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Abstract

The ISO C standard C99 has added a special keyword, namedrestrict to allow the programmer to specify
non-aliasing as an aid to the compiler’s optimizer and to thereby possibly improve performance. However, it is the
programmer’s responsibility to ensure that the annotations are correct. Therefore, in practice,restrict will be useful
only when the programmer’s effort is rewarded with noticeable performance improvement. To assess the performance
potential of therestrict annotation, we automatically generated best-caserestrict annotations for SPEC CPU2000
benchmarks by using pointer profiling. However, even though we used the best possiblerestrict annotations, we
found an average program speedup of less than 1% on average when using two state-of-the art optimizing compilers
that implement therestrict pragma. Since the typical performance benefits do not warrant significant user effort
and potential errors, we conclude that having the programmer specify non-aliasing is a bad idea.
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1 Introduction

In most programming languages it is possible to access a memory location in multiple ways using different names.
For instance, in programming languages that support call-by-reference parameters, the name of the formal and actual
argument refer to the same location and are therefore aliased. Aliases do also frequently arise due to pointers to named
variables: ifp points to variablex, bothx and the pointer dereference*p access the same memory location.

To ensure that correct code is generated in the presence of aliases, compilers have to perform analias analysisto
determine the aliases in the program and disambiguate memory accesses. Consider the example in Figure 1, which
shows the fragment of a C program. Procedurevmul takes two arrays of floating point numbers,a andb and their
sizen as inputs and computes the square of each element ofa and stores it element by element in arrayb. Without
further knowledge and without special hardware support, the compiler must assume thata andb may refer to the same
array or overlapping parts of an array so that the loop cannot be parallelized or software-pipelined because it has to be
ensured that an update ofb[i] is performed before the next valuea[i+1] is loaded. This constraint also prevents the
compiler from generating loads for multiple array elements ofa at the same time since the subsequent store tob[i]
may modify elements of arraya.1

To compute the aliases in a program, many algorithms have been developed. Flow- and context-sensitive algo-
rithms potentially produce the most precise results, but they generally do not scale well, which limits their applica-
bility to relatively small programs (50,000 lines of code at most). In addition, recent work [5] suggests that for many
C programs flow- and context-sensitivity produce only insignificant improvements over Das’s fast One-Level Flow
algorithm [4], which has been shown to scale up to over a million lines of C code.

Because flow- and context-sensitive pointer analyses are usually too expensive to be used in production compilers,
often only very simple pointer analysis is performed in practice. For instance, the analysis may simply assume that a
pointer dereference may define any variable that has its address taken in the program. Unfortunately, the conservative
results ensuing from such simple algorithms may prevent the compiler from performing aggressive code optimization.

Even though more expensive algorithms potentially produce better results, compared to actual run-time pointer
behavior their results are still very conservative. Mock et al. [19] showed that while the points-to sets of SPEC
CPU2000 benchmarks computed by several well-known scalable points-to analyses typically contained hundreds or
even thousand of potential pointer targets, at run-time pointers typically point to only a few, in fact in most cases only
one, logical location.2 This means that even compilers that use more sophisticated pointer analysis algorithms may in

1When the processor provides mechanisms for data speculation, the compiler may decide to speculatively load the value into a register and rely
on the hardware to detect whether the value has to be reloaded. For example, on the Intel Itanium processor the compiler can use an advanced load
instruction in conjunction with a check instruction to perform this kind of data speculation (cf. Section 4.2 for more details).

2A logical location is either a program variable or a heap allocation site. There may be multiple instantiations of a single logical variable in the
case of local variables and multiple distinct objects allocated at the same memory allocation (heap) site.



void vmul(int n, double* a, double* b) {
int i;
for (i=0; i<n; i++)

b[i] = a[i] * a[i];
}

Figure 1: A simple vector multiplication routine. If it is known that arraysa andb are not aliased, the compiler can
software-pipeline or parallelize the loop.

void vmul(int n, double* restrict a, double* restrict b) {
int i;
for (i=0; i<n; i++)

b[i] = a[i] * a[i];
}

Figure 2: The vector multiplication routine whose arguments have been annotated with therestrict pragma to
indicate to the compiler that the arguments are not aliased, thereby allowing the compiler to perform more aggressive
optimization, such as software pipelining. If the annotation is incorrect, the resulting code may be incorrect.

practice be prevented from performing some optimizations even when those would be sound in reality.
Pointer analysis imprecision is a particularly severe problem for the C programming language, where widespread

pointer use, a weak type system, and pointer arithmetic often lead to very imprecise analysis results. This has been
long recognized by C users and compiler writers alike and led to a community effort to add a language pragma to the
C language standard that could be used by C programmers to communicate to the compiler that certain expressions in
a program are not aliased. The latest C99 standard (formally defined as ISO/IEC standard 9899:1999 [13]) introduces
arestrict keyword, which can be used to qualify formal pointer-type arguments of procedures.3

The definition of therestrict keyword specifies that “an object that is accessed through a restrict qualified pointer
requires that all accesses to that object use, directly or indirectly, the value of that particular restrict qualified pointer.
Any access to the object through any other means may result in undefined behavior. The intended use of the restrict
qualifier is to allow the compiler to make assumptions that promote optimizations.” (quoted from the README file
distributed with the Sun C compiler, which implements the C99 standard, one of the compilers used in this study).

Figure 2 shows an example of howrestrict is supposed to be used. The two pointer-typed argumentsa andb
are qualified with therestrict keyword to tell the compiler that the array pointed to bya is only accessed via pointer
a and any pointers derived from it (e.g., accesses such asa[i] which use an address obtained by adding an offset to
a). Similarly, the array pointed to byb is only accessed via pointerb and pointers derived from it. In particular, these
assertions state thata andb may not point to overlapping or identical arrays. Consequently, based on these assertions,
the compiler can perform (software) parallelization and other transformations whose correctness depend ona andb
not being aliased. Compared to the routine shown in Figure 1, the restrict-qualified routine in Figure 2 executes 24%
faster on a Sparc workstation and even 2.9 times faster on an Itanium-based workstation with two processors.4

Since therestrict keyword is an assertion specifying that the qualified function arguments are not aliased at run
time, it has to be used with utmost care because the compiler may perform some optimizations that are not sound when
the arguments are in fact aliased. While a compiler user who is familiar with the program he/she is compiling may be
able to use therestrict keyword correctly, it will still be a tedious task and, without any support by an automatic
tool, likely be error prone. In practice, therefore, users will only accept this tedium if they can expect a noticeable
performance gain. While previous work [3] found that in some cases memory disambiguation can result in significant
speedups for kernel array codes, it is not clear what performance gains are achievable with therestrict pragma on
general C programs of realistic size.

In this paper we show that even optimistic annotations withrestrict pragmas (i.e., annotations that may only be
sound for some but not all inputs) lead only to minor performance improvements for C programs of significant size
and variety. We were able to verify that this result appears to hold across compilers and architectures by using two
distinct commercial optimizing compilers on two different processors (Sparc V9 and Itanium 2) and obtaining very
similar results. Therefore, we conclude that is generally a bad idea to put the specification of non-aliasing into the
programmer’s hands.

However, while the typical performance improvements are too small to warrant extra programmer effort, we would
like to realize those improvements if this could be done with no or insignificant programmer effort. Fortunately, this is

3The C standard also defines the use ofrestrict on structure fields to specify thatrestrict-qualified fields are not aliased to other program
expressions.

4The Sparc speedup was measured on a Sun Blade workstation with version 7 of the Sun Studio One C compiler and highest (-xO5) optimization
level; the speedup for the Itanium processor on a HP ZX6000 machine with 2 Itanium 2 processors, and Intel’s ecc compiler with highest (-O3)
optimization. In both cases, a vector size of 100 was used and the loop was executed 1,000,000 times.



feasible: with simple pointer profiling,restrict annotations can be derived automatically. We present an approach
that ensures that such annotations are sound by generating a run-time check that redirects execution to conservatively
optimized code (assuming aliasing) when the run-time check fails.

In more detail, this paper makes the following contributions:

1. By observing alias relationships at run-time and using them to placerestrict pragmas, we obtain an upper
bound on the potential performance improvement arising fromrestrict pragmas in two real highly optimizing
C compilers;

2. we show that for a large class of diverse, compute-intensive applications (SPEC CPU2000 benchmarks), only
minor improvements can be achieved – on average less than 1% and no more than 8% in our experiments;

3. we demonstrate howrestrict pragmas generated by run-time observation of alias relationships can be made
sound across all inputs by outlining how to generate guard code that selects a conservatively optimized version
of a function when aliases occur at run-time;

4. and finally, we show that placingrestrict pragmas based on static alias analysis alone is in general much less
effective than generating guardedrestrict pragmas using run-time information.

The rest of this paper is organized as follows: Section 2 gives some background on pointer analysis and describes
how we obtained the dynamic alias information used for our optimization experiments. Section 3 describes our
experimental setup and the workload used in this study. Section 4 presents the results of our experiments and analyzes
the reasons for the observed speedups. In Section 5 we propose an automatic approach to generate sound uses of
restrict pragmas, and in Section 6 we discuss related work. Finally, Section 7 presents conclusions and directions
for future research.

2 Alias Analysis

In the C programming language aliases can arise in two ways. First, different fields of a union data structure are
aliased to each other. Second, variables that have their address taken can be accessed both via their name and a pointer
dereference. Aliases arising via union data structures are easily identified, potential aliases via pointers, on the other
hand, require a pointer analysis.5 This analysis is often performed as apoints-to analysis, which computes for each
pointerp and pointer dereference expressionexp the set of logical locations that may be accessed viap or exp. Some
pointer analyses compute the set of possible aliases due to pointers directly (e.g.,Landi et al.’s algorithm [16]).

2.1 Points-to Analysis

Aliases can be computed easily from points-to sets: given variablex and pointer-valued expressionsexp1 andexp2,
x is aliased to∗(exp1) ⇐⇒ x∈ pts(exp1), wherepts(exp) denotes the points-to set of expressionexp, and∗(exp1)
and∗(exp2) are aliased⇐⇒ pts(exp1)∩ pts(exp2) 6= /0.6

Traditionalstaticpoints-to analyses compute an approximation of the set of objects to which a pointer may point.
They are conservative in the sense that their results must be correct for any input and execution path of the program.
In addition, for the C programming language they have to make various conservative assumptions when analyzing a
program, for instance, because of C’s weak type system.

An alternative way of gathering points-to data is to perform adynamicpoints-to analysis. A dynamic points-to
analysis records the targets of program pointers during actual program execution, by instrumenting the program source
with calls to an appropriate data-capturing routine. Since dynamic points-to sets only capture the targets of pointers
during a particular program execution, they are in general unsound (i.e., optimistic). Mock et al. [19] showed that
the typically observed dynamic points-to sets are 10–100 times smaller than the points-to sets computed by Das’s
highly-scalable One-Level Flow algorithm [4], which generally produces results as precise as Andersen’s well-known
algorithm [2]. Andersen’s algorithm, in turn, has been shown [17] to be of comparable precision as some other
well-known pointer analysis algorithms [17, 20]. Mock et al. [19] additionally showed that the majority of program
variables in the SPEC CPU2000 benchmarks point to only a single logical location during execution with the SPEC-
provided test inputs. Although more expensive flow-sensitive algorithms [22] can obtain better average points-to sets
than the scalable analyses used in [19], they still do not in general yield points-to sets as small as the dynamic sets.

5Sometimes the termspointer analysis, points-to analysis, andalias analysisare used interchangeably in the literature. In this paper, we use
the term alias analysis for an analysis that determines for a memory-access expression the set of other expressions (variable names or pointer
dereferences) that may refer to the same memory location.

6This rule does not take aliases via union data structures into account. For the rest of the paper we do not distinguish fields of structures or
unions, i.e., a reference of a structure or union field is treated as if the whole structure or union were referenced. Since distinguishing structure and
union fields in a pointer analysis can potentially make the algorithm much less efficient, many pointer analyses do not distinguish them, e.g., [4, 23].



Source
Lines

Reachable
Functions

Description

art 1,270 22 image recognition, neural networks
equake 1,513 27 seismic wave propagation simulator
mcf 1,909 24 combinatorial optimization
bzip2 4,639 63 compression
gzip 7,757 62 compression
parser 10,924 297 word processing
ammp 13,263 161 molecular dynamics
vpr 16,973 255 circuit placement and routing
twolf 19,748 167 placement and global routing
vortex 52,633 643 object-oriented database
mesa 49,701 770 graphics package
gap 59,482 826 group theory interpreter

Table 1: Sizes and descriptions of the programs used in the experiments.

Since all logical locations contained in a dynamic points-to set must also be contained in its static counterpart,
using dynamic points-to sets to compute aliases in a program enables us to obtain a lower bound on the aliases present
in a program. Using these optimistic aliases in the compiler’s optimization phase therefore provides an upper bound
on the improvement we can hope to achieve by usingrestrict pragmas in a program. Obviously, therestrict
pragmas obtained by this method are optimistic, i.e., only guaranteed to be sound for the program input that was used
to compute the alias relationships. For a bound on the potential impact on optimization, however, this is immaterial.
When used for optimization in practice, however, we must guarantee that therestrict pragmas are sound for all
inputs; Section 5 outlines how to generate run-time guards to makerestrict pragmas safe and enable aggressive
optimizations at the same time.

2.2 Dynamic Alias Analysis

To generate the dynamic alias information used to placerestrict pragmas, we used a slightly modified version of
the instrumentation toolTumi [18, 19], which works in three steps. First, a static points-to analysis is run on the
application source code. For each pointer and dereference point, it computes a conservative approximation of the set
of logical locations a pointer may point to.

Second, the application is instrumented, inserting a call to a run-time routine (at the entry of each procedure)
that, for each procedure argumentarg, matches the address contained inarg with the run-time addresses of potential
pointer targets forarg (identified by the static points-to analysis of the first step).7 At run-time, when the run-time
library routine identifies the same logical location for two distinct arguments, the arguments are marked as aliased.8

As the final step, the instrumented application is compiled, and executed on some input. Upon termination, the
instrumentation code saves a record of the aliasing relationships that occurred during execution. In this process the
address matching step is essential: since distinct run-time addresses may refer to the same logical location, simply
recording the pointer addresses is not sufficient to construct the aliasing relationships at run time. More details about
the instrumentation algorithm can be found in [18, 19].

To obtain the dynamic aliasing relationships for the applications in this study, we used the SPEC-provided refer-
ence inputs to ensure that the resultingrestrict pragmas were sound for the timing runs, which use the reference
inputs. Das’s One-Level Flow algorithm [4] was used as the static points-to analysis of the first step.

3 Experimental Setup and Workload

To determine the performance impact ofrestrict pragmas on realistic programs, we chose to use applications from
the SPEC CPU2000 benchmark suite since SPEC benchmarks are of considerable size, cover a wide range of tasks
(e.g., simulations, group theoretic computations, graphics, databases, word processing), are actually used in practice,
and are generally used to evaluate CPU performance, i.e, they are generally considered to be good indicators of CPU
and compiler performance. Table 1 shows the programs used with their sizes (in lines of C code) and the number of
statically reachable functions, for which we generatedrestrict annotations.

We performed our experiments on two different platforms. The first platform was a Sun Blade-100 workstation
with a 500MHz UltraSPARC-IIe processor, 256 MByte of RAM, and running Sun OS 5.8 (Solaris). For this platform

7Since arguments that have empty (static) points-to sets are guaranteed not contain pointers at run-time, only arguments with non-empty static
points-to sets are instrumented.

8In addition, for therestrict annotation to be correct, other memory references inside the procedure must also not be aliased to the procedure
argument. In our experiments, we verified that this was the case by manual inspection of all dynamic points-to sets within a procedure.



Un-aliased
at run time

Aliased
statically

equake 26 16
mcf 3 2
parser 22 18
ammp 12 2
vpr 50 35
twolf 11 7
vortex 397 397
mesa 18 18
gap 49 48

Table 2: Column two shows the number of functions for which none of the arguments were found to be aliased at run-
time; column three the number of those that were reported to be aliased by the static pointer analysis. For instance, for
vpr, there were 50 functions with no aliases in the arguments at run time; out of those 50, 35 were reported to have
aliased arguments by the static points-to analysis.art, bzip2 andgzip are not shown in the table since the static
alias analysis was able to determine that no aliases were present in these applications for the procedure arguments.

we used the Sun Studio One C compiler, version 7, and compiled the benchmarks with the highest optimization option
-xO5, using cross-file optimization (-xcrossfile) and the -fast option, which turns on a couple of optimizations designed
to improve execution speed (e.g., data alignment along double word boundaries to improve memory access times).

The second platform was a Hewlett Packard ZX6000 workstation with two 900 MHz Itanium 2 processors, 1 GB
of RAM, and running Redhat Linux 7.2. For this platform we used the ecc compiler from Intel, version 7.0 at highest
optimization level (-O3), with interprocedural optimization across files (-ipo), and the -restrict option to enable the use
of therestrict qualifier.

For both platforms, all timings were obtained using therunspec script provided with the SPEC CPU2000 bench-
mark suite. We ran the benchmark several times on otherwise unloaded machines and took the best (shortest) execution
time of all runs. We used the reference input data sets, which represent the largest input data sets available in the SPEC
benchmark suite. We did not use feedback directed optimizations in our experiments to avoid any interaction of pro-
filing with therestrict optimization.

4 Results

4.1 Aliasing Results

Table 2 shows for each benchmark the number of reachable functions with at least one pointer-type argument (on which
therestrict pragma might be used) and for which none of the arguments was found to be aliased at run-time. Column
three, for comparison, lists the number of those functions for which the static pointer analysis (Das’ algorithm [4])
reported that some arguments might be aliased. For instance, forgap 49 functions with at least one pointer-type
argument did not have any aliases at run-time in their arguments. For 48 of those 49 functions, however, the static
points-to analysis reported that the arguments might be aliased. With the exception ofmcf andammp, generally the
alias information produced by the static pointer analysis was not a very accurate representation of the run-time alias
relationships. This shows that there is an opportunity for exploiting run-time alias information in practice, but how
effectively can it be realized withrestrict pragmas?

4.2 Best Case Speedups with restrict

To answer this question, we generated therestrict pragmas, compiled and executed the programs as described
in Section 3. Figure 3 shows the speedup for each application when compiled withrestrict pragmas versus the
execution time of the same program that was compiled without anyrestrict pragmas. In both cases, all other
optimizations options were identical (-xO5 -fast -xcrossfile for the Sparc platform and -O3 -ipo -restrict for the
Itanium platform).9 Since no aliases where found by the static pointer analysis forart, bzip2 andgzip, they have
been omitted from the graphs.

On average (geometric mean) across all benchmarks, we see only a modest improvement of just a little under 1%
on the Sparc platform; on Itanium, the average was close to one. The best speedup improvement was achieved for
applicationammp on the Sparc platform, which improved by 7.5%.

While ammp was the benchmark with the largest speedup on the Sparc platform (in fact, the largest speedup in
general), its performance was identical to the unannotated version on the Itanium platform. We even found that the

9In the Sun Studio One C compiler recognition of therestrict pragma is on by default, for the Intel ecc compiler it has to be turned on
explicitly with the -restrict switch.



Figure 3: Upper bound speedups of the applications obtained by placingrestrict on all arguments that were found
to be unaliased when run on the reference input.

ecc compiler produced identical binaries for the benchmark with and withoutrestrict pragmas. Since in other
benchmarks (and as mentioned in Section 1) ecc actually is able to take advantage of the pragma we looked more
closely at the binary that was generated.

The compiler performs aggressive data speculation exploiting the advanced load instruction on the Itanium (for
instanceldfd.a) which loads a value into a register and stores the memory address from which the data was loaded in
theAdvanced Load Address Table(ALAT) hardware structure. Before the use of a value loaded with an advanced load
instruction, the compiler inserts achk.a instruction. This instruction will branch to fix-up code to reload the value if
its load address is not in the ALAT and recompute any speculatively computed values based on the value loaded with
the advanced load. Since the processor automatically removes an entry from the ALAT when a store to an address in
the ALAT occurs, this ensures correctness in case of an intervening store. Using this feature, the compiler apparently
found no additional optimization opportunities with therestrict annotations beyond the normal data speculation
that is already performed for possibly aliased loads.

We ascertained this explication using the Itanium processor’s performance counters. They showed that during the
execution approximately 35 million check instructions were execution of which less than 0.04% failed the check, i.e.,
required a reload from memory. That is, the compiler is able to overcome poor static alias information by using the
Itanium’s hardware support for data speculation, breaking the pointer-induced data dependences, and so aggressively
optimizing the application.

For the Sparc platform,mcf andvpr were the only other benchmarks for which therestrict pragma resulted
in speedups. For several of the benchmarks, the code withrestrict actually ran somewhat slower. We believe this
to be due to degraded instruction cache performance since code compiled withrestrict tends to be considerably
larger than the original code because the compiler performs loop parallelization, aggressive unrolling etc. which can
improve run-time but result in larger instruction cache footprints.

For the Itanium platform,equake andparser also showed minimal speedups, however, below 1%. Forvortex,
therestrict annotation led to a performance degradation of about 1% on the Sparc platform, and minimal improve-
ment on the Itanium platform.gap’s performance was virtually unchanged on both platforms with an insignificant
degradation in both cases.

5 Sound, Aggressive restrict Annotations

The results in Section 4 indicate that there is generally too little performance gain fromrestrict annotations to
justify the additional programmer effort and potential for errors by incorrectly placed annotations. However, some
applications may benefit noticeably (e.g.,ammp on the Sparc platform in our experiments), and for others even minor
improvements may be welcome if they can be obtained without additional programmer effort.



However, to realize those improvements where possible without user intervention,restrict annotations placed
by an automatic tool have to be sound. The data shown in Table 2 demonstrates that a tool relying on static (pointer)
analysis alone will generally not be able to placerestrict annotations aggressively and would usually not be able to
effectively exploit non-aliasing. Yet, annotations generated exclusively based on dynamic alias information, which is
guaranteed to detect non-aliasing when present, is unsound since it cannot guarantee the absence of aliasing across all
inputs. Therefore, we propose the following approach that combines dynamic and static analysis with run-time checks
to generate aggressive yet sound alias annotations.10

To ensure the soundness of a routine some of whose arguments have been qualified withrestrict, guard code is
added, which checks at run-time whether the arguments are in fact alias-free. If an alias is detected at run-time, the
guard condition dispatches to a conservatively optimized version of the routine, otherwise the aggressively optimized
routine (optimized assuming no aliasing) is executed. Figure 4 shows an example.11 The originalvmul routine has
been replaced by a routine that checks for an alias fora or b. If the check returnstrue (no alias is present), then the
routine that was optimized with therestrict annotation is called (renamed tovmul-r); otherwisevmul-s is called,
the originalvmul routine without anyrestrict pragma (i.e., optimized assuming potential aliasing). Effectively,
we have specialized routinevmul for the presence or absence of aliases. To avoid additional call overhead, thevmul
routine, which only serves as a trampoline to select the correct specialized code version, will be inlined into its caller
(indicated by theinline keyword in the example). If the transformation is performed at the intermediate code level,
this inlining could be performed at compile time if all code is available then, or at link time when the code for all the
callers ofvmul becomes available.

Since the run-time checkcheck vmul alias adds an additional run-time cost to the original routine, it is important
that its cost be recouped by sufficiently often executing the more aggressively optimized version. To determine whether
the transformation is worthwhile, the compiler should assess the likely ensuing benefit, for instance by using an
approach similar to the inline trials used by Dean et al. [7]. At the same time, it is important to make the run-time alias
check as cheap as possible.

Our instrumentation tool Tumi provides library routines that can be linked with an application to automatically de-
tect aliases at run-time. The same steps used to identify the logical location pointed to by a pointer can be used to check
whether aliasing occurs: if address matching for the possibly aliased locations returns the same logical location, alias-
ing is present and the conservatively optimized code version can be dispatched, otherwise the aggressively optimized
version. Unfortunately, currently this requires that the application be run with some instrumentation code in place,
which degrades performance considerably.12 Looking at possible hardware mechanisms to make the instrumentation
more efficient, is an interesting area for future research.

While using Tumi’s general alias detection mechanism is typically too expensive, in many cases much cheaper
tests can be generated as guard code. If, for instance, the pointer analysis can determine statically that aliases witha
andb will either not occur or that that the two arguments will point to the same base address,check vmul alias(a,b)
can be implemented as a simple pointer comparison ofa andb. How to generate those cheaper tests automatically and
with minimal additional run-time (pointer profiling) overhead, is part of future research.

6 Related Work

Bernstein et al. [3] use a static memory disambiguator for array references to generate run-time conditions that check
whether an alias actually occurs at run-time in those cases where the static analysis cannot rule out aliasing. In their
approach, tests for these alias conditions are inserted into inner loops and (statically) two code versions are generated
for the loop: one optimized assuming no aliasing and one with aliasing. To minimize the run-time cost of selecting the
appropriate code version, they perform their transformation only when the dynamic condition is loop-invariant so that
it can be hoisted out of the loop. On the downside, limiting their transformation to this subset of all inner loops also
diminishes the applicability of their approach. On integer codes they found no improvements, and with the exception
of two applications, floating point benchmarks also showed no speedups. The two applications that showed significant
speedups (alvin 117% andear 37%), are very small compared to the SPEC CPU2000 benchmarks;alvin is 200
lines andear 3,000 lines of C code, i.e., really significant speedups were only achieved for kernel-size applications.

Postiff et al. [21] investigated hardware support to enable the promotion of a variable from memory to a registers.
In the presence of an alias, this can generally not be done (at least without repeatedly reloading the register which
defeats the optimization purpose). They propose a combined compiler-architecture approach, where the compiler

10Note that this idea per se is not new, and has been applied in similar fashion by several researchers [3, 6, 11]. While previous approaches
typically relied on heuristics to decide when code speculation based on aliasing should be performed, the approach proposed here is based on
dynamically gathered alias profiles that represent likely alias relationships at run time.

11The example shows the transformation in C code; in practice, the transformation would most likely be performed at the compiler’s intermediate
representation level.

12For all benchmarks in this study, the slowdown incurred by Tumi’s instrumentation was over 10% [18]. Therefore, none of the best-case
speedups achieved withrestrict lead to actual speedups when Tumi’s current alias detection mechanism to dispatch to the appropriate code
version at run time is used.



inline void vmul(int n, double* a, double* b) {
if (check_vmul_alias(a,b))

vmul-s(n, a, b); /* aliased */
else

vmul-r(n, a, b); /* not aliased */
}
void vmul-r(int n, double* restrict a, double* restrict b) {

int i
for (i=0; i<n; i++)

b[i] = a[i] * a[i];
}
void vmul-s(int n, double* a, double* b) {

int i
for (i=0; i<n; i++)

b[i] = a[i] * a[i];
}

Figure 4: Guard code example. The original routinevmul from Figure 1 has been converted into a trampoline routine
that is inlined into callers ofvmul. Its only purpose is to select the correct code version ofvmul at run time:vmul-r,
i.e., vmul optimized withrestrict annotations is selected if the run-time non-aliasing check for therestrict-
annotated arguments succeeds; otherwise,vmul-s the safely optimized version ofvmul is selected. By inlining the
vmul-trampoline routine no additional function call overhead is added. If the alias checkcheck vmul alias is simple
enough (for checking that arraysa andb are not aliased a simple pointer comparison may suffice), it can also be
inlined, further reducing the run-time checking overhead.

loads the address of a promoted variable into a special processor data structure (the store-load address table). When
aliased accesses to the variable occur, they are automatically intercepted by the processor and the value is forwarded
directly into the register into which the variable was promoted. In their simulation they found a moderate reduction
in the number of loads and stores on average, however, it is unclear what the bottom-line performance effect of their
combined approach might be in practice. Note however, that the proposed hardware structure is very similar to the
ALAT structure on the Intel Itanium processor [12].

Das et al. [5] compare several static pointer analyses to estimate the potential impact on optimization arising from
more precise static pointer analysis. They demonstrate the number of aliases reported by fast control-flow insensitive
analyses is not significantly different from the number reported by more expensive flow-sensitive algorithms. Their
works differs from ours inasmuch as they do not look at the potential for performance improvement arising from
compiler pragmas (such asrestrict), nor do they compare concrete execution times resulting from different alias
analysis precision.

Ghiya et al. [10] do exactly this by comparing the run times of SPEC benchmarks when compiled with different
memory disambiguation algorithms in their compiler for the IA-64 (Itanium) architecture. Similar to Das et al., they
found that more expensive algorithms in most cases did not provide additional benefits. In practice, a more important
property for the optimization of their C benchmarks was whether or not the algorithms distinguished structure fields.

Foster and Aiken [1, 9] define a precise semantics for therestrict qualifier and then present a type analysis that
automatically infers whetherrestrict annotations written by a programmer obey the semantics. Their goal is to
detect violations of certain program correctness properties, for instance, that a lock is not acquired again before releas-
ing it. While their approach might benefit from dynamic alias information, in many cases the static alias information
seems to be sufficient for detecting programming errors.

Koes et al. [14, 15] present work similar to ours. They propose another programmer annotation similar in spirit to
restrict, that allows the programmer to specify the non-aliasing of two arbitrary pointers and study its usefulness
for performance optimization. They also use profiling to determine when the annotations would be useful. However,
they do not present an automatic scheme to ensure soundness and their performance numbers are only simulated and
therefore have to be taken with a grain of salt. Their simulation results, however, show the same trend: for most
applications there was only minimal improvement, and best-case (simulated) speedups were under 30% in all cases
for realistic processor assumptions.

Fernandez and Espasa [8] present an approach for performing alias analysis on executable code at link time. In
addition, they mention using run-time profiles to perform speculative optimization, without however, describing an
automatic approach to achieve soundness.

Huang et al. [11] perform speculative disambiguation for the LIFE VLIW architecture. They produce specialized
code that disambiguates memory at run-time, similar in nature to the approach outlined in Section 5. The difference
lies in the granularity of the approach: they look at individual memory dependences (e.g., a RAW (read-after-write)
dependence) for individual load and store instructions and build a dependence tree to determine the affected instruc-
tions. At run-time, either the speculative code or conservatively optimized code (obeying the potential dependence) is
executing using the VLIW’s predication mechanism.

Davidson and Jinturkar [6] use a software-based dynamic memory disambiguation approach to enable aggressive



loop unrolling (to increase instruction level parallelism) that is otherwise impossible because of possible memory
aliases and show that significant performance improvements are possible with this technique, another indication for
the potential of run-time alias information.

7 Conclusions and Future Work

In this paper we have shown that for large C programs, the impact of usingrestrict annotations is usually limited.
While those annotations can dramatically improve performance of small kernels, larger applications do not signifi-
cantly benefit from even optimisticrestrict annotations. Since the potential benefits are meager but the potential for
introducing errors high, we conclude that programmer-specified non-aliasing is a bad idea in general for improving
program performance.

An alternative way of enabling compilers to perform aggressive optimization even when static point analyses
indicate it might be unsafe to do so, is dynamic alias analysis. In those cases in which noticeable performance
improvements are theoretically possible, the run-time cost for guard code that ensures soundness of the annotations
becomes important. Exploring ways to make these guards cheap, possibly by special (simple) hardware support and
making the automatic generation ofrestrict more efficient, are interesting areas for future research. Moreover, we
are planning on integrating the dynamic alias information directly into the optimizer thereby obviating the need for
restrict annotations completely.
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