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Abstract 

In order to make more flexible database access the query language SQLf has been previously proposed. One of the 
SQLf features is the use of Fuzzy Quantifiers in Having Clause. For this kind of query, three evaluation mechanisms 
have been proposed: the Naïve, the Sugeno Integral Heuristics based and the Alfa-cut Derivation based. We present 
in this paper a formal performance study of these three mechanisms. This study has been made using a SQLf 
prototype build on top of a RDBMS. 
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1. INTRODUCTION 
The problem of database fuzzy querying not is only a semantics issue but also a practical reality. The interest of 
some previous works has been to provide efficient evaluation mechanisms for fuzzy querying language SQLf [[1], 
[2], [3], [6]]. In case of fuzzy quantified queries, Bosc et al [[1]] have presented a strategy based in Sugeno Integral 
properties for improve query evaluation, we name it Sugeno Strategy. On the other hand, Tineo [[6]] has presented a 
strategy based in the distribution of the α-cut operator for evaluating fuzzy quantified queries, we name it 
Derivation Strategy. As ever, it is possible to apply an intuitive strategy pervaded of none improvement, we name it 
the Naïve Strategy. In this paper, we present the study of these strategies by mean of experimental proofs. We hope 
to determine which strategy gives the best performance and what are the conditions that ensure such behavior. 
We present a system performance analysis that is based in experimentation and use of statistics models [[5]]. For so 
doing, we wil l make a design of experiments. As ever, the goal of this design will be to obtain the maxim of 
information with the minim quantity of experiments. The analysis of such experiments will lead us to distinguish the 
effects of factors that may inside in the system performance.  

2. EVALUATION MECHANISMS 
We consider the SQLf querying structure: select t A from R group by A having Q are fc. Being t a threshold 
associated with the query, A an attribute (attribute li st) of R relation (relation li st), Q a fuzzy quantifier, and fc a 
fuzzy condition. This query returns the fuzzy relation Rf on {a / (∃x∈R / x.A=a) ∧ (µ(Q(Xa,fc))≥ t) }, being the 
membership degree of each element a: µRf(a)= µ (Q(Xa,fc)) (the truth degree of fuzzy quantified sentence Q Xa’s 
are fc), where Xa = {x∈ R / x.A=a}. The sentence Q Xa’s are fc is interpreted with the Yager’s decomposition [[7]] 
interpretation. For example we may address a query to the employee relation of Table 1: 

Table 1. Extension of EMP(#emp, e-name, salary, job, age, #dep) 

#emp e-name Salary Job Age #dep 
10 Martin 2000 K1 40 1 
22 Calvin 1000 K4 38 1 
78 Luther 1500 K2 50 1 
41 Johnson 1200 K3 40 2 
35 Smith 1000 K3 39 2 
90 Peters 1200 K2 41 2 
56 Anderson 1500 K2 40 3 
82 Dobson 1000 K4 36 3 
64 Mc Dowell 2000 K1 50 3 

 
If we want to find the departments where most of the employees are about 40 years we may use the SQLf query Ψ: 

select 0.5 #dep from emp group by #dep having most_of age = about40. 
Being  most_of and about40 the fuzzy defined in Fig. 1. 
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Fig. 1. Fuzzy Terms Membership Functions. At left, the  proportional increasing quantifier most_of. At the 
right side, the fuzzy predicate about40 that represents ages around 40 years old 

According to the intended semantics of fuzzy quantified queries, we may compute the solution of the example query 
as Table 2 showns.  



 
Table 2. Computation of Ψ query solution. 
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As the query specify an user desired threshold, the result set contains only those elements having satisfaction degree 
greater or equal to the threshold. We obtain finally Table 3.    

Table 3. Result of Ψ query 

#dep Membership degree 
1 .5 
2 .8 

 
The main idea of the studied mechanisms is to allow adding fuzzy querying capabilit ies on top of an existing 
RDBMS. Such mechanisms perform fuzzy query evaluation on the result of an underlying regular query addressed 
to the RDBMS. In this context a theoretical measure of mechanisms behavior is the number of accessed database 
rows. Anyone may think that whenever more rows are accessed more time is spent. Thus evaluation mechanisms 
have been proposed in order to keep low the number of accessed rows y query evaluation. Nevertheless, for so doing 
selection criteria may be of high complexity. Therefore it is necessary to perform an experimental study to show 
whether such mechanisms have or have not better performance than naïve solution. 
Naïve Strategy[[1],[2]] consists in a program scanning the whole database relation and computing the satisfaction 
degrees. For previous example query, Naïve strategy will make all the computation shown in Table 2. We would 
like to avoid the whole database relation scanning. As ever, row access in expensive in time. Moreover, in fuzzy 
queries, satisfaction degree computation is also time consuming. 
Sugeno Strategy[[1]] consists in scanning the whole table as in Naïve one, but with a halting conditions for each 
group. Conditions involve the minimum number of elements LB satisfying the fuzzy quantifier with a degree greater 
or equal than. In the example, for each group LB is N*2/3, being N the group cardinality. The failure condition 
when the number of group’s scanned rows with satisfaction degrees under the desired threshold is greater than N-
LB. In this case remaining rows in the group are ignored and the grouping attribute value is not part of the solution. 
In the example only the row of #emp=56 could be avoid in computation. We can see that this strategy avoids some 
rows access. The benefit of this technique is that i t does not use any complex selection criteria. On the other hand 
the number of accessed rows depends of rows retrieving ordering. If fact, in worst case all rows are accessed despite 
the group doest not meet the threshold for satisfaction degree.  
Derivation Strategy[[6]] consists in scanning the rows selected by a regular query intended for retrieving only those 
rows whose satisfaction degree is greater or equal to the satisfaction threshold and is member of a group containing 
at least LB such rows. This strategy avoids extra computation. In the example, only the rows of #emp=10, 22, 41, 35 
and 90 are scanned. This strategy only accesses rows that are really relevant for satisfaction degree computation of 
groups that do meet the threshold. Regular query addressed to the RDBMS contains derived crisp selection criteria. 
The advantage of using such criteria is that we may think that RDBMS will make use of any optimization 
mechanism inside it. Nevertheless such criteria may be of high complexity. It may have a bad influence on total 
spent time. 
Due to difference presents in these strategies for fuzzy query evaluation, it is an open issue their behavior in term of 
total spent time. As we have mentioned before, it is the main contribution of work presented in this paper.    



 
3. EXPERIMENTS’  DESIGN 
The performance evaluation will be made using formal model statistic method. The idea of this method is to obtain a 
model that explains the influence of several considered factors in the observed values from experiments. For this 
kind of study we must establish the data that will be used for the experiment, the answer variables that wil l be 
measured and the factors that wil l be taken in account. Furthermore, we must propose the different experiments that 
wil l be performed. These experiments are determined by the different considered factors and the different levels for 
each factor. Finally, an initial model must be proposed in order to make the statistic analysis with the experimental 
results. 
The queries will be addressed to a database relation. This relation will contain the experimental data for our study. 
Therefore we must define the scheme and the extension of this database relation. 
We don’ t want to use a complex relation structure; rather we wil l propose a minimal structure. We will define the 
relation scheme with one attribute that may be used as primary key, another attribute susceptible of a fuzzy 
treatment and finally an attribute that may be used for grouping. With these criteria we define the relation 
employee(identification_card,age,departament_code). 
The relation extension is generated as follows: Values for identification_card are sequentially generated numbers. 
Values for age are uniform random generated numbers between 18 and 65. Values for deparment_code are uniform 
random generated numbers between 1 and 7.  
The variables that are observed in the experiments are called answer variables. They usually are measures of the 
system behavior. In our case, we observe the time. The time of response refers to the total expend time of processing 
the fuzzy query. In other words is the time that the user waits for the complete system answer. This time is measured 
by the SQLf system prototype. 
The number of possible experimental studies is infinite. Therefore we must fix some conditions in our study in order 
to limit it . However, we must ensure that the experimental study to be as general or representative as possible. In our 
case of study we will fix all query parameters except the fuzzy quantifier selectivity. We wil l use a query li ke: select 
0.5 departament_code from employee group by department_code having <fuzzy_quantifier> are age=Around40. 
We choose 0.5 as threshold. This chose allows us to take no care of calibration as a factor due to the following 
reasons: Fixed a value for the calibration, the selectivity of the query will be determined by the used fuzzy predicate 
and quantif ier. The extreme values 0 and 1 lake of sense for selection, the level 0 is equivalent to do not establish a 
calibration, and the level 1 is equivalent to perform a regular query. The use of a middle value is imposed, we prefer 
0.5 because it is the hope of a uniform variable into the unit interval.  
In order to isolate the problem of strategy performance for quantifiers, we use a single fuzzy predicate. We also fix 
the fuzzy predicate as Around40 in Fig. 2. 
Fuzzy quantifiers are classified in six categories. The classif ication obeys to the fuzzy quantifier’s nature (absolute 
or proportional) and its membership function behavior (increasing, decreasing or unimodal). Nevertheless, fuzzy 
quantified sentences using any kind of quantifier may be transformed into sentences using only increasing 
proportional  quantifiers. This argument has been used in previous works in order to simplify the study of fuzzy 
quantified sentences. 
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Fig. 2. Around40 Fuzzy Predicate. This user definition is not centered in 40. It was chosen for convenience of 
equal number of elements in the 0.5-cut and out of it for experimental data. 

The experimental factors are those variables whose values are changed in the experiments in order to determine their 
effect in the answer variable. Factors may take different values. For the experiments’ desig n it is necessary to choose 
some possible values than will be used for each factor. These chosen values are called the factors’ levels. The 
combination of factors and levels used in the experiments will determine the used kind of design. Factors and levels 
of our study are described hereafter. 



 
The objective of this study is to establish a comparison of the proposed strategies based in experimental results. We 
expect this factor to have a high influence in the performance of the query evaluation. Its levels are: Naive Strategy, 
Derivation Strategy and Sugeno Strategy. 
As ever, the volume of data is a factor that must be considered. Despite in the different strategies the proportion of 
accessed registers does not depends on how large is the database, it is reasonable to think that an interaction might 
exists between the volume factor and the strategy factor. We define three levels for the volume factor. They are: low 
(1000 rows), middle (10000 rows), and high (100000 rows). 
As we have said before, we have restricted our experiments to increasing proportional quantifiers. We define three 
quantifiers to be used in the experiments, they are represented in Fig. 3. These quantifiers wil l establish the three 
levels of the quantif ier factor. We think that these three levels are representative of the different scenarios of 
selection imposed by the fuzzy quantifiers. 
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Fig. 3. Fuzzy Quantif iers Membership Functions. Left: HalfOf quantif ier, the least selective. Center: MostOf 
quantif ier, the middle in selectivity level. Right: QuasiAll Quantif ier the most selective of considered quantifiers. 

We have chosen a full factorial design for our experimental study. That is, we wil l consider all the mentioned factors 
and all their levels. This kind of design allows study the influence of each factor and all theirs interactions. 

Table 4. Sumary of Factors. Each factor is denoted by a Symbol. Also shows factors’ levels.  

F Symbol Name lf Level 1 Level 2 Level 3 
1 E Strategy 3 Naïve Derivation Sugeno 
2 V Volume 3 Low Middle High 
3 Q Quantifier 3 Half Of Most Of Quasi All 

 
The proposed experimental model for our study is: 
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Being: 
− ijky   the observed value for levels i, j, k of factors E, V and Q, respectively. 

− ...y  the arithmetic mean of the observed values of all experiments. 

− mF   the effect of the factor F  at the level m , { }QVEF ,,∈ .  

− mmFF ′′′′′′  the effect of the Interaction between factors F ′ and F ′′  at the levels m′ and m ′′ , respectively, 

with different { }QVEFF ,,, ∈′′′ . 

− ijkEVQ  the effect of the Interaction between all the factors E, V and Q for the levels i, j and k respectively. 

4. EXPERIMENTAL RESULTS 
We have performed the experiments with the design presented in pervious chapter. The fuzzy queries where 
addressed to a SQLf prototype that we have developed [[4]] on top of Oracle 8i DBMS. This prototype allows the 
use of any of the three evaluation mechanisms. The prototype computes the total spent time for the evaluation of the 



 
fuzzy query. We use (in dedicated mode) a SUN Enterprise 450 architecture server of two 250 MHz. processors 
with 512MB RAM, four 4GB SCSI hard disks and Solaris 8. 
With the same environment conditions, we have run three times the experiments, obtaining similar results. We have 
made a test of standard deviation of these three replicas, showing that is not relevant to consider replicas in the 
model. Therefore, we only present here results of one replica. As resulting times difference is very high, we 

normalize them applying the logarithmic transformation: 


 += 1τ ijkijky ln , being τ ijk
 the observed times. 

Table 5. Logarithm Transformed Times. Experimental times have been normalized. We can see that 
transformation gives values of no more than 1 magnitude order of difference. 

Quantifier→ 
Strategy↓ Volume↓ 

HalfOf MostOf QuasiAll  

Low 0.760806 0.732368 0.779325 
Middle 2.636912 2.597491 2.568788 Naïve 
High 5.616662 5.550592 5.455107 
Low 0.792993 0.625938 0.518794 

Middle 2.614472 2.618855 2.080691 Sugeno 
High 5.782224 5.719295 5.141488 
Low 0.431782 0.285179 0 

Middle 2.102914 1.759581 0.009950 Derivation 
High 5.355642 4.011506 0 

 
We use R Statistical Software for the analysis of variance. We introduce in this tool the normalized experimental. 
Thereafter, we specify the model and inspect i t. 
The analysis is made with the statistical F distribution proof. We may observe in Table 6 (ANOVA Table) that: All 
factors, Strategy, Volume and Quantifier and their interactions have a high influence in the behavior of the observed 
value. In these cases the computed F values are very close to the tabled F values (they are ‘ *** ’ marked) .  It tel ls us 
that we may conclude about the answer variable behavior respects to the factors and its interactions, with statistics 
certainty.     

Table 6. Analysis of Variance Full Factorial Model. Asterisk marks in rows denote the relevance of the factor or 
factor interaction in explaining the experimental results. 

 Df Sum Sq Mean Sq F value  Pr(>F)  
Strategy 2 33.946 16.973 1,32E+36 < 2.2e-16 * **  
Volume 2 242.048 121.024 9,44E+36 < 2.2e-16 * **  
Quantifier 2 16.645 8.322 6,49E+35 < 2.2e-16 * **  
Strategy:Volume 4 11.765 2.941 2,29E+35 < 2.2e-16 * **  
Strategy:Quantifier 4 18.601 4.650 3,63E+35 < 2.2e-16 * **  
Volume:Quantif ier 4 8.528 2.132 1,66E+35 < 2.2e-16 * **  
Strategy:Volume:Quantifie
r 8 12.145 1.518 1,18E+35 < 2.2e-16 * **  
Residuals 54 6,93E-27 1,28E-28      

--- 
Signif. codes:  0 ̀ *** ' 0.001 ̀ ** ' 0.01 ̀ * ' 0.05 ̀ .' 0.1 ̀  ' 1 

 
In order to show the influence of factors, we plot the observed results as functions of each couple of relevant factors. 
Remember that we have made a logarithmic transformation of the observed data. The graphics forms will l ead us to 
understand the influence of factors. We present only interaction with Strategy factor because it is the main interest 
of this study. 
Influence in response time of Strategy and Volume interaction plot is shown in Fig. 4- We may observe there that 
the behavior of times for any strategy is increasing respect to the growth of the data volume. This result is not 
surprising at all ; we expected this influence of the volume factor as ever. The volume factor is very important in the 
explanation of the studied performance.  
On the other hand, we may remark the quasi-equal graphics of Naïve and Sugeno strategies; it is li ttle the benefit 
observed of Sugeno strategy respect the Naive one. Nevertheless, we may note a high benefit of using the Derivation 



 
strategy respect the other ones; the values for the Derivation strategy are lower than values for either Sugeno or 
Naive strategies. This tells us that the strategy factor is definitively influencing the performance of query evaluation. 
Moreover, this leads us to affirm that the Derivation strategy ensures the better performance for the query 
evaluation.   

 

Fig. 4. Influence in Response Time of Strategy and Volume Interaction. 

In Fig. 5 plot, corresponding to influence of Strategy and Quantifier interaction, once again we observe that the 
Derivation strategy presents better performance than Sugeno and Naive ones. In this interaction the behavior of the 
Sugeno strategy is different to the behavior of the naive Strategy. In case of a quantifier that imposes a more strict 
selection condition, Sugeno strategy has better performance than Naive one. The mean time for the Naive strategy 
stays constant no matter the used quantifier. It obeys to the fact that the Naive strategy takes no advantage from the 
fuzzy selection conditions. There is a clear influence of the Quantifier in answer time, it is evidenced by the graphics 
for the Sugeno and the Derivation strategies. Interaction of Strategy and Quantifier has the higher significance in 
explaining query spent time according to Analysis of Variance (Table 6).  
 



 

 

Fig. 5. Influence in Response Time of Strategy and Quantifier Interaction. 

5. CONCLUDING REMARKS 
We have made formal performance study of query evaluation mechanisms: Naïve, Sugeno and Derivation. In the 
study we have observed as answer variable the total spent time of the evaluation algorithm. This time is given by a 
SQLf prototype. 
We have limited the study to partitioned queries. This kind of query is representative enough for all fuzzy quantified 
queries because any query involving a fuzzy quantifier may be transformed into this structure. We choose the level 
0.5 as threshold for the calibration of the answers. Fixed a value for the calibration, the selectivity of the query wil l 
be determined by the used fuzzy predicate and quantifier. We prefer 0.5 because it is the hope of a uniform variable 
into the unit interval. We have also fixed the predicate under the fuzzy quantifier scope as a single predicate defined 
by a trapezium. Fuzzy quantified sentences using any kind of quantifier may be transformed into sentences using 
only increasing proportional quantifiers. Therefore we restrict the study to this kind of quantifiers. 
We have chosen a full factorial design with the factors: E: Strategy (Naive, Derivation, Sugeno); V: Volume (Low, 
Middle, High); and Q: Quantifier (HalfOf, MostOf, QuasiAll). The analysis leads us to conclude that all these 
factors and interaction are very significant in explaining observed times. 
As ever, the factor of higher influence in the performance is the Volume of data. The factor with a second high 
influence is the Strategy. It confirms the great importance of the strategy choice in query evaluation.  



 
We must remark it is l ittle the benefit observed of Sugeno strategy respect the Naive one. Nevertheless, we may note 
a high benefit of using the Derivation strategy respect the other ones. The relevance of this factor and its interactions 
with others considered factors leads us to conclude that the use of the Derivation strategy guaranties the best 
performance. 
We work now in proposing new evaluation methods for fuzzy quantified queries on top of a RDBMS. We are also 
performing tests as that presented here for others fuzzy quantified querying structures. In further works it is possible 
to study the problem of fuzzy querying with acceleration structures such as indexes and also combine these 
evaluation methods with regular query optimization techniques. Another topic of further works interest is the  
problem of the interpretation of sentences of form Q B X’s are A, its application to database querying in the context 
of SQLf, the evaluation mechanisms for queries involving this kind of sentences and the performance study of such 
mechanisms 
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