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Abstract

When modeling concurrent or parallel systems, we must be aware that basic activities of each system may
be constituted by smaller activities, i.e. transitions are conceptually refined into transactions. Nevertheless,
the Unified Modeling Language (UML) seems to lack compositional constructs for defining atomic activities.
We discuss nonsequential automata for the formal interpretation of the concept of composing transitions
into transactions under UML activity diagrams. Transactions are formally defined through a special mor-
phism between automata that maps transitions from the source automaton to transactions of the target
(more concrete) automata. UML activity diagrams are then extended with a proper stereotype for defining
transactions.
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1 Introduction

The Unified Modeling Language (UML) [8, 3, 20, 10] is a language which may be used to describe both the
structure and behavior of object-oriented systems using a combination of notations. UML offers a variety
of graphical diagrams for specifying, visualizing and documenting object-oriented systems. These models
can be classified as concerned with the static structure of systems and those concerned with the dynamic
behavior. For the modeling of the dynamic behavior, a number of different models are offered: sequence,
collaboration, statechart and activity diagrams.

UML has a precisely-defined syntax, however it still lacks a generally accepted formal semantics which
precisely fixes the meaning of its diagrams. This is particularly noticeable for the notations which model
the dynamic behavior of systems. Several approaches to translating UML diagrams into formal models have
been based on Petri nets [17]. For example, [9] describes a formal translation of activity and collaboration
diagrams into place/transition Petri nets and [7] compares different proposals for the semantics based on
Petri nets. Also workflow models have been given semantics based on place/transition nets, e.g. [6] defines
a formal semantics for UML activity diagrams that is suitable for workflow modeling. Widely application
of Petri nets in theoretical and applied research to specify and visualize the behavior of systems are due to
their intuitive graphical representation and several supporting tools.

Activity diagrams are one of the means for describing behavior of systems within the UML language
and has been chosen here for its capability in describing flows of activities of a desired system. Broadly
speaking, states of an activity diagram mostly represent the execution of sequential and concurrent steps
in a computational process or a workflow step. Although activity diagrams have been used for modeling
workflow processes [6, 7, 8, 3], such view is not going to be explored in this paper. Here we concentrate on
describing groups of sequential or concurrent activities that are responsible for performing a computation,
and we address the issue of modeling transactions, a feature not present in activity diagrams, by using a
Petri net related model, named Nonsequential Automata ([11], [13], [15], [14]).



Figure 1: UML activity diagram without (left) and with (right) composite state

We remark that in our setting the term “transaction” denotes a certain activity of the system that might
be composed by many, possibly concurrent, sub-activities. Moreover, we require this composition of activities
to be considered atomic.

The importance of discussing composition mechanisms is based on the fact that, as pointed in [1], in order
to master the complexity of systems, models demand a form of structural decomposition. When building
large systems, one needs constructs to describe systems as compositions of other smaller systems. In this
sense, when modeling a computational process, we need means of composing sub-activities both in a non
atomic or atomic way.

All foundational work presented in this paper is developed within category theory [2], as it provides pow-
erful techniques to unify different models through adjunctions expressing relations between their semantics
[21],[2]. As the reader will see, adjunctions consist of ways of translating from one model to another.

The rest of the paper is organized as follows. Section 2 briefly recalls some basic definitions of UML
activity diagrams and presents the need for the definition of atomic composition of activities (i.e. the
definition of transactions). Section 3 presents the compositional semantic domain of nonsequential automata,
which is going to be used as the semantics for the composition of activities in UML. Section 4 introduces
translation schemes for building nonsequential automata from activity diagrams. Finally, Section 5 discusses
the results and outlines possible directions for future investigations.

2 UML Activity Diagrams

Activity diagrams are one of the means for describing behavior of systems within UML. It defines an extended
view of state machines focused on the flow of control from activity to activity, instead of statechart diagrams
which is focused on potential states of objects and transitions among those states. Figure 1 depicts a simple
example of an activity diagram for an operation.

For the most part, activity diagrams involve modeling sequential and concurrent steps in a computational
process. In UML, those steps may be an action or a subactivity state. Action states represent an atomic
computation without substructure and that cannot be interrupted. Subactivity states, on the other hand,
represent non-atomic execution and can be decomposed and interrupted by external events (represented
by transitions out of the state) - they can be think as a composite whose flow of control is made up of
other activities and actions. A subactivity state is semantically equivalent to expanding its activity graph in
place until there are only actions [10]. Nonetheless, they are important because they help breaking complex
computations into parts. There is no difference in notation for action and subactivity states, besides the
nested activity graph. Other important states are initial and final states.

Transitions between states are by means of arcs connecting the source and destination states. Transitions
may be adorned with an event trigger, a guard condition and an action. The event trigger is the event whose
reception by the source state makes the transition enabled. A transition without an explicit event is called
a completion transition, indicating that it is enabled once the activity/action in the source state has been
completed. A guard condition is a boolean expression that is evaluated when a transition is triggered by an
event, causing the transition to fire if its value is true. Optionally, an action may be executed in response to
the transition. To aid the visualization, branches are introduced to specify alternate paths based on boolean



Figure 2: UML activity diagram with transaction composite state

expressions. A transition leaving an action state can be labeled with guard conditions and action expressions,
but not with events. Normally, as stated in [10], an activity diagram will not present transitions with events,
as activity diagrams assume that computations proceed without external event-based interruptions 1. In
order to capture complex transitions, horizontal bars represent the fork and join of concurrent steps of
computation. Bellow the fork, the activities associated with each path continue in parallel. A join represents
the synchronization of two or more concurrent flows of control, meaning that each waits until all incoming
paths have reached the join.

In UML, activities are defined as non-atomic computations thus capable of being composed by subactiv-
ities. Borrowing the concept of composite state from general state machines, activity diagrams are provided
a way of composing several actions/activities into new activities. A composite state may contain either se-
quential or concurrent substates. Nevertheless, the composite is in essence non-atomic, allowing transitions
out of the composite with the effect of interrupting its entire computation process. In other words, activity
diagrams lack a composite state for atomic composition of activities.

To overcome the lack of an atomic subactivity state, we introduce a new notation for a composite state
based on the idea of atomic transaction. The notation is based on extension mechanisms of UML [3, 10]
and introduce new constraints over the basic composite state, so the new “transaction state” is not allowed
to be interrupted by explicit external events. The new composite state is decorated with the stereotype
<< transaction >> as depicted in figure 2. The semantics for the whole activity diagram and specially the
transaction composite is presented in the next sections.

3 Nonsequential Automata

When employing Petri net based models to represent systems, one must be aware that basic activities of
each component may involve smaller internal activities. In other words, transitions are conceptually refined
into transactions.

A convenient top-down approach to represent transactions is to start with an abstract model and then

1In this case, ordinary state machines and collaboration diagrams are preferable.



Figure 3: Marked place/transition Petri net

refine each transition, that might represent a complex activity, into a refined net that offers a more precise
representation of the activity. Several approaches have appeared in the literature ([5], [12], [13]) that present
different techniques for refinement. The approaches are related to the notion of general net morphism
proposed by Petri, in which a refined net is collapsed into a transition of a more abstract counterpart. Here,
we concentrate on the model named nonsequential automata.

Nonsequential Automata ([11], [13], [15], [14]) constitute a non interleaving semantic domain, with its
foundations on category theory, for reactive, communicating and concurrent systems. Nonsequential Au-
tomata follows the so-called “Petri nets are monoids” approach [16] and is similar to Petri nets, but it is a
more concrete model - it can be seen as computations from a given place/transition net.

Petri net, in this paper, means the general case of place/transition net with weighted arcs and without
capacity restriction for places. So, we recall the definition of place/transition nets and then Petri nets
as graphs in order to clarify the notation used for defining nonsequential automata. Also, for the sake
of simplicity, we drop the notion of initial marking and initial/final states. The more interested reader is
referred to [17] and [18] for more details.

Definition 1 (Place/Transition Net) A place/transition net is a triple N = 〈S, T, F 〉 where S is a set of
places, T is a set of transitions, with S and T disjoints, and F : (S × T )∪ (T × S) → N is the flow relation.

The flow relation specifies how many tokens are consumed or produced in each place when a transition
fires. A marking m : S → N, which is a finite multiset of places representing the number of tokens in each
place, will be written m = {n1A1, . . . , nkAk} with ni the number of tokens in place Ai (i ranging over
1, . . . , k) or as n1A1 ⊕ . . . ⊕ nkAk where ⊕ is the monoidal operation. For example, figure 3 represents
the Petri net N = 〈{A, B, C, X, Y }, {t, u, v}, {(A, t), (t, B), (B, u), (u, C), (X, v), (v, Y )}〉 with initial marking
m = {A, 2X}.

In order to define Petri net as a graph, which is more suitable to our discussion, we follow the same
approach in [16], where nodes are elements of a commutative monoid. In this case, nodes and arcs stand for
states and transitions of a net, where for each transition t, ni tokens consumed in places Ai and nj tokens
produced in places Bj will be written the arc t :

⊕

niAi →
⊕

njBj , for i and j ranging over 1, . . . , k. The
transitions on the Petri net of figure 3 are represented by arcs t : A → B, u : B → C and v : 2X → Y .
Therefore, a Petri net is basically a graph with a monoidal structure on nodes.

Before going any further, let us clarify all the semantic models in this paper are introduced as a class of
objects equipped with a notion of behavior-preserving morphism, making each model into a category.

Definition 2 (Petri Category) A (place/transition) Petri net is a graph N = 〈S⊕, T, δ0, δ1〉 where the
set of nodes S⊕ is the free commutative monoid generated by the set of places and δ0, δ1 : T → S⊕ are total
functions called source and target of arcs in T . A Petri net morphism h : N → N ′ is a graph morphism
h = 〈hS : S⊕ → S′⊕, hT : T → T ′〉 i.e. hS ◦ δi = δ′i ◦ hT for i ∈ {0, 1} where hS is required to be a monoid
homomorphism. Petri nets as graphs and their morphisms define the category Petri.

This view of Petri nets as graphs was based on the idea of nodes as elements of a commutative monoid
over the set of places. The figure 4 depicts the behavior of the net in figure 3 when starting with a specific
marking. What then if we change the initial marking? We have to compute all reachable markings again.



Figure 4: Behavior of a Petri net

Figure 5: A nonsequential automaton corresponding to a Petri net

But what if we could get a more concrete model with all possible markings and capable of making explicit
all implicit concurrencies in the net? This is the key for the nonsequential automata.

Nonsequential Automata constitute a categorical semantic domain around the concepts of state and
transition. It consists of a reflexive graph with monoidal structure on both states and transitions, initial
and final states and labeling on transitions. The interpretation of a structured state is the same as in Petri
nets: it is viewed as a “bag” of local states representing a notion of tokens to be consumed or produced.
A structured transition is a way to specify that the component transitions are independent i.e., structured
transitions specify which component transitions are concurrent with another (see, for example, transitions
t||v and u||v in figure 5).

In the next definitions CMon denotes the category of commutative monoids and k ∈ {0, 1} (for simplicity,
we omit that k ∈ {0, 1}).

Definition 3 (Nonsequential Automaton) A nonsequential automaton
NA = 〈V, T, δ0, δ1, ι, L, lab〉 is such that V = 〈V,⊕, 0〉, T = 〈T, ||, τ〉, L = 〈L, ||, τ〉 are CMon-objects of
states, transitions and labels respectively, δ0, δ1 : T → V are CMon-morphisms called source and target
respectively, ι : V → T is a CMon-morphism for mapping identities, and lab : T → L is a CMon-
morphism for labeling transitions such that lab(t) = τ whenever there is v ∈ V where ι(v) = t. Therefore,
a nonsequential automaton can be seen as NA = 〈G, L, lab〉 where G = 〈V, T, δ0, δ1, ι〉 is a reflexive graph
internal to CMon representing the automaton shape, L is a commutative monoid representing the labels of
the transitions and lab is the labeling morphism associating a label to each transition.

In a nonsequential automaton, a transition labeled by τ represents a hidden transition. As the automaton
shape is represented by a reflexive graph, each state has an associated identity transition which is interpreted
as a “no operation” or “idle”. Note that, by definition, all identity transitions are hidden (i.e. labeled by τ).

The nonsequential automaton in figure 5 is represented by 〈{A, B, C, X, Y }⊕, {t, u, v}||, δ0, δ1, ι, {t, u, v}||,
lab〉 with δ0, δ1, ι determined by transitions t : A → B, u : B → C, v : 2X → Y , and labeling t 7→ t, u 7→ u,



Figure 6: Nonsequential automaton and its corresponding computational closure

v 7→ v. In the graphical representation of the automaton identity arcs are omitted and, for a given node A

and arcs t : X → Y and ιA : A → A, the structured arc t||ιA : X ⊕ A → Y ⊕ A will be simply noted by
t : X ⊕ A → Y ⊕ A. In this sense, in figure 5, the identity arcs ιA, ιB , ιC , ι2X , ιY , ιA⊕B, . . . were omitted,
and transitions like t||ιY : A ⊕ Y → B ⊕ Y where written t : A ⊕ Y → B ⊕ Y .

Two important points must be discussed before going any further. First, the nonsequential automaton
in figure 5 was not completely drawn as it has infinite distinguished nodes, for they are elements of a
freely generated monoid chosen to represent its states. This choice was not obligatory as the definition of
nonsequential automaton mentions any commutative monoid. This is different from other Petri net related
models in which the monoid must be freely generated. Second, structured transitions, like t||v, explicitly
determines the “independence square”, i.e. transitions t and v are independent, and should not be confused
with synchronized transitions presented by Meseguer and Montanari [16].

Definition 4 (NAut Category) A nonsequential automaton morphism h : NA → NA′ with NA =
〈V, T, δ0, δ1, ι, L, lab〉 and NA′ = 〈V′, T′, δ′0, δ′1, ι

′, L′, lab′〉 is a triple h = 〈hV , hT , hL〉 with hV : V → V′,
hT : T → T′, hL : L → L′ CMon-morphisms, such that hV ◦ δk = δ′k ◦ hT , hT ◦ ι = ι′ ◦ hV and
hL ◦ lab = lab′ ◦ hT . Nonsequential automata and their morphisms constitute the category NAut.

Given an appropriate notion of morphisms between two nonsequential automata defined above, we are
able to define atomic composition of transitions through the concept of refinement. A refinement maps
transitions into transactions reflecting an implementation of an automaton on top of another, based on
constructions presented in [15]. It is defined as a special morphism of automata where the target one (more
concrete) is enriched with its computational closure (all the conceivable sequential and nonsequential com-
putations that can be split into permutations of original transitions). The construction of the computational
closure was inspired by [16]. The idea for building the computational closure here is analogous to the exam-
ple previously discussed for state machines, except for the fact it also includes nonsequential computations
besides sequential ones. Considering the nonsequential automaton in figure 5, its computational closure is
partially depicted in figure 6 (added transitions were drawn with a dotted pattern). Please note a composition
operator “;” appeared in the structured transitions.

The computational closure of a nonsequential automaton is formally defined as the composition of two
adjoint functors between the NAut category and the category CNAut (defined in the next paragraphs) of
nonsequential automata enriched with it computations: the first one basically enriches an automaton with
a composition operation on transitions, and the second functor forgets about the composition operation.
Also, some equations about concurrency are introduced. This composition leads to an endofunctor called
transitive closure functor tc. Then, the refinement morphism ϕ from NA into (the computations of) NA′

can be defined as ϕ : NA → tcNA′.
In the text that follows, the categories are built using the approach known as internalization [2], leading

to the notion of structured (internal) graphs, where nodes and arcs may be objects of different categories.
The category of categories internal to CMon (remember CMon is the category of commutative monoids)
is denoted by Cat(CMon) and RGr(CMon) is the category of reflexive graphs internal to CMon.

Definition 5 (CNAut Category) Consider the category Cat(CMon). The category CNAut is the
comma category idCat(CMon) ↓ idCat(CMon) where
idCat(CMon) is the identity functor in Cat(CMon). Therefore, a CNAut-object is a triple CNA =
〈G, L, lab〉 where G, L are Cat(CMon)-objects and lab is a Cat(CMon)-morphism.

Notice that in order to build the computations, we have enriched NAut by the substitution of its shape
from a reflexive internal graph G = 〈V, T, δ0, δ1, ι〉 to a Cat(CMon)-object G = 〈V, T, δ0, δ1, ι, ; 〉 with a



composition operation, and similarly with its labels. The composition operation “;” was responsible for the
newly added transitions in figure 6. This construction is formally defined by the following functor:

Definition 6 (Functor nc) Let NA = 〈G, L, lab〉 be a NAut-object and h : NA → NA′ be a NAut-
morphism. The functor nc : NAut → CNAut is such that:

• RGr(CMon)-object G = 〈V, T, δ0, δ1, ι〉 is taken into the Cat(CMon)-object G′ = 〈V, T′, δ′0, δ
′
1, ι

′, ; 〉
with ι′ induced by ι and T′, δ′0, δ′1, ; : T′ × T′ → T′ inductively defined as follows

t:a→b∈T
t:a→b∈T′

t:a→b∈T′ u:b→c∈T′

t;u:a→c∈T′

t:a→b∈T′ u:c→d∈T′

t||u:a⊕c→b⊕d∈T′

subject to the following equational rules

t∈T′

τ ;t=t t;τ=t
t:a→b∈T′

ιa;t=t t;ιb=t
t:a→b∈T′ u:b→c∈T′ v:c→d∈T′

t;(u;v)=(t;u);v

t∈T′ u∈T′

t||u=u||t
t∈T′

t||τ=t
ιa∈T′ ιb∈T′

ιa||ιb=ιa⊕b

t∈T′ u∈T′ v∈T′

t||(u||v)=(t||u)||v

• CMon-object L is taken into the Cat(CMon)-object L′ = 〈1, L′, !, !, !ι, ; 〉 with L′ inductively defined
as above, and ! and !ι meaning the unique obvious mappings.

• The NAut-object NA = 〈G, L, lab〉 is taken into the CNaut-object CNA = 〈G′, L′, lab′〉 where lab′ is
the morphism induced by lab.

• The NAut-morphism h = 〈hV , hT , hL〉 is taken into the Cat(CMon)-morphism h = 〈hG, hL〉 :
CNA → CNA′ where hG = 〈hV , hT ′〉, hL = 〈!, hL′〉 and hT ′ , hL′ are the monoid morphisms generated
by the monoid morphisms hT and hL, respectively.

Definition 7 (Functor cn) Let CNA = 〈G, L, lab〉 be a CNAut-object and h : CNA → CNA′ be a
CNAut-morphism. The functor cn : CNAut → NAut is such that:

• Cat(CMon)-object G = 〈V, T, δ0, δ1, ι, ; 〉 is taken into the RGr(CMon)-object G′ = 〈V, T′, δ′0, δ
′
1, ι

′〉,
where T′ is T subject to the equational rule

t:a→b∈T′ u:b→c∈T′ t′:a′→b′∈T′ u′:b′→c′∈T′

(t;u)||(t′;u′)=(t||t′);(u||u′)

and δ′0, δ′1, ι′ are induced by δ0, δ1, ι, restricted to T′.

• The Cat(CMon)-object L = 〈V, L, δ0, δ1, ι, ; 〉 is taken into the CMon-object L′, where L′ is L subject
to the analogous equational rule.

• The CNAut-object CNA = 〈G, L, lab〉 is taken into the NAut-object NA = 〈G′, L′, lab′〉 with lab′ the
RGr(CMon)-morphism canonically induced by the Cat(CMon)-morphism lab.

• The CNAut-morphism h = 〈hG, hL〉 with hG = 〈hGV
, hGT

〉, hL = 〈hLV
, hLT

〉 is taken into the
NAut-morphism h =

〈

hGV
, hG

T ′ , hL
T ′

〉

: NA → NA′ where hG
T ′ and hL

T ′ are the monoid morphisms
induced by hGT

and hLT
respectively.

Definition 8 (Transitive Closure Functor) The transitive closure functor is tc = cn ◦ nc : NAut →
NAut.

The functor cn introduces an important requirement about concurrency in the computational closure:
(t; u)||(t′; u′) = (t||t′); (u||u′). That is, the computation determined by two independent composed transitions
t; u and t′; u′ is equivalent to the computation whose steps are the independent transitions t||t′ and u||u′.
As illustration, consider transitions t : A → B and u : B → C from our working example (figure 6). For
t||u : A ⊕ B → B ⊕ C we have

t||u = (ιA; t)||(u; ιC) = (ιA||u); (t||ιC) = u; t

u||t = (ιB ; u)||(t; ιB) = (ιB ||t); (u||ιB) = t; u

Thus, the concurrent execution of two independent transitions is equivalent to its sequential execution in any
order. Also, the inference rules of the functor nc inductively defined the new set of composed transitions,
adding, for example, the transition t; 2u : A ⊕ B → 2C by sequentially composing t : A ⊕ B → 2B and



Figure 7: Refinement morphism for transaction t : X → Y

Figure 8: Basic translation schemes from activity diagram to nonsequential automaton

2u : 2B → 2C. But how about transition u; t; u : A ⊕ B → 2C? It was not drawn in the figure because
several transitions actually represent equivalence classes induced by the set of equational rules. In the case
of u; t; u it is in the same class of t; 2u:

t; 2u = t; (u||u) = (t||ιB); (u||u) = (t; u)||(ιB ; u) = (t; u)||u = u||(t; u) =

(u; ιC)||(ιA; (t; u)) = (u||ιA); (ιC ||(t; u)) = u; (ιC ||(t; u)) = u; ((t; u)||ιC) = u; t; u

To illustrate the refinement morphism, given two nonsequential automata NA and NA′ with free monoids
on states and labeled transitions respectively induced by transitions t : X → Y , and t0 : A → C, t1 : B → D,
suppose we want to build a transaction containing both t0 and t1. First we apply the transitive closure
functor tc, enriching NA′ with all sequential and nonsequential computations. For the last step we need
to build the refinement morphism by mapping the corresponding states and transitions. The refinement
ϕ : NA → tcNA′ is given by X 7→ A ⊕ B, Y 7→ C ⊕ D, t 7→ t0||t1 (see figure 7). Notice that due to the
equations, we actually get a class of transitions containing t0||t1, t0; t1 and t1; t0, represented as t0||t1 in the
figure.

4 Mapping Activity Diagrams to Nonsequential Automata

As we can see from previous sections, an activity diagram is already close to a Petri net. So, the basic
translation schemes from activity diagrams into nonsequential automata are targeted into constructing local
transitions for a nonsequential automaton.

Figure 8 shows this principle for action states and complex transitions. The labeling for transitions
corresponds to labels from the diagram states. Initial and final states represent the corresponding initial
and final places/states of the automaton 2.

2The explicit representation of initial and final states for nonsequential automata was not presented in order to simplify the

discussion of the semantic model.



Figure 9: Translation scheme for guarded transitions

The translation of guarded transitions is based on the refinement morphism from nonsequential automata.
It is a two step translation: first, conditions are translated to transitions corresponding to a nondeterministic
choice following figure 9, then, a refinement associates each flat transition ti to a sequential composition
condi; ti.

The central core of the composite transaction state also makes use of nonsequential automata refinement.
The source automaton corresponds to the basic translation using the previous mappings, where the composite
state is viewed as only one state. The target automaton corresponds to the translation taking into account the
subactivity states of the composite. The refinement then maps the more abstract transition into the concrete
implementation of the transaction obtained via the computational closure of the target automaton. Figure 10
partially depicts the target nonsequential automaton for our initial example of activity diagrams (figure 1).
Notice it explicits all possible computational paths, including the transition labeled Evalx||(Evaly; Atriby)
as the desired behavior for the fork/join construction in the activity diagram. For the refinement, the
transaction state is represented by the atomic composition Evaly; Atriby.

Due to space limitations and to simplify the presentation, in this paper we have not dealt with event
generation and handling. Generally speaking, for Petri net related models, events may be modeled as
tokens or transitions with different consequences on the resulting behavior (see [7] for a discussion on both
alternatives). Notice when modeling reactive systems, events should not be abstracted away and thus activity
diagrams alone are not sufficient in the development process.

5 Conclusion

Models capture the important aspects of the system being modeled from a certain point of view and simplify
or omit the rest. Which aspects are essential is a matter of judgment that depends on the purpose of
each model. We believe transactions are an important part of today systems and they deserve a first class
mechanism in modeling languages, specially UML.

Following that premise, this paper presented an extension to UML activity diagrams centered on a
construction for defining atomic composition of actions and activities. We have extended the UML notation
with a particular stereotype for composite states and defined its semantics by the means of refinement
morphisms over nonsequential automata.

Different lines of research are related to this work, manly semantics based on Abstract Machines, Petri
nets and Workflow Statecharts. In [4] abstract state machines are used to provide semantics for activity
diagrams in UML; [19] uses a process-like algebra for describing activity diagrams; and extensive work has
been put on defining semantics for modeling workflow in [7, 6].

Some aspects of activity diagrams have been left out of this presentation and need further investigation.
The most important are events and its associated action semantics.
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Figure 10: Nonsequential automata for activity diagram
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