Luciana De Nardin (1), Maria do Carmo Nicoletti (2)
e-mails: luciana@pucpcaldas.br, carmo@dc.ufscar.br
We conducted a few experiments using a genetic algorithm for finding a ‘good’ weight vector for either learning algorithms. Classification results on three knowledge domains obtained using k-NN and IB2 modified by a weight vector found by a genetic algorithm, exceeds the performance of the instance-based methods on their own.
Keywords:Instance-Based Methods, Lazy Learning, Genetic Instance-Based Collaboration, Weighted NN, Weighted IB2
@INPROCEEDINGS{de-nardin04:4, AUTHOR = {Luciana De Nardin and Maria do Carmo Nicoletti}, TITLE = {A Genetic Instance-Based Collaborative Approach for Attribute Weightings}, BOOKTITLE = {30ma Conferencia Latinoamericana de Informática (CLEI2004)}, YEAR = {2004}, editor = {Mauricio Solar and David Fernández-Baca and Ernesto Cuadros-Vargas}, pages = {33--41}, address = {}, month = Sep, organization = {Sociedad Peruana de Computación}, note = {ISBN 9972-9876-2-0}, file = {http://clei2004.spc.org.pe/es/html/pdfs/4.pdf} }
PDF de este artículo
PDF de CLEI2004 (incluye todos los artículos)
Página principal CLEI 2004
Generado por Sociedad Peruana de Computación