Carlos Araya Pacheco (1), Monique Olmos Carrasco (2)
e-mails: caaraya@ucn.cl, molmos@uantof.cl
The goal of the research is to forecast the general achievement of the students who belong to junior industrial engineering program, in order to help the strategic objectives of the Faculty, giving it light about the successful criteria and factors related with, to set up the wished entry level behavior and help reducing the student drop-off and failing.
This research looks insight and describes the process, and was developed in the Engineering Faculty of the University of Antofagasta, Chile, using to evaluate the algorithms of the decision tree and the neuronal networks the methodology CRISP-DM.
The outcomes and conclusions of the research show a 95 % forecasting successful to the Calculus-I and Algebra-I subjects and a 70% forecasting successful to the school-grade scores and schooling type.
Keywords:Árboles Decisición, Redes Neuronales, Minería de Datos, Asociación de Reglas, Gestión Univeritaria
@INPROCEEDINGS{araya-pacheco04:95, AUTHOR = {Carlos Araya Pacheco and Monique Olmos Carrasco}, TITLE = {Predicción del Rendimiento de los Alumnos de las Carreras de Ingeniería a través de Minería de Datos}, BOOKTITLE = {30ma Conferencia Latinoamericana de Informática (CLEI2004)}, YEAR = {2004}, editor = {Mauricio Solar and David Fernández-Baca and Ernesto Cuadros-Vargas}, pages = {273--282}, address = {}, month = Sep, organization = {Sociedad Peruana de Computación}, note = {ISBN 9972-9876-2-0}, file = {http://clei2004.spc.org.pe/es/html/pdfs/95.pdf} }
PDF de este artículo
PDF de CLEI2004 (incluye todos los artículos)
Página principal CLEI 2004
Generado por Sociedad Peruana de Computación