
A Fuzzy Querying System based on SQLf2 and SQLf3 
   

 
Juan Eduardo 

Universidad Simón Bolívar, Departamento de Computación,  
Apartado 89000, Caracas 1080-A, Venezuela 

jceduardo@hotmail.com 
 

and 
 

Marlene Goncalves 
Universidad Simón Bolívar, Departamento de Computación,  

Apartado 89000, Caracas 1080-A, Venezuela 
mgoncalves@ldc.usb.ve 

 
and 

 
Leonid Tineo 

Universidad Simón Bolívar, Departamento de Computación,  
Apartado 89000, Caracas 1080-A, Venezuela 

leonid@ldc.usb.ve 

Abstract 

For improving the expressive power, there have been proposed and developed several extensions of SQL. One of 
them is SQLf, a fuzzy set based extension that allows the expression of flexible queries involving user preferences. 
On the other hand, SQL has evolved into: SQL2 that incorporates relational algebra operations constrains and sub-
queries; and SQL3 that incorporates features of deductive, active and object oriented databases. In a previous work 
we have defined SQLf2 and SQLf3 as extensions of SQLf with the fuzzy set based treatment of new features from 
SQL2 and SQL3. In this paper we present a real fuzzy querying system based on SQLf2-SQLf3 that we have built 
on top of a RDBMS. This system provides a web based interface and an API. 

Keywords: Queries, fuzzy queries, database, web interface, SQL. 

 



 

1. INTRODUCTION  
The use of boolean logic restricts the treatment of imprecision or uncertainty in database systems.  The queries don’t 
get prospective results, because these queries are restrictive and they don't contemplate important elements that 
could be considered to analyze data. A solution to this problem is using fuzzy sets in databases systems in order to 
express non crisp data and gradual (or flexible) requirements. We have concentrated our efforts in the study and 
implementation of fuzzy querying languages on relational databases due to the fact that many organizations store 
their information in relational databases. 
There are some different proposals of fuzzy set based flexible querying languages, SQLf [[3]] is one of them that 
has been proposed by the research team of IRISA-ENSSAT, whose under the leadership of Patrick Bosc. SQLf is a 
fuzzy extension of the standard SQL that allows using fuzzy conditions in any place where SQL allows a regular 
one. We have adopted this proposal since 1998 [[26]] due to its desired characteristics. We have proposed some 
extensions to SQLf [[25]] and we have work in a real implementation of a flexible querying system based in SQLf 
and its extensions. We call this query system SQLfi (SQLf on Internet). 
The standard SQL has evolved due to the new technology present in database systems, ISO and ANSI organizations 
have carried out the work of updating the standards definition of SQL. The two later versions of SQL are known as 
SQL2 [[1]] and SQL3 [[20]]. The norm SQL2 incorporates some relational algebra operations, some mechanisms 
for constrains specifications and the possibilit y of subqueries use as the base relation for a query. The norm SQL3 
incorporates some features of deductive databases, active databases and object oriented databases. 
In previous works we have studied the new features of SQL2 and SQL3 determining which of theme are susceptible 
of a fuzzy treatment. These works leaded us to the definition of two extensions of SQLf, named:  SQLf2 [[10]] and 
SQLf3 [[11]], corresponding to the definiti on of fuzzy querying components based in the norms SQL2 and SQL3, 
respectively. We think that it is not sufficient to contribute to the theme of fuzzy querying proposing the theoretical 
definiti on of such languages, but also making a real implementation of them in order to allow further studies of 
behavior and development of applications.  
We have structured the present paper as follows:  Section 2 briefly presents some other' s related works, in section 3 
we present the fuzzy query languages SQLf, SQLf2 and SQLf3. On the other hand, section 4 tells how our system 
prototype has evolved throw the intervention of some collaborators. Section 5 is devoted to outline the new SQLf2 
and SQLf3 features that are implemented in the current system prototype, we omit their features proper of SQLf that 
were implemented in previous versions of the prototype. The architecture of our fuzzy querying system is shown in 
section 6. Some remarks about the used implementation tools are in section 7. Finally, we summarize and point out 
to the future in the section 8. 

2. RELATED WORKS 
Several efforts have been made by different authors in order to provide flexible querying database systems; some of 
them are the following:  
OMRON [[21]] is a processor that contains a variant of SQL with fuzzy logic and is a fuzzy information retrieval 
library based. It' s a fuzzy query interface on traditional databases [[19]]. Don' t allow fuzzy quantifiers use.  
FQUERY is an effort that adds fuzzy query functionality on a small database management system [[14]] (Microsoft 
ACCESS for Windows). Allow fuzzy quantifiers use in order to qualify criteria quantity that satisfies a query, but 
this is not allowed in partitioned or nesting queries.  
BANDINS is a project that allows data flexible representation and manipulation. Its query language is SQLf [ [3]]. 
There are some query processing mechanism [[4]][ [5]][ [6]][ [7]] and the most relevant is derivation principle 
[[6]][ [7]] because it has a less cost.  
Fukami-Umano in [[27]] proposed a fuzzy relational model. Which query language is the Fuzzy Relational Algebra. 
They propose the building of a new database engine with fuzzy querying capabilities. 
A fuzzy query language was presented by Wong-Leung in [[28]] to retrieve information by means of translation 
from a fuzzy query to a query for the database management system VAX Rdb/VMS and multicriteria decision 
making.  
ISKREOT (Intelligent System for Knowledge Representation using Expert system and Object Technology) [[18]] is 
presented in and it is front-end intelligent information interface operating through a relational database ORACLE 
with fuzzy queries. 
None of these previous works have incorporated in the proposed and developed querying systems features of SQL2 
and SQL3 with a fuzzy set based treatment 
 

3. QUERY LANGUAGES 
One of the more remarkable efforts in the creation of Flexible Querying System for Relational Databases is SQLf 
[[3]].  It is the most complete fuzzy extension [[26]] to SQL due to the diversity of fuzzy queries that allows the 
extension of all SQL constructions with Fuzzy Logic.      



 

Fuzzy queries involve fuzzy terms (atomic predicates, modifiers, connectors, comparators and quantifiers) whose 
meaning is user and context depending. Therefore a SQLf based querying system must provide a language for 
defining such terms. 
In SQLf, the querying basic block is: 

SELECT <attributes> FROM <relations>  
WHERE <fuzzy condition> WITH CALIBRATION [n|λ|n,λ] 

Semantic of this construction is cartesian product of relations involved in clause FROM, selecting those tuples that 
satisfied fuzzy condition and taking the fuzzy projection of those attributes indicated in clause SELECT. In clause 
WHERE, some logical expression can be used formed with terms defined by the user and predefined operators of 
fuzzy logic. 
The result of a query in SQLf is a fuzzy set. In clause WITH CALIBRATION, a tolerance is specified to select 
tuples, which is called calibration. In the original definition of Bosc and Pivert [[3]], the calibration is specified in 
the clause SELECT, in a later work, Goncalves and Tineo [[10]][ [11]] extended the definition with this clause in 
proof the orthogonalit y of language. Two calibration types exist: Quantitative and Qualitative.  In case of 
quantitative calibration, a maximum number "n" of answers is obtained and in case of qualitative calibration those 
tuplas whose membership value is bigger or similar to the minimum level of tolerance "λ" is obtained. 
SQLf also allows subqueries with different nesting operators. Subqueries are query structures like the basic block 
without the WITH CALIBRATION clause. Into the subqueries, attributes from the relations in the outer query may 
be used both in the SELECT and the WHERE clause. The general structure of such queries is: 

SELECT <attributes> FROM <relations>  
WHERE <nesting operator> <fuzzy subquery> WITH CALIBRATION [n|λ|n,λ] 

SQLf also has a partitioned block querying structure. In this kind of query it is possible to impose a selection fuzzy 
criterion over the groups of the partition. Such queries are: 

SELECT <attributes> FROM <relations> GROUP BY <attributes>  
HAVING <fuzzy condition> WITH CALIBRATION [n|λ|n,λ] 

Inspired in the norm SQL2, we have defined SQLf2 [[10]], an extension of SQLf that contemplates incorporation of 
fuzzy set based extensions of: relational algebra operators, integrity constraints, views definitions, support of date 
and time types, subqueries in from clause and data manipulation operations and new conditions kinds. 
On the other hand, we have created SQLf3 [[10]] as an extension of SQLf inspired in the norm SQL3. SQLf3 
includes elements of deductive databases, active databases and object oriented databases. They all wit h a fuzzy set 
based treatment. 
For simplicity and space restrictions, we don' t present here the features of SQLf2 and SQLf3 in detail. The reader is 
referred to the previous works [[10]][ [11]]. We will just enumerate the SQLf2 and SQLf3 features that where 
implemented in the built interpreter, see section 5 
 

4. PROTOTYPE EVOLUTION 
Since 1998, Tineo [[25]][ [26]] has been directing the creation of a flexible querying system to relational databases 
based in SQLf. This system has been developed on top of the ORACLE Relational Database Management System 
(RDBMS). The development has been made in the database laboratory at Simón Bolívar University and Venezuela's 
Central University.   
As all software, SQLf has experienced some iteration in its life cycle in order to increasing its functionality. Some 
times, the prototype was limited to existing technology and enhanced in a new version. 
In 1999, Borrajo and Rengifo [[2]] carried out a first prototype of an interpreter with a minimum subset of SQLf. 
This prototype was limited to the type of queries expressed with a simple block, and it was developed with certain 
built i n linguistic terms stored in a database. 
In 2000, Gutiérrez [[12]] has performed the implementation of evaluation mechanisms for SQLf. He has dealt with 
the three kinds of queries of SQLf: Basic Block, Nesting and Partitioning. This implementation was restricted to 
specific queries programmed in the code, based in a real database. 
Also in 2000 Ramírez [[24]] extended the prototype integrating the mechanisms, allowi ng interactive definition of 
fuzzy terms. So this new prototype satisfied the complete SQLf. With it, the user may use his proper database and 
define his proper linguistic terms. 
In 2001 Goncalves [[9]], extended the existing prototype of SQLf with some new characteristics defined for SQLf2 
and SQLf3. Nevertheless, Goncalves' work has been focused mainly in the theoretic definition of new extensions 
rather than the completion of the prototype. 
In 2002 Hernández, Montaña [[13]] and León, Martínez [[15]] have worked in the extension of the existing 
prototype with the new versions of the querying language: SQLf2 and SQLf3. They have implemented some of 
characteristics that had not been carried out in the previous version. 
Also in 2002 Rodríguez and León [[16]] developed an improved new prototype of flexible querying system with all 
SQLf characteristics.  This new prototype is based on Internet technology, so it’ s called SQLfi. 



 

In this paper we present the ultimate SQLfi prototype, which includes the characteristics defined for SQLf2 and 
SQLf3. This implementation provides an application program interface in order to be used in some languages as 
ASP, JSP, JAVA, among others [[8]].    
 

5. NEW FEATURES 
Current system prototype implements most the new features of SQLf2 and SQLf3 functionality. The used 
developing tools limited the selection of the implemented features. We have chosen those features that were 
compatible with the support offered by the used RDBMS, Oracle 8i.  

5.1 SQLf2 Features 
The implemented SQLf2 characteristics are: 
1. Fuzzy comparison over date type: Support of fuzzy comparison operators for Date type. 

CREATE COMPARATOR <symbol>  
ON {DATE | TIMESTAMP} AS <expression> 

2. Checks with λ calibrated fuzzy conditions: It’ s possible to having sub-queries with calibration in the clause 
CHECK of CREATE TABLE sentence. 
CHECK (<fuzzy- condition>)  
WITH CALIBRATION λ 

3. Views based in fuzzy queries: Support of creating and modifications on views defined by selection with 
calibration of some attributes of a relationship.  
CREATE VIEW <name> AS <subquery>  
WITH CALIBRATION λ 

4. Constraints that involves multiple tables: The constraints are defined by means of CHECK clause. It is sometimes 
required that a constraint involves a complete relationship or more than a relationship. 
CREATE ASSERTION <name> CHECK < fuzzy- condition >  
WITH CALIBRATION λ 

5. Unique operator over fuzzy conditions in partitioning: Unique operator indicates if duplicates exist in a fuzzy 
sub-query. 
SELECT <attributes> FROM <relations> GROUP BY <attributes>  
HAVING UNIQUE <fuzzy condition>  
WITH CALIBRATION λ 

6. Fuzzy selection control structure: Support of  case constructor with fuzzy comparisons. 
SELECT CASE (<attributes>)  
 WITH CALIBRATION λ 
{WHEN <fuzzy predicate> THEN action} 
FROM <relations> WHERE <fuzzy condition> 

7. Join over the result of fuzzy queries: Support of cross and natural join with calibration and fuzzy condition. 
(<subquery>  {CROSS | NATURAL} JOIN <subquery>)  
WITH CALIBRATION λ   

8. Theta joins operators over the result of fuzzy queries: Support of outer join with calibration and fuzzy condition 
(<subquery> [[LEFT | RIGHT | FULL] OUTER] JOIN <subquery>  
ON <fuzzy condition>)  
WITH CALIBRATION λ   

9. Queries over the table resulting from a fuzzy sub-query: Support of a fuzzy sub-query o join in FROM clause. 
SELECT <attributes> FROM <subquery>  
WHERE <fuzzy condition>  
WITH CALIBRATION λ 

10. Set operators over the result of fuzzy queries: Support of set operators for fuzzy query.  
(<sub-query> {UNION | INTERSECT | EXCEPT} <subquery>)  
WITH CALIBRATION λ 

11. UPDATE operation with fuzzy condition: Support of UPDATE operators with fuzzy sub-queries on the same 
table. 
UPDATE <table> SET <attrib>=<value> [{, <attrib>=< value>}]  
WHERE <fuzzy condition>  
WITH CALIBRATION λ 

12. DELETE operation with fuzzy condition: Support of DELETE operators with fuzzy sub-queries on the same 
table 
DELETE FROM <table> WHERE <fuzzy condition>  
WITH CALIBRATION λ 
 



 

5.2 SQLf3 Features 
The implemented SQLf3 characteristics are: 
1. Fuzzy predicates on complex structures: Definition of fuzzy predicates on complex structures and datatypes 

defined by the user. 
CREATE FUZZY PREDICATE <name> ON <tuple type> AS <fuzzy condition> 

2. Triggers with fuzzy conditions: Support of fuzzy trigger with components of traditional trigger (an action and a 
condition) viewed as fuzzy extension. 
CREATE TRIGGER <name> … WHEN (<fuzzy condition>) WITH CALIBRATION λ {<action>}  

3. Fuzzy conditions in control structure IF: Fuzzy extension of IF sentence of the language procedural. 
IF <fuzzy condition> THEN  {<action>}  
[{ELSEIF <fuzzy condition> THEN  {< action >}}]  
[ELSE  {< action >}]  
WITH CALIBRATION λ  
END IF 

4. Fuzzy conditions in control structure FOR: Fuzzy extension of FOR sentence of the language procedural. 
FOR <result> AS <fuzzy query> DO <action> END FOR 

5. Fuzzy conditions in control structure WHILE: Fuzzy extension of WHILE sentence of the language procedural. 
WHILE <fuzzy condition> DO {<action>} WITH CALIBRATION λ END WHILE 

6. Fuzzy conditions in control structure REPEAT: Fuzzy extension of REPEAT sentence of the language 
procedural. 
REPEAT {<action>} UNTIL <fuzzy condition> WITH CALIBRATION λ END REPEAT 

7. Fuzzy quantifiers FOR SOME and FOR ALL: To extend FOR ALL and FOR SOME so that they operate on 
fuzzy sub-queries. 
SELECT <attributes> FROM <relations>  
WHERE [FOR SOME | FOR ALL] <attribute> <fuzzy subquery>  
WITH CALIBRATION λ 

6. SYSTEM ARCHITECTURE 
For building the fuzzy querying system, we have used a three layers’ architecture (Fig. 1). The lowest, data layer, is 
the RDBMS. The middle, logical layer, is an interpreter of SQLf2-SQLf3. The upper layer is the client’s interface. 

Client
Interface

Fuzzy Term
Catalog

Instructi ons
Dispatcher

Senten ce
Analyzer

Evaluato r /
Calibrator

Query’s
Translato r 

SQLf →→ SQL-92
SQLf →→ SQL-99

Translato r Instructi ons SQL -92, SQL-99 →→ SQL-RDBMS

RDBMS

Instruction SQL-RDBMS Intruction answer SQL-RDBMS

C
ri

sp
 A

ns
w

er

C
ri

sp
In

st
ru

ct
io

n

C
ri

sp
R

es
u

ltS
e

t

C
ri

sp
 I

n
st

ru
ct

io
nF

u
zz

y 
T

er
m

D
e

fin
it

io
n

N
am

e
F

u
zz

y 
T

er
m

SQLf

Instructions

Instructions

Answer

Fuzzy ResultSet

C
ri

sp
A

sw
er

Instruction
Object

Instruction
Object PL

C
ri

sp
Q

u
er

y
C

ri
sp

Q
u

er
y

Answer 

Ans
w

er
 

In
st

ru
ct

ion
 O

bj
ec

t  
DDL

Instruction 

In
st

ru
ct

io
n

O
b

je
ct

D
M

L

Instruction 

Object DM
L

C
ri

sp
 I

n
st

ru
ct

io
n

 P
L A
n

sw
er

 
Fig. 1. Fuzzy Querying System Architecture 

The main components inside the querying system are:  
Client’s Interface. Receives user' s fuzzy queries and term definitions. Shows the final results of user operations: the 
fuzzy query answer. 



 

Instructions Dispatcher: It is the responsible for delivering at remainder of the modules the necessary structures for 
the execution of the instruction and to receive of these the respective answers.   
Fuzzy Terms Catalog. Allows the specification of user defined fuzzy terms. Retrieves the definition of such terms in 
order to be used by the sentence analysis and evaluation mechanisms. These terms are stored into a database. 
Sentence Analyzer. Analyzes the sentences introduced by the user, checking the syntactic and semantic correctness 
of the statements. Perform the translations needed for the execution of the statements. In case of fuzzy queries, 
builds a tree structure of the fuzzy query that is used in the evaluation process. 
Evaluator/Calibrator. Performs the evaluation of fuzzy queries. Interacts with the RDBMS in order to retrieve 
database element relevant to the query processing. For so doing, uses a regular SQL query that is given by the 
Sentence Analyzer. Computes the satisfaction degrees and calibrates the answer of the fuzzy query. For so doing 
uses the result of the regular query and the tree structure of the fuzzy query. 
Query’s Translator SQLf → SQLf92 and SQL99. It is the responsible for translating queries that contain fuzzy terms 
in regular queries using the derivation principles, producing queries in SQL-92 and SQL-99 standards.   
Translation Instructions SQL-92 and SQL-99 → SQL-RDBMS. We have adopted to express regular queries in the 
standards SQL-92 and SQL-99 in order to make our system as portable as possible. Therefore, we need to translate 
regular queries into specific RDBMS query language.  

7. IMPLEMENTATION 
This querying system has been made using: 
The Java programming language [[22]]. Java is a language of programming object oriented for a distributed 
application on WEB platform.  Besides it offers the facility of libraries and/or interfaces for connection with 
databases or server pages using JDBC convention. 
The ORACLE 8.0.5.0.0 [[15]] [[17]]. RDBMS. Oracle is one of the most efficient in the market for storage capacity, 
answer capacity, stability , backup mechanisms, security, etc. The tool of Oracle used was OCI (Oracle Call 
Interface) that is an interface for programming of applications that allows to the applications written in C interact 
with an Oracle server. 
The CLAIRE [[23]] is a 100% Java compatible LR (1) parser and lexical analyzer generator, designed and 
developed by programming language research group at Simón Bolívar University. It’s also language independent 
that is it can generate code on any language it has a plug in for. The resulting parser is a Java program module. 

8. CONCLUDIN G REMARKS 
In this paper is shown the feasibilit y of implementation of a fuzzy querying system on web that embraces most of 
the characteristics of SQLf2 and SQLf3, enriching the functionality of the existent prototype of SQLf with a bigger 
quantity of requirements that the user can execute.  Also, it was appealed to a series of tests whose results 
guaranteed that this prototype adapts to the requirements and necessities outlined for the support of the new 
characteristics of SQLf2 and SQLf3. 
The buil t fuzzy querying system supports: fuzzy comparison on dates. fuzzy checks. Partitioned queries using the 
UNIQUE operator over fuzzy conditi ons, fuzzy views, fuzzy assertions, fuzzy joins, fuzzy subqueries in the from 
clause, fuzzy set operations, update and delete with fuzzy conditions, fuzzy predicates on complex structures, 
control instructions with fuzzy conditions, triggers with fuzzy conditions in the when clause, stored functions, 
procedures and ADT’s with fuzzy elements. 
We are working now in the implementation of the remaining SQLf2 and SQLf3 features. We also points to 
performance studies of system prototype and definition of different query evaluation mechanisms for fuzzy queries 
in SQLf2 and SQLf3.   
We know a fuzzy query can return a bigger quantity of results that a classic query. The most remarkable fuzzy 
queries process mechanisms are based in λ-cut, by the application of a principle called Derivation Principle, for tkin 
advantages of the relationship between fuzzy queries and regular ones. This principle has been defined and studied 
by Bosc and Pivert [7] and Tineo [7]. We work in this principle to SQLf2 and SQLf3 and its implementation as 
query evaluation mechanism in our prototype. 

References 

[1] ANSI X3.  Database Language SQL, 135-1992, American National Standards Institute, New York. 

[2] Borrajo, F., Rengifo, G., Implementación del Lenguaje de Interrogaciones Flexibles a Base de Datos 
Relacionales SQLf, Informe final de Proyecto de Grado, Universidad Simón Bolívar., Julio 1999. 

[3] Bosc P. and Pivert O. SQLf: A Relational Database Language for Fuzzy Querying, IEEE Transactions on 
Fuzzy Systems, Vol 3, No. 1, Feb 1995. 

[4] Bosc P. and Brisson A. On the evaluation of some SQLf nested queries, Proceeding International Workshop on 
Fuzzy Databases and Information Retrieval, 1995. 



 

[5] Bosc P., Pivert O. and Farquhar K.  Integrating Fuzzy Queries into an Existing Database Management System: 
An Example, International Journal of Intelligent Systems, V.9, pp 475-492,1994 

[6] Bosc P. and Pivert O. On the efficiency of the alpha-cut distribution method to evaluate simple fuzzy relational 
queries, Advances in Fuzzy Systems-Applications and Theory, Vol 4, Fuzzy Logic and Soft Computing, B. 
Bouchon-Meunier, R.R.Yager, L.A. Zadeh eds, Wold Scientific , pp 251-260, 1995. 

[7] Bosc, P. & Pivert, O., SQLf Query Functionality on Top of a Regular Relational Database Management 
System, Knowledge Management in Fuzzy Databases, Pons, O., Vila, M. and J. Kacprzyk (Eds.), Physica-
Verlag, (2000), Pp. 171-190. 

[8] Eduardo J., Sistema de Interrogación Flexible a Bases de Datos SQLf2 – SQLf3. Informe Final de Trabajo 
Especial de Grado presentado ante la Universidad Simón Bolívar, Diciembre 2003. 

[9] Goncalves M., Extensión del Lenguaje de Interrogación Flexible a Bases de Datos SQLf mediante las normas 
SQL2 y SQL3. Informe Final de Trabajo Especial de Grado presentado ante la Universidad Simón Bolívar, 
Septiembre 2001. 

[10] Goncalves M. and Tineo, L. SQLf Flexible Querying Language Extension by means of the norm SQL2, The 
10th IEEE International Conference on Fuzzy Systems, Vol 1, Dec 2001. 

[11] Goncalves, M. and Tineo, L. SQLf3: An extension of SQLf with SQL3 features, The 10th IEEE International 
Conference on Fuzzy Systems, Vol 3, Dec 2001. 

[12] Gutiérrez, L. Desempeño de Mecanismos de Evaluación de SQLf, Informe final de Proyecto de Grado, 
Universidad Simón Bolívar, Septiembre 2000. 

[13] Hernández, G.,  Montaña A. HECDOCf: Una Herramienta para la Evaluación de Cursos y Docentes mediante 
SQLf2 a través del Web, Informe final de Proyecto de Grado presentado ante U.C.V., Junio 2002.   

[14] Kacpryzyk J. and Zadrozny S., Fuzzy Queries in Microsoft AccessTM v.2, Proceedings of Fuzzy IEEE’95 
Workshop on Fuzzy Database Systems and Information Retrieval, pp 61-66, 1995. 

[15] León, G., Martínez, D. SISECDf3: Sistema de  apoyo basado en la tecnología Internet para  la Evaluación de 
Cursos y Docentes mediante SQLf3, Informe final de Proyecto de Grado presentado ante U.C.V., Junio 2002. 

[16] León W., Rodríguez H., "Sistema de Interrogación Flexibles en Internet a Bases de Datos Relacionales SQLfi" 
Informe final de proyecto de grado presentado ante la U.S.B., Octubre 2002. 

[17] Loney K. and Koch G. Oracle8i The Complete Reference. ISBN: 0072123648. McGraw-Hill . 2000. 

[18] Loo G. and Lee K. An Interface to Databases for Flexible Query Answering: A Fuzzy-Set Approach. Lecture 
Notes in Computer Science 1873. DEXA 2000. Septiembre 2000. Londres, Reino Unido. pp 654-663. 

[19] Mansfield W. & Fleischman R. A High-performance, Ad-hoc, Fuzzy Query Processing System Journal of 
Intelligent Systems, Vol. 2, pp. 397-420, 1993. 

[20] Melton J.  ISO/ANSI Working Draft: Database Language SQL (SQL3), X3H2-93-091/ISO DBL YOK-003. 

[21] Nakajima H., Sogoh T., Arao M. Fuzzy Database Language and Library-Fuzzy Extension to SQL, Proceedings 
of Second IEEE International Conference on Fuzzy Systems, pp 477-482, 1983. 

[22] Naughton P., Schildt H. Java Manual de Referencia, McGraw-Hill.  

[23] Pacheco P., “Implementación del Analizador Lexicográfico, Sintáctico y Semántico Claire”, Informe final de 
proyecto de grado presentado ante la U.S.B., Enero 2000. 

[24] Ramírez, J. Interpretador del Lenguaje de Interrogaciones Flexibles a Bases de Datos Relacionales SQLf, 
Informe final de Proyecto de Grado, Universidad Simón Bolívar, Enero 2001. 

[25] Tineo L. Algunos Aportes en Bases de Datos Difusas. Trabajo de Ascenso presentado ante la Universidad 
Simón Bolívar, Sartenejas Septiembre 2001. 

[26] Tineo L. Interrogaciones Flexibles en Bases de Datos Relacionales. Trabajo de Ascenso presentado ante la 
Universidad Simón Bolívar, Sartenejas Enero 1998. 

[27] Umano M., Fukami S. Fuzzy Relational Algebra for Possibility-Distribution-Fuzzy-Relational Model of Fuzzy 
Data, Journal of Intelligent Information System, Vol 3, pp 7-27, 1994. 

[28] Wong M. and Leung K. A fuzzy Database-Query Language. Information Systems. Vol 15. No. 5, pp 583-590, 
1990. 


