks plus the execution of all the higher priority ones that may run in one period of the task under
consideration. So B; is computed as:

(3)
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Once the blocking time for each task is calculated the schedulability can be tested with the traditional
bound of Liu and Layland [7], by means of the Hyperbolic Bound (HB) [6] or by means of the Response
Time Analysis (RTA) [10].

This approximation improves the possibilities of differentiating feasible from unfeasible systems because
the blocking on the DSP is considered only for tasks that use it. It still has the limitation that, although it
is a two- processors system, the test is done as if only one processor were available.

In [12] two scheduling methods for the synchronization of processes in distributed systems are presented.
The time that a process is waiting for a response from another process is called external blocking. A
scheduling algorithm based on the RTA divides the tasks in two independent parts, before and after the
external blocking. While the first part has a release time equal to 0, the second one has a release jitter
which is equal to the external blocking. Although the proposition provides an interesting way to analyse the
feasibility of the system, the schedulability of the second processor is not discussed.

(4)

4 THE PRECEDENCES METHOD

The Precedences Method (PM) introduced in this paper to analyze the feasibility of the system divides
each task in subtasks ordered by precedence relations. A successor subtask cannot be executed until data
produced by its predecessor is available. In what follows it will be assumed that this takes place when the
predecessor finishes its execution. The release times and deadlines of each subtask are selected in such a way
that the precedence related subtasks can be analyzed as independent ones. In order to do that, for each 7
a release time r;; and a deadline d;; must be defined in such a way that:

ri =1y < dij <11y <digeny <TGy <digea)s dige) = Di < T, (5)

It is said then that the system is coherent. The first and the third subtasks execute in the GPP while the
second one executes in the DSP. Thus, the schedulability test has to be done for each processor. The EDF
policy is used in the GPP and the DM policy in the DSP. As in [1], a DSP task that cannot access the DSP
is blocked and waits in a special queue until it has priority enough (shortest relative deadline) to gain access.
When the task that is actually running on the DSP finishes its execution, it awakes the highest priority
task present in the waiting queue. Since the scheduling in this auxiliary processor is non-preemptable, it is
necessary to bound the amount of time that a task may remain in the waiting queue.

The scheduling of the DSP can be established by means of the following:

Theorem 1: A set of periodic, independent, non-preemptable tasks S(m) is DM schedulable if and only
if:

i1
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Proof: Each task meets its time constraint if and only if before its deadline it finds time enough to
execute itself (first term), to withstand the blocking of tasks of lesser priority (second term) and to give way
to task of higher priority (third term).O]

To apply Theorem 1 to the determination of the feasibility of the auxiliary processor, it is necessary
to establish an appropriate deadline for each subtask. Since in the main processor the tasks are executed
following EDF, the latest moment in which a subtask running on the DSP can finish its execution and still
leave enough time for the last subtask of the task to end before its deadline is given by:

dia = D; — Cj3 (7)

Once the deadlines are established for the subtasks that run on the DSP, they are ordered by increasing
values and the schedulability test following Theorem 1 is made. If the DSP is not schedulable, the system is
not schedulable. If the DSP is schedulable, it is necessary to test the feasibility of the GPP.

In the schedulability analysis of the GPP, the precedence relations and the different releases and deadlines
of the subtasks must be taken into account. In [8] a sufficient condition for the schedulability by EDF in
systems where the tasks releases and deadlines are not synchronous with their periods is given: S(m) is
schedulable by EDF if Vh =1,...,m, Vg =1,...,m, such that r, <ry, dy < dg,

Z Cr<dp—ry (8)

Tk <rg,dip<dp

Based on this result it is possible to study the feasibility of the GPP. It is necessary to determine for each
one of the subtasks running on it, the release times, r; 1 and r; 3, and the deadlines, d;; and d;3. Establishing
the deadline of the last subtask is simple because it has to be equal to the deadline of the task.

For the first subtask, the deadline is computed from the scheduling condition of the second subtask. In
fact the deadline for the first subtask is the latest instant at which the second part has to be ready for
execution in order to meet its deadline.

i1
. t
Vi=1,2,...m dj =diap —least t|t =Cip + h:z'r-{-li:.(..,m{ohz} + JZI Cio [i-‘ 9)

For the release times of each subtask the earlier instant at which it may be ready for execution is chosen.
In the case of the first subtask, it is the release time of the task. r;; and r;3 are computed in the following
way:

Vi=1,...,mVj=23 rij = Tij—1) + Cigj-1) (10)

Once the release times and deadlines are established, the schedulability conditions can be tested. if all
the subsets are schedulable the set S(m) is schedulable.

The complexity of the algorithm is O(mT,) for the auxiliary processor and O(p?)for the main one, where
p is the number of tasks after the transformation.

5 EXPERIMENTAL EVALUATION

In this section the results of extensive simulations made to compare the Precedences Method introduced in
the previous section with approaches proposed by other authors are presented. In the first set of simulations,
the same specifications established in [1], although limiting the number of tasks to 10, were used, namely :

e Tasks” periods were chosen randomly between 10 and 1000.

e Execution times for the tasks were selected in such a way that the total utilization factor of the system
(GPP-+DSP) fall in the interval (0.01, 0.99].

e DSP tasks represented, on the average, 80% of the total.

e The execution time of the task in the DSP was selected to be between 10% and 80% of the total
execution time of the task.
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Figure 3: Difference between percentages of systems schedulable by PM and GAB/HB.

With this conditions 10° sets of tasks were generated and their schedulability tested by the method proposed
in [1] by Gai, Abeni and Buttazzo using the Hyperbolic Bound (GAB/HB), and by the Precedences Method
(PM). The percentages of the total number of sets that each method detect as schedulable were determined
and their difference plotted vs the total utilization factor in Figure 2.

As can be seen up to an utilization factor of 0.3, the two methods produce similar results. In the interval
[0.3, 0.75] GAB/HB works better but from 0.75 on, PM outperforms it.

However, the previous results were obtained under the rather restricting condition that the total utiliza-
tion factor is, at most, 1, disregarding the fact that two processors on the chip allow higher total utilization
factors. Thus, a second set of simulations were prepared varying both GPP and DSP utilization factors
between 0.01 and 0.99. For each pair (Ugpp,Upsp), one hundred systems were randomly generated with
periods selected between 10 and 1000. In Figure 3, the difference between the percentage of systems detected
as schedulable by each method was plotted for each pair.

As can be seen, as the GPP s utilization factor approaches 1 and the utilization factor in the DSP is close
to 0, the Precedences Method detects a higher number of schedulable systems. This is simply explained by the
fact that GAB/HB works with a fixed priorities policy which is not good at high utilization factors, whereas
PM uses EDF. As the DSP “s utilization factor is incremented, the difference is reduced to approximately
25% when the DSP is around 0.3. As both utilization factors decrease towards 0, the difference between the
two methods is not significant.
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Figure 5: Difference between percentages of systems scheduled with PM and Kim “s method.

In Figure 4 the comparison is made between the PM and GAB using RTA instead of HB. Since it gives
a necessary and sufficient condition for the schedulability of the system, it is natural that the difference
between the two approaches is lower than before. However, in high CPU utilization factors there is still a
clear advantage in favour of the Precedences approach.

Figure 5 shows the difference between the percentage of systems schedulable by PM and by the first
method proposed by Kim. In this case, the release jitter was considered to be equal to the B term computed
as in [1]. As can be seen, the result is quite similar to the one obtained with GAB/ RTA. As previously,
there is a clear cut in favour of PM whenever the utilization factor is high.

6 GENERALIZATION TO MULTIPLE PROCESSORS ON A CHIP

In this section the generalization of the previous results is described. The method proposed up to this point
is capable of analyzing the schedulability of two processors on a chip. However, it is possible that more
than two processors are integrated on a chip (e.g. the Texas Instruments SMJ320C80) and that the tasks
execute in them on a predefined order. In such cases it is quite straightforward to generalize the method.
The algorithm for doing so is presented in Algorithm 1.



Algorithm 1 Schedulability Analysis for more than 2 processors

1. Divide each task in subtasks and allocate them to the proper processor.

2. Deadlines to the different subtasks are computed as follows:

(a) The last subtask has the deadline of the task.
(b) If the subtask s successor is allocated to a non-preemptable processor then:
i—1
. t
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(c) If the subtask “s successor is allocated to a preemptable processor then:
Vi,j  dij =dijp1 — Cijpa
(d) In the case that a subtask has more than one successor, deadlines are computed following cases
(b) and (c) and the minimum is chosen.

3. Release times of the different tasks are computed as follows:

(a) The first subtask has release time equal to the task release time.

(b) If the subtask has a predecessor:
Vi,j  rij=rijo1+ Cija

(c) If the subtask has more than one predecessor, the greatest release time is chosen from the possi-
bilities computed following (b).

4. To test the schedulability of the system, each processor has to pass the scheduling test. In the case
of a non-preemptable processor, Theorem 1 should be applied. In the case of a preemptable processor
condition 8 should be used.

7 CONCLUSIONS

The new trend in embedded systems with multiprocessors on a chip requires the use of new scheduling
paradigms. The Precedences Method presented in this paper allows a simple implementation of high utiliza-
tion factor in the different processors.

Earliest Deadline First and Non Preemptable Deadline Monotonic scheduling policies for the different
processors are simple to implement. The computation of the release times and deadlines for each subtask is
quite straightforward and the generalization to more than two processors is quite natural.

PM was simulated and tested against other methods proposed in the literature for the case of two
processors. The simulations show a clear advantage of PM when the GPP utilization factor is high. Although
the Kim s and GAB/RTA methods work quite well in all the range of utilization factors, the paradigm
proposed here outperforms them for utilization factors over 0.7.
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