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Abstract

Given a distributed system with several shared objects and many processes concurrently updating and
reading them, it is convenient that the system achieves convergence on the value of these objects. Such
property can be guaranteed depending on the consistency model being employed. Causal Consistency is
a weak consistency model that is easy and cheap to implement. However, due to the lack of real-time
considerations, this model cannot offer convergence. A solution for overcoming that problem is to include
time aspects within the framework of the model. This is the aim of Timed Causal Consistency.
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1 INTRODUCTION

A distributed application is build up from processes executed at different nodes from possibly distant loca-
tions. One important and not trivial problem arises when we want to maintain the consistency of the state
shared by such processes. Many consistency protocols have been developed to attack this challenge. Each
category is characterized by the type of executions that is permitted or banned by the protocol. However, in
some applications it may be not necessary to require all the properties offered by strict consistency models.
In its place, in could be better to implement less restrictive (and cheaper) protocols that satisfy the minimum
requirements of the particular application.

Causal Consistency [2] is a weak protocol that only accepts executions where the causal order is re-
spected. This model can be implemented at low cost. Besides this, although weak protocols are harder for
programmers than strict ones, causal consistency offers a balance where a class of practical programs can be
modeled and some useful properties guaranteed.

Convergence is an idea found in multiple areas of science. It is often related to some kind of stability.
Although operations made in the past could have created certain disorganization in the arrangement of the
analyzed system, there is comfort in knowing that our object of study achieves a stable behavior after a
given instant. Consider, for instance, economical indexes after a financial crisis, or descriptive variables in
the weather after a hurricane. It is nice to know that, after some time, prices will be under control, and that
sunny afternoons may be enjoyed. These conditions will be “well behaved” until some other set of events
strikes our system. At least for some range of time we are capable of understanding the state of our system.

In groupware systems (e.g., a collaborative editing system where many users are concurrently working over
a document), it is fundamental to offer convergence. In this context, some authors [4, 13] define convergence
by looking at the final result of a work session. Operations made by users could arrive at different times
to the other sites, executing possibly in different orders. However, it is required that the final result be
exactly the same for every user. It is also important offering convergence in mobile computing applications



[6], specially when disconnection periods are considered. In this case, after operations (possibly conflicting)
are made over different replicas of the same object, it is required that all replicas converge to the same state
after all the processes have been reconnected for sufficiently long.

Nevertheless, convergence is not a property inherent to causally consistent executions. Timed Causal
Consistency is a protocol where time constraints are added to the causal consistency model. Ordering and
timeliness are two facets of consistency protocols ([3, 15]). The ordering aspect defines the possible orders
in which operations can be executed and perceived by the participant sites, while the timeliness defines how
soon the effects of a operation in some process are known by the other processes.

In Section 2, the principal concepts of consistency protocols are revisited. The timed strategy is presented
in Section 3, while the convergence model is developed in Section 4. Analysis about convergence and timed
causal consistency is provided in Section 5. Conclusions and future work were left for Section 6.

2 CONSISTENCY MODELS REVISITED

A distributed system consists of N user processes and a distributed data storage. Because of caching and
replication, several, possibly different, copies of the same data objects might coexist at different sites of the
system. Thus, a consistency model, understood as a contract between processes and the data storage, must
be provided. There are multiple consistency models [1, 2, 3, 8, 10, 14, 15].

The global history H of this system is the partially ordered set of all operations occurring at all sites. Hi
is the total ordered set or sequence of operations that are executed on site i. If a occurs before b in Hi we
say that a precedes b in program order, and denote this as a <PROG b. In order to simplify, we assume that
all operations are either read or write, that each value written is unique, and that all the objects have an
initial value of zero. These operations take a finite, non-zero time to execute, so there is a time elapsed from
the instant when a read or write “starts” to the moment when such operation “finishes”. Nevertheless,
for the purposes of this paper, we associate an instant to each operation, called the effective time of the
operation. We will say that a is executed at time t if the effective time of a is t. If a has an effective time
previous to the effective time of b we denote this as a <E-T b. Let Hi+w be the set of all the operations in
Hi plus all the write operations in H. The partially ordered happens-before relationship “→” for message
passing systems as defined in [9] can be modified to order the operations of H. Let a,b and c ∈ H, we say
that a → b, i.e., a happens-before (or causally precedes) b, if one of the following holds:

1. a and b are executed on the same site and a is executed before b.

2. b reads an object value written by a.

3. a → c and c → b.

If D is a set of operations, then a serialization of D is a linear sequence S containing exactly all the
operations of D such that each read operation to a particular object returns the value written by the most
recent (in the order of S ) write operation to the same object. If ≺ is an arbitrary partially ordered relation
over D, we say that serialization S respects ≺ if ∀ a, b ∈ D such that a ≺ b then a precedes b in S .

Intuitively, one would like that any read on a data item X returns a value corresponding to the results
of the most recent write on X. In some systems this could mean that after making an update, all other
processes may be notified about the change as soon as it is required. Assuming the existence of absolute
global time, this behavior can be modeled with linearizability [8]:

Definition 1 History H satisfies Linearizability (LIN) if there is a serialization S of H that respects the
order <E-T [8].

A weaker, but more efficient, model of consistency is sequential consistency as defined by Lamport in
[10]:

Definition 2 History H satisfies Sequential Consistency (SC) if there is a serialization S of H that respects
the order <PROG for every site in the system [10].

SC does not guarantee that a read operation returns the most recent value with respect to real-time,
but just that the result of any execution is the same as if the operations of all sites were executed in some
sequential order, and the operations of each individual site appear in this sequence in the order specified by
its program. For instance, History H presented in 1.a) is sequentially consistent, because 1.b) shows the
required serialization S . Although SC can be implemented in a more efficient way than LIN and it is a
programmer-friendly model, it has been shown that SC has performance problems [1, 14].
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Figure 1: Distributed history compliant with sequential consistency
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Figure 2: A causally consistent distributed history
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Figure 3: A non-timed sequentially consistent execution

An even weaker model of consistency is causal consistency [2]. First, let Hi+w be the set of all the
operations in Hi plus all the write operations in H. Second, we modify the happens-before relationship “→”
for message passing systems as defined in [9] to order the operations of H. Let a,b and c ∈ H, we say that
a → b, i.e., a happens-before (or causally precedes) b, if one of the following holds:

1. a and b are executed on the same site and a is executed before b.

2. b reads an object value written by a.

3. a → c and c → b.

Two distinct operations a and b are concurrent if none of these conditions hold between them.

Definition 3 History H satisfies Causal Consistency (CC) if for each site i there is a serialization Si of
the set Hi+w that respects causal order “→” [2].

Thus, if a,b and c ∈ H are such that a writes value v in object X, c reads the same value v from object X,
and b writes value v’ into object X, it is never the case that a → b → c. CC requires that all causally related
operations be seen in the same order by all sites, while different sites could perceive concurrent operations
in different orders. For example, if figure 2 we have a distributed history in 2.a which is causally consistent,
due to serializations Si presented in 2.b. Note that in 2.b there is a serialization Si for site i and the local
events in Si are distinguished by a surrounding rectangle.

CC is a model of consistency weaker than SC, but it can be implemented efficiently [2, 14]. Such
implementation requires keeping track of which processes have seen which write events. In fact, there is
dependency graph for determining which operation is dependent on which other operations. So, this data
structure must be built and maintained. For fulfilling this need, vector clocks [11] can be used.

3 TIMED CONSISTENCY MODEL

In neither SC nor CC real-time is explicitly captured, i.e., in the serializations of H or Hi+w operations
may appear out of order in relation to their effective times. For instance, in Figure 1 the serialization in
part b) shows event r1(B)5 occurring before w2(A)8, but the latter event occurred at time 523, while the
former occurred at time 680. In CC, each site can see concurrent write operations in different orders. On
the other hand, LIN requires that the operations be observed in their real-time ordering. Ordering and time
are two different aspects of consistency. One avoids conflicts between operations, the other addresses how
quickly the effects of an operation are perceived by the rest of the system.

Timed consistency (TC) as proposed in [15] requires that if the effective time of a write is t, the value
written by this operation must be visible to all sites in the distributed system by time t + ∆, where ∆ is
a parameter of the execution. It can be seen that when ∆ = 0, then TC becomes LIN. So, TC can be
considered as a generalization or weakening of LIN.

The execution showed in Figure 3 satisfies SC and CC. Up to the second operation of Site 1, the execution
satisfies TC for the value of ∆ presented in this figure, but, by that same instant, LIN is no longer satisfied.
After this point, the execution is not even timed because there are read operations in Site 1 that start more
than ∆ units of real-time after Site 0 writes the value 7 into object X and these read operations do not
return this value.
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3.1 Reading on Time

In timed models, the set of values that a read may return is restricted by the amount of time that has
elapsed since the preceding writes. A read occurs on time if it does not return stale values when there are
more recent values that have been available for more than ∆ units of time. This definition depends on the
properties of the underlying clock used to assign timestamps to the operations in the execution. Let T (a)
be the real-time instant corresponding to the effective time of operation a.

Definition 4 Let D ⊆ H be a set of operations and S a serialization of D. Let w, r ∈ D be such that w
writes a value into object X that is later read by r, i.e., w is the closest write operation into object X that
appears to the left of r in serialization S. We define the set Wr, associated with r, as: Wr={w’ ∈ D | (w’
writes a value into object X) ∧ (T(w) < T(w’) < T( r) - ∆)}. We say that operation r occurs or reads
on time in serialization S, if Wr = ∅. S is timed if every read operation in S occurs on time.

Figure 4 illustrates Definition 4, presenting a possible arrangement of read and write operations over
the same object. Operation r reads a value previously written by operation w. Since operation w1 was
executed before w, it has no effect on whether r is reading on time or not. Similarly, although w4 is more
recent than w, the interval ∆ has not elapsed yet when r is executed, and, thus, it is acceptable that r does
not observe the value written by w4. On the other hand, operations w2 and w3 occur after w, and the
values written by then have been available in the system for more than ∆ units of time when r is executed.
Thus, w2 and w3 are in Wr, and, therefore, operation r does not occur on time. The area between T (w)
and T (r)-∆ represents the interval of time associated with the set Wr, which according to definition 4 must
be empty if r reads on time (i.e. no write operation to the same object read by r can occur in this interval).

Definition 5 Let a, b ∈ D ⊆ H with effective times t1 and t2, respectively, be two operations over the same
object X. We say that a <∆ b if:

1. Both a and b are write operations and t1 < t2, or

2. a is a write operation, b is a read operation and t1 < (t2 − ∆).

Definition 6 History H satisfies Timed Consistency (TC) if there is a serialization S of H that respects
the partial order <∆ [15].

3.2 Timed Sequential Consistency and Timed Causal Consistency

Now, we combine the requirements of well-known consistency models such as SC and CC with the require-
ment of reading on time.

Definition 7 History H satisfies Timed Sequential Consistency (TSC) if there is a serialization S of H
that simultaneously respects the partial order <PROG and the partial order <∆ [15].

Definition 8 History H satisfies Timed Causal Consistency (TCC) if for each site i there is a timed
serialization Si of Hi+w that simultaneously respects causal order → and the partial order <∆ [15].

Figure 5 presents a hierarchy of different consistency models. Every sequentially consistent execution
is also linearizable, but the opposite is not necessarily true. Similarly, every causally consistent execution
is sequentially consistent, while the contrary is not always true. The proofs for these results and some
implementation details can be found in [15]. The idea behind these definitions is to show how it is possible
to offer flexibility for the consistency protocol in our model; without losing the real-time considerations,
consistency aspects can be relaxed, passing from SC to CC.
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4 CONVERGENCE MODEL

In this section, we present our approach for analyzing convergence in consistency protocols for distributed
systems.

Consider the distributed history shown in Figure 6. After X is updated by one of the sites, the new value
is communicated, with some delay, to the other site. Site 1 updates X at time t1 giving it the value 3 (which
was 0 initially). By that time, Site 2 has no knowledge of this change, so it surely believes that X still has
0 value. It is not until time t2 that Site 2 discovers that X has been updated. However, at time t3 Site 2
makes a new change to X, giving it the value of 7. Let’s say that news of this change arrive too late to Site
1, and by time t4, Site 1 has updated again X to value 4. Similarly, Site 2 does not perceive this last change
and updates X at time t5 to value 6. At time t6 Site 1 realizes that X has a new value and from here on,
both sites agree on the value of X. Thus, finally, convergence has been reached.

Figure 7 plots the values that X takes at every instant, as perceived by each site, and it shows that there is
convergence after time t6. Nevertheless, it could be claimed that the time intervals [0,t1],[t2,t3] and [t6,+∞]
form a set of ranges where convergence was achieved, we refer to these time ranges as convergence frames
(see Section 4.3). Our formal definition for convergence will capture these two kinds of stability ranges: the
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one obtained after the last update to some distributed object, and the time frames where two or more sites
agree on the same value for a particular object.

4.1 Trivial Convergence

It is possible that a distributed system achieves convergence over some object X if all sites have previously
agreed in setting a particular value for such object. This is the less interesting case for convergence, since a
situation like this hardly represents the general case, and even though the system is reaching convergence in
the value of X, this does not imply correctness in the execution.

Definition 9 An execution in a distributed system is trivially convergent over object X if all sites have
agreed to assign a particular value for X after time t. If the execution is trivially convergent over every
possible object, we say that the execution is trivially convergent.

4.2 Absolute Convergence

Let’s analyze convergence after the “last” write operation to a particular object. Figure 8 shows a simple
distributed computation, with 2 sites and one shared object X. There are a series of writes and reads
executed by both sites, and, at several times during execution, sites see different values for object X. But,
at some time t after event w1(X)4, which happens to be the last actualization to X in the whole execution,
all reads to object X executed by any site should return the value 4. Thus, after time t, this system has
converged regarding the value of object X. The intuition behind absolute convergence is that, at the end of
the day, after the writes stop, every site involved in a distributed computation will agree on the same values
for the same objects.

Following the lines of consistent cuts [11], we define a convergent cut this way:

Definition 10 We say that a convergent cut over object X is a set of phantom events C={C1,C2,...,CN},
where every Ci is inserted in local history Hi, all at the same time t. All the Ci are read operations over X

that would return exactly the value written by the latest write into object X that occurred before t.

Definition 11 An execution in a distributed system is absolutely convergent over object X if at any
arbitrary time after t, which itself occurs after the last write to object X, a convergent cut over object X can
be inserted. If the execution is absolutely convergent over every possible distributed object, we say that the
execution is absolutely convergent.

If an execution is absolutely convergent over object X at time t, i.e., we were able to insert a convergent
cut C at time t, it must be true that the same cut C can be inserted, with identical results, at any time u > t.
Now, if there are M shared objects Xj , 1 ≤ j ≤ M , and the execution is absolutely convergent for all the M
objects, then for every object we associate a minimum time tj where its corresponding convergence cut can be
inserted. Therefore, the distributed system is absolutely convergent at any time after t = max(t1, t2, ..., tM ).

4.3 δ-Convergence

It is typically desirable that the lapse before an update is communicated to everybody else in a distributed
system be as short as possible. However, in a very active system with frequent writes to the same shared ob-
jects, it is normal that the values of these objects diverge during execution. Even under these circumstances,
we could expect that after the “last” write, as mentioned in the previous section, the system reaches absolute
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convergence. Besides, if the system, after considering factors such as overhead, communication delays, and
consistency protocols, can guarantee that an update is known to the complete system (either by updating
or by invalidations) in at most δ units of time, the execution might manifest intervals where the system is
evidently convergent in relation to some objects.

Now, we claim that if the lapses between multiple consecutive writes to the same object are shorter than
the parameter δ, there was not enough time for propagating the values set by all the writes, but the system
can still be classified as convergent. Conversely, if two consecutive writes to the same object X occur more
than δ units apart and we are not able to insert a convergent cut for this object at least δ units of times
after the first write, the system is not convergent. This is the intuition of what we called δ-convergence:

Definition 12 An execution satisfies δ-convergence if it can be guaranteed that, at any time when the
lapse between two consecutive writes to the same object X is greater than δ units of time, a convergent cut
over X can be inserted δ units of time after the first write.

Thus, in a δ-convergent execution, if X is updated at time t and the next update to this object, anywhere
in the system, occurs at time u, with t + δ < u, there is an interval [t + δ,u] where all sites in the system
would perceive, if they read it, the very same value for object X. We call this interval a convergence frame
for object X. On the other hand, if t + δ > u, we might not define such a convergence frame, but still claim
that the system is δ-convergent. In other words, the system is allowed to be “unstable” for at most δ units
of time after a write, without being considered non-convergent.

Figure 9 shows some of the previous concepts. If δ units of time after operation w1(X)3 occurred, we are
able to insert a convergent cut associated to object X (which means that if every site in the system would
read X all they would find the same value), this establishes a convergence frame for object X. Of course,
another update to object X can be made thereafter, but until that new update the system has converged on
the value of X. Extending this concept to several objects is straightforward.

5 CAUSAL CONSISTENCY AND CONVERGENCE

As it was mentioned in definition 3, CC does not require that each read event over object X returns the
latest value written. It merely needs to construct serialization Si, for each site i, that respects causal order
“→”. Thus, CC does not offer convergence per se. Due to the lack of real-time restrictions in its definition,
sites are not obliged to update or invalidate their local objects unless that it is required for building the
serializations Si.

Figure 10 presents a simple example of a distributed execution that satisfies CC, but whose shared
objects never converge. Notice that this history is not compliant with SC either. Site 2 writes value 1 into
object X, and, some time later, Site 1 writes value 2 into object X. The following read on Site 1 returns 1,
while the next read operation on Site 2 returns value 2. Finally, Site 1 writes value value 3 into object X.

Considering only these five events, we prove that the history, so far, satisfies CC by taking the following
serializations: S1 = w1(X)2,w2(X)1, r1(X)1,w1(X)3 and S2 = w2(X)1,w1(X)2, r2(X)2,w1(X)3. These seri-
alizations do not respect real-time, but fulfill the requirements for CC [2]. Now, nothing forces Site 1 nor Site
2 to agree, at any point in the future, on the value of X. Consider operation sets Q1 and Q2, both containing
just reads on object X, one executing on Site 1 and the other executing on Site 2, respectively. The value
retrieved by operations in Q1 is 3, while the old value retrieved by operations in Q2 is 2. It can be proved
by induction over |Q1| and |Q2| that this distributed history is causally consistent. A possible serialization
set would be: S1 = w1(X)2,w2(X)1, r1(X)1,w1(X)3, {Q1} and S2 = w2(X)1,w1(X)2, r2(X)2, {Q2},w1(X)3.
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Thus, Sites 1 and 2 can execute an arbitrarily large number of reads of object X, satisfying CC, and never
converging to the same value. In this example, absolute convergence is not guaranteed by CC, and, if we
choose w1(X)2 and w2(X)1 as occurring more than δ units of time apart, neither δ-convergence is satisfied.
It is easy to build an example more complex than Figure 10, involving multiple sites, shared objects and
values written, where CC is respected, and where absolute convergence and δ-convergence are never met.

On the other hand, we claim that TCC guarantees convergence. Remember that TCC requires that
if the effective time of a write is t, the value written by this operation must be visible to all sites in the
distributed system by time t + ∆, where ∆ is a parameter of the execution.

Figure 11 shows the same execution of figure 10 but includes the requirements of TCC. Then, it can be
observed that ∆ time units after the event w1(X)3 Site 2 must be aware of the changes done over object X.
Then, a convergent cut can be placed at this moment and, after that, the sets Q1 and Q2 will report the
same read value 3. We can generalize this concept into the next theorem.

Theorem 1 TCC satisfies absolute convergence and δ-convergence.

Proof At most ∆ units of time after the last write for every shared object, TCC guarantees that the
updated value is known to every site in the distributed system, therefore, we can insert a convergent cut
over each shared object ∆ units of time after the corresponding last write operation, which according to
Definition 11 proves that the execution satisfies absolute convergence. Now, it should be easy to see that
δ-convergence is guaranteed for the value δ = ∆.

Both, absolute convergence and δ-convergence, are desirable properties among distributed systems appli-
cations, such as collaborative software and mobile computing. Recent research in these areas ([7],[12]) show
that CC is a good alternative for maintaining consistency. Then, TCC which is a strengthening of CC, is
a good candidate to be applied in those contexts.

6 CONCLUSIONS AND FUTURE WORK

The causal consistency model gives a weakening of sequential consistency, making a difference between events
that are potentially causally related and those that are not. Its implementation is easier and cheaper than
more strict models (like LIN or SC). Although CC does not guarantee convergence property for the values



of the shared objects in the system, it is possible to enrich this model with time considerations. Besides
this, a timed consistency model provides a mix of two facets of consistency: order and time. TCC can be
conceived as a promising candidate to provide convergence at low implementation costs.

Many distributed system applications require convergence as one of their most important properties. In
those areas, TCC can be introduced to provide such objective, assuring at the same time that causally
related updates will be respected by all processes.

In the short term, we are building a distributed shared memory system where diverse consistency proto-
cols, timed and not timed, are implemented, tested and compared.
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